Consumer Confidence Report Certification Form

(to be submitted with a copy of the CCR)

(to certify electronic delivery of the CCR, use the certification form on the State Water Board's website at $\underline{ http://www.swrcb.ca.gov/drinking_water/certlic/drinkingwater/CCR.shtml)}$

Water	System N	Jame:	PYRAMID F	LOWERS		
Water	System N	Jumber:	5602513			
certifie	es that the	(da e informa	te) to custome ation containe	ers (and approp d in the report	its Consumer Confidence Report was distributed on priate notices of availability have been given). Further, the is correct and consistent with the compliance monitoring control Board, Division of Drinking Water.	
Certif	ïed By:	Nam	e:			
		Signa	ature:			
		Title:				
		Phon	e Number:	()	Date:	
	pply and fi	ill-in whe	ere appropriat	re:	forts taken, please complete the form below by checking al elivery methods. Specify other direct delivery methods use	
	methods:	:		to reach non-bi nternet at http:	ill paying customers. Those efforts included the following	
	M	lailed the	e CCR to posta	al patrons withi	in the service area (attach zip codes used)	
	Ad	dvertised	l the availabili	ity of the CCR i	in news media (attach a copy of press release)	
	_			_	paper of general circulation (attach a copy of the e newspaper and date published)	
	Po	osted the	CCR in publi	c places (attacl	h a list of locations)	
		•		ies of CCR to si sinesses, and so	single bill addresses serving several persons, chools	
	De	elivery to	community o	organizations (a	attach a list of organizations)	
	O:	ther (atta	ach a list of ot	her methods us	sed)	
	_		_	•	: Posted CCR on a publicly-accessible internet site	
					CR to the California Public Utilities Commission	

2020 Consumer Confidence Report

Water System Name: PYRAMID FLOWERS Report Date: April 2021
--

We test the drinking water quality for many constituents as required by state and federal regulations. This report shows the results of our monitoring for the period of January 1 - December 31, 2020.

Este informe contiene información muy importante sobre su agua potable. Tradúzcalo ó hable con alquien que lo entienda bien.

Type of water source(s) in use: According to SWRCB records, this Source is Groundwater. This Assessment was done using the Default Groundwater System Method.

Your water comes from 1 source(s): Well 01

Opportunities for public participation in decisions that affect drinking water quality: Regularly-scheduled water board or city/county council meetings currently are not held.

For more information about this report, or any questions relating to your drinking water, please call (805)647-5603 and ask for Lori Frost.

TERMS USED IN THIS REPORT

Maximum Contaminant Level (MCL): The highest level of contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs (or MCLGs) as is economically feasible. Secondary MCLs are set to protect the odor, taste, and appearance of drinking water.

Maximum Contaminant Level Goal (MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the U.S. Environmental Protection Agency (USEPA).

Public Health Goal (PHG): The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California Environmental Protection Agency.

Maximum Residual Disinfectant Level (MRDL): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Maximum Residual Disinfectant Level Goal (MRDLG): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

Primary Drinking Water Standards (PDWS): MCLs and MRDLs for the contaminants that affect health along with their monitoring and reporting requirements, and water treatment requirements.

Secondary Drinking Water Standards (SDWS): MCLs for the contaminants that affect taste, odor, or appearance of the drinking water. Contaminants with SDWSs do not affect the health at the MCL levels

Treatment Technique (TT): A required process intended to reduce the level of a contaminant in drinking water.

Regulatory Action Level (AL): The concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow.

Level 1 Assessment: A Level 1 assessment is a study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system.

Level 2 Assessment: A Level 2 assessment is a very detailed study of the water system to identify potential problems and determine (if possible) why an E. coli MCL violation has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions.

mg/L: milligrams per liter or parts per million (ppm)

ug/L: micrograms per liter or parts per billion (ppb)

pCi/L: picocuries per liter (a measure of radiation)

NTU: Nephelometric Turbidity Units

umhos/cm: micro mhos per centimeter

The sources of drinking water: (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include:

- *Microbial contaminants*, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- *Inorganic contaminants*, such as salts and metals, that can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- *Pesticides and herbicides,* that may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses.
- Organic chemical contaminants, including synthetic and volatile organic chemicals, that are by-products if industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, agricultural application, and septic systems.
- Radioactive contaminants, that can be naturally-occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, the USEPA and the State Water Resource Control Board (State Water Board) prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. State Water Board regulations also establish limits for contaminants in bottled water that provide the same protection for public health.

Tables 1, 2, 3, 4, 5, 6 and 7 list all of the drinking water contaminants that were detected during the most recent sampling for the constituent. The presence of these contaminants in the water does not necessarily indicate that the water poses a health risk. The State Water Board allows us to monitor for certain contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of the data, though representative of the water quality, are more than one year old.

Any violation of MCL, AL or MRDL is highlighted. Additional information regarding the violation is provided later in this report.

Table 1 - SAMPLING RESULTS SHOWING THE DETECTION OF COLIFORM BACTERIA									
Microbiological Contaminants (complete if bacteria detected)	Highest No. of Detections	No. of Months in Violation	MCL	MCLG	Typical Sources of Contaminant				
Total Coliform Bacteria	1/mo. (2020)	0	no more than 1 positive monthly sample		Naturally present in the environment.				

	Table 2 - SAMPLING RESULTS FOR SODIUM AND HARDNESS										
Chemical or Constituent (and reporting units)	stituent Sample Date Level Range of Detection		Range of Detections	MCL	PHG (MCLG)	Typical Sources of Contaminant					
Sodium (mg/L)	(2018)	96	n/a	none	nonΔ	Salt present in the water and is generally naturally occurring					
Hardness (mg/L)	(2018)	530	n/a	none		Sum of polyvalent cations present in the water, generally magnesium and calcium, and are usually naturally occurring					

Table 3 - 1	DETECTION	OF CONTA	MINANTS W	/ITH A PR	RIMARY DR	INKING WATER STANDARD
Chemical or Constituent (and reporting units)	Sample Date	Average Level Detected	Range of Detections	MCL [MRDL]	PHG (MCLG) [MRDLG]	Typical Sources of Contaminant
Fluoride (mg/L)	(2018)	0.7	n/a	2	1	Erosion of natural deposits; water additive that promotes strong teeth; discharge from fertilizer and aluminum factories.
Nitrate as N (mg/L)	(2020)	5.1	n/a	10	10	Runoff and leaching from fertilizer use; leaching from septic tanks and sewage; erosion of natural deposits

Nitrate + Nitrite as N (mg/L)	(2018)	5.2	n/a	10	10	Runoff and leaching from fertilizer use; leaching from septic tanks and sewage; erosion of natural deposits
Selenium (ug/L)	(2018)	13	n/a	50	30	Discharge from petroleum, glass, and metal refineries; erosion of natural deposits; discharge from mines and chemical manufacturers; runoff from livestock lots(feed additive)
Gross Alpha (pCi/L)	(2018)	5.51	n/a	15	(0)	Erosion of natural deposits.
Uranium (pCi/L)	(2018)	5.1	n/a	20	0.43	Erosion of natural deposits

Table 4 - DETEC	CTION OF CO	NTAMINAN'	TS WITH A <u>SI</u>	CON	DARY DRI	NKING WATER STANDARD
Chemical or Constituent (and reporting units)	Sample Date	Average Level Detected	Range of Detections	MCL	PHG (MCLG)	Typical Sources of Contaminant
Chloride (mg/L)	(2018)	52	n/a	500	n/a	Runoff/leaching from natural deposits; seawater influence
Specific Conductance (umhos/cm)	(2018)	1370	n/a	1600	n/a	Substances that form ions when in water; seawater influence
Sulfate (mg/L)	(2018)	443	n/a	500	n/a	Runoff/leaching from natural deposits; industrial wastes
Total Dissolved Solids (mg/L)	(2018)	1020	n/a	1000	n/a	Runoff/leaching from natural deposits
Turbidity (NTU)	(2018)	0.2	n/a	5	n/a	Soil runoff
Zinc (mg/L)	(2018)	0.08	n/a	5	n/a	Runoff/leaching from natural deposits

	Table 5 - DETECTION OF UNREGULATED CONTAMINANTS										
Chemical or Constituent (and reporting units)	Sample Date	Average Level Detected	Range of Detections	Notification Level	Typical Sources of Contaminant						
Boron (mg/L)	(2018)	0.7	n/a	1	Boron exposures resulted in decreased fetal weight (developmental effects) in newborn rats.						
Vanadium (mg/L)	(2018)	0.003	n/a	0.05	Vanadium exposures resulted in developmental and reproductive effects in rats.						

			TIONAL DETECTION	ONS	
Chemical or Constituent (and reporting units)	Sample Date	Average Level Detected	Range of Detections	Notification Level	Typical Sources of Contaminant
Calcium (mg/L)	(2018)	135	n/a	n/a	n/a
Magnesium (mg/L)	(2018)	47	n/a	n/a	n/a
pH (units)	(2018)	7.8	n/a	n/a	n/a
Alkalinity (mg/L)	(2018)	200	n/a	n/a	n/a
Aggressiveness Index	(2018)	12.6	n/a	n/a	n/a
Langelier Index	(2018)	0.7	n/a	n/a	n/a

Additional General Information on Drinking Water

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts if some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the USEPA's Safe Drinking Water Hotline (1-800-426-4791).

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at

risk from infections. These people should seek advice about drinking water from their health care providers. USEPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* and other microbial contaminants are available from the Safe Drinking Water Hotline (1-800-426-4791).

Lead Specific Language for Community Water Systems: If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with the service lines and home plumbing. *Pyramid Flowers, Inc.* is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/lead.

Summary Information for Violation of a MCL, MRDL, AL, TT, or Monitoring and Reporting Requirement

VIOLATION O	F A MCL,MRDL,AL,TT, OR M	MONITORING A	AND REPORTING	REQUIREMENT
Violation	Explanation	Duration	Actions Taken To Correct the Violation	Health Effects Language
Total Coliform Bacteria				Coliforms are bacteria that are naturally present in the environment and are used as an indicator that other, potentially harmful, waterborne pathogens may be present or that a potential pathway exists through which contamination may enter the drinking water distribution system. We found coliforms indicating the need to look for potential problems in water treatment or distribution. When this occurs, we are required to conduct assessment(s) to identify problems and to correct any problems that were found during these assessments.
Total Dissolved Solids				The TDS or Total Dissolved Solids in your water was found at levels that exceed the secondary MCL. The TDS MCLs was set to protect you against unpleasant aesthetic affects such as color, taste or hardness. Violating this MCL does not pose a risk to public health.

About your Nitrate as N: Nitrate above 5 mg/L as nitrogen (50 percent of the MCL), but below 10 mg/L as nitrogen (the MCL); Nitrate in drinking water at levels above 10 mg/L is a health risk for infants of less than six months of age. Such nitrate levels in drinking water can interfere with the capacity of the infant's blood to carry oxygen, resulting in a serious illness; symptoms include shortness of breath and blueness of the skin. Nitrate levels above 10 mg/L may also affect the ability of the blood to carry oxygen in other individuals, such as pregnant women and those with certain specific enzyme deficiencies. If you are caring for an infant, or you are pregnant, you should ask advice from your health care provider.

2020 Consumer Confidence Report

Drinking Water Assessment Information

Assessment Information

A source water assessment was conducted for the WELL 01 - HANDWASHING USE ONLY - STANDBY of the PYRAMID FLOWERS water system in July, 2001.

Well 01 - is considered most vulnerable to the following activities not associated with any detected contaminants:
 Agricultural Drainage
 Pesticide/fertilizer/petroleum storage & transfer areas
 Wells - Agricultural/ Irrigation

Acquiring Information

A copy of the complete assessment may be viewed at: SWRCB Division of Drinking Water 1180 Eugenia Place Suite 200 Carpinteria, CA 93013

You may request a summary of the assessment be sent to you by contacting: Jeff Densmore District Engineer 805 566 1326

Pyramid Flowers, Inc. Analytical Results By FGL - 2020

		MICROB	IOLOGICA	AL CONTAM	IINANT	S			
		Units	MCLG	CA-MCL	PHG	Sampled	Result	Avg. Result(a)	Range (b)
Total Coliform Bacteria			0	5%	n/a			0	-
Mens Restroom	SP 2001481-2					2020-01-31	>200.5		
Mens Restroom #1	SP 2001518-3					2020-02-03	<1.0		
Mens Restroom #2	SP 2001518-4					2020-02-03	<1.0		
Womens Restroom	SP 2017529-1					2020-12-17	Absent		
Womens Restroom	SP 2016318-1					2020-11-24	Absent		
Womens Restroom	SP 2014721-1					2020-10-23	Absent		
Womens Restroom	SP 2012933-1					2020-09-18	Absent		
Womens Restroom	SP 2011499-1					2020-08-25	Absent		
Womens Restroom	SP 2010007-1					2020-07-28	Absent		
Womens Restroom	SP 2008333-1					2020-06-24	Absent		
Womens Restroom	SP 2007014-1					2020-05-28	Absent		
Womens Restroom	SP 2005447-1					2020-04-24	Absent		
Womens Restroom	SP 2003764-1					2020-03-17	Absent		
Womens Restroom	SP 2002673-1					2020-02-25	Absent		
Womens Restroom	SP 2001481-1					2020-01-31	>200.5		
Womens Restroom	SP 2001426-1					2020-01-30	Present		
Womens Restroom #1	SP 2001518-1					2020-02-03	<1.0		
Womens Restroom #2	SP 2001518-2					2020-02-03	<1.0		
Womens Restroom #2	SP 2001481-3					2020-01-31	>200.5		

	NG RESU	G RESULTS FOR SODIUM AND HARDNESS							
		Units	MCLG	CA-MCL	PHG	Sampled	Result	Avg. Result(a)	Range (b)
Sodium		mg/L		none	none			96	96 - 96
Well 01	SP 1816958-1	mg/L				2018-12-20	96		
Hardness		mg/L		none	none			530	530 - 530
Well 01	SP 1816958-1	mg/L				2018-12-20	530		

	PRIMARY DRINKING WATER STANDARDS (PDWS)										
		Units	MCLG	CA-MCL	PHG	Sampled	Result	Avg. Result(a)	Range (b)		
Fluoride		mg/L		2	1			0.7	0.7 - 0.7		
Well 01	SP 1816958-1	mg/L				2018-12-20	0.7				
Nitrate as N		mg/L		10	10			5.1	5.1 - 5.1		
Well 01	SP 2017529-2	mg/L				2020-12-17	5.1				
Nitrate + Nitrite as N		mg/L		10	10			5.2	5.2 - 5.2		
Well 01	SP 1816958-1	mg/L				2018-12-20	5.2				
Selenium		ug/L	50	50	30			13	13 - 13		
Well 01	SP 1816958-1	ug/L				2018-12-20	13				
Gross Alpha		pCi/L		15	(0)			5.51	5.51 - 5.51		
Well 01	SP 1816958-1	pCi/L				2018-12-20	5.51				
Uranium		pCi/L		20	0.43			5.10	5.10 - 5.10		
Well 01	SP 1816958-1	pCi/L				2018-12-20	5.10				

SECONDARY DRINKING WATER STANDARDS (SDWS)											
		Units	MCLG	CA-MCL	PHG	Sampled	Result	Avg. Result(a)	Range (b)		
Chloride		mg/L		500	n/a			52	52 - 52		
Well 01	SP 1816958-1	mg/L				2018-12-20	52				
Specific Conductance		umhos/cm		1600	n/a			1370	1370 - 1370		
Well 01	SP 1816958-1	umhos/cm				2018-12-20	1370				
Sulfate		mg/L		500	n/a			443	443 - 443		

SP 1816958-1	mg/L				2018-12-20	443		
	mg/L		1000	n/a			1020	1020 - 1020
SP 1816958-1	mg/L				2018-12-20	1020		
	NTU		5	n/a			0.2	0.2 - 0.2
SP 1816958-1	NTU				2018-12-20	0.2		
	mg/L		5	n/a			0.08	0.08 - 0.08
SP 1816958-1	mg/L				2018-12-20	0.08		
	SP 1816958-1 SP 1816958-1 SP 1816958-1 SP 1816958-1	mg/L SP 1816958-1 mg/L NTU SP 1816958-1 NTU mg/L	mg/L SP 1816958-1 mg/L NTU SP 1816958-1 NTU mg/L	mg/L 1000 SP 1816958-1 mg/L NTU 5 SP 1816958-1 NTU mg/L 5	mg/L 1000 n/a	mg/L 1000 n/a	mg/L 1000 n/a SP 1816958-1 mg/L 2018-12-20 1020 NTU 5 n/a SP 1816958-1 NTU 2018-12-20 0.2 mg/L 5 n/a	mg/L 1000 n/a 1020 SP 1816958-1 mg/L 2018-12-20 1020 NTU 5 n/a 0.2 SP 1816958-1 NTU 2018-12-20 0.2 mg/L 5 n/a 0.08

UNREGULATED CONTAMINANTS										
		Units	MCLG	CA-MCL	PHG	Sampled	Result	Avg. Result(a)	Range (b)	
Boron		mg/L		NS	n/a			0.7	0.7 - 0.7	
Well 01	SP 1816958-1	mg/L				2018-12-20	0.7			
Vanadium		mg/L		NS	n/a			0.003	0.003 - 0.003	
Well 01	SP 1816958-1	mg/L				2018-12-20	0.003			

	ADDITIONAL DETECTIONS										
		Units	MCLG	CA-MCL	PHG	Sampled	Result	Avg. Result(a)	Range (b)		
Calcium		mg/L			n/a			135	135 - 135		
Well 01	SP 1816958-1	mg/L				2018-12-20	135				
Magnesium		mg/L			n/a			47	47 - 47		
Well 01	SP 1816958-1	mg/L				2018-12-20	47				
pН		units			n/a			7.8	7.8 - 7.8		
Well 01	SP 1816958-1	units				2018-12-20	7.8				
Alkalinity		mg/L			n/a			200	200 - 200		
Well 01	SP 1816958-1	mg/L				2018-12-20	200				
Aggressiveness Index					n/a			12.6	12.6 - 12.6		
Well 01	SP 1816958-1					2018-12-20	12.6				
Langelier Index	Langelier Index				n/a			0.7	0.7 - 0.7		
Well 01	SP 1816958-1					2018-12-20	0.7				

Pyramid Flowers, Inc. CCR Login Linkage - 2020

FGL Code	Lab ID	Date_Sampled	Method	Description	Property
HOSEBIB	SP 1807051-6	2018-05-30	Metals, Total	Hosebib	Pyramid Flowers
Hosebib	SP 2016324-3	2020-11-24	Metals, Total	Hosebib	Pyramid Flowers
MNS RR	SP 1807051-2	2018-05-30	Metals, Total	Mens Restroom	Pyramid Flowers
WMNS RR	SP 2001481-2	2020-01-31	Coliform	Mens Restroom	Drinking Water Monitoring
MNS RR	SP 2001518-3	2020-02-03	Coliform	Mens Restroom #1	Water Monitoring
MNS RR #2	SP 2001518-4	2020-02-03	Coliform	Mens Restroom #2	Drinking Water Monitoring
Mens RR#2	SP 1807051-3	2018-05-30	Metals, Total	Mens RR#2	Pyramid Flowers
Men's Sink #1	SP 2016324-1	2020-11-24	Metals, Total	Mens Sink #1	Pyramid Flowers
Men's Sink #2	SP 2016324-2	2020-11-24	Metals, Total	Mens Sink #2	Pyramid Flowers
WELL 01	SP 1802362-2	2018-02-21	Coliform	Well 01	Drinking Water Monitoring - Pyramid Flowers
	SP 1803836-2	2018-03-21	SRL 524M-TCP	Well 01	Pyramid Flowers
Well	SP 1816958-1	2018-12-20	Wet Chemistry	Well 01	Pyramid Flowers
	SP 1816958-1	2018-12-20	Radio Chemistry	Well 01	Pyramid Flowers
	SP 1816958-1	2018-12-20	General Mineral	Well 01	Pyramid Flowers
	SP 1816958-1	2018-12-20	Metals, Total	Well 01	Pyramid Flowers
WELL 01	SP 2017529-2	2020-12-17	Wet Chemistry	Well 01	Bacteriological Monitoring
WMNS RR	SP 1800168-1	2018-01-04	Coliform	Womens Restroom	Drinking Water Monitoring - Pyramid Flowers
	SP 1802362-1	2018-02-21	Coliform	Womens Restroom	Drinking Water Monitoring - Pyramid Flowers
	SP 1803836-1	2018-03-21	Coliform	Womens Restroom	Pyramid Flowers
	SP 1805612-1	2018-04-26	Coliform	Womens Restroom	Drinking Water Monitoring - Pyramid Flowers
	SP 1807051-1	2018-05-29	Coliform	Womens Restroom	Pyramid Flowers
Womens RR	SP 2001426-1	2020-01-30	Coliform	Womens Restroom	Drinking Water Monitoring
	SP 2001481-1	2020-01-31	Coliform	Womens Restroom	Drinking Water Monitoring
	SP 2002673-1	2020-02-25	Coliform	Womens Restroom	Bacteriological Monitoring
	SP 2003764-1	2020-03-17	Coliform	Womens Restroom	Bacteriological Monitoring
	SP 2005447-1	2020-04-24	Coliform	Womens Restroom	Bacteriological Monitoring
	SP 2007014-1	2020-05-28	Coliform	Womens Restroom	Bacteriological Monitoring
	SP 2008333-1	2020-06-24	Coliform	Womens Restroom	Bacteriological Monitoring
	SP 2010007-1	2020-07-28	Coliform	Womens Restroom	Bacteriological Monitoring
	SP 2011499-1	2020-08-25	Coliform	Womens Restroom	Bacteriological Monitoring
	SP 2012933-1	2020-09-18	Coliform	Womens Restroom	Bacteriological Monitoring
	SP 2014721-1	2020-10-23	Coliform	Womens Restroom	Bacteriological Monitoring
	SP 2016318-1	2020-11-24	Coliform	Womens Restroom	Bacteriological Monitoring
	SP 2017529-1	2020-12-17	Coliform	Womens Restroom	Bacteriological Monitoring
WMNS RR	SP 2001518-1	2020-02-03	Coliform	Womens Restroom #1	Drinking Water Monitoring
WMNS RR #2	SP 2001481-3	2020-01-31	Coliform	Womens Restroom #2	Drinking Water Monitoring
	SP 2001518-2	2020-02-03	Coliform	Womens Restroom #2	Drinking Water Monitoring
	SP 1807051-4	2018-05-30	Metals, Total	Womens RR #1	Pyramid Flowers
	SP 1807051-5	2018-05-30	Metals, Total	Womens RR #2	Pyramid Flowers
Women's Sink #1		2020-11-24	Metals, Total	Womens Sink #1	Pyramid Flowers
	SP 2016324-5	2020-11-24	Metals, Total	Womens Sink #2	Pyramid Flowers