Consumer Confidence Report Certification Form

(To be submitted with a copy of the CCR)

Water System Name:	RIO SCHOOL DIST/ RIO REAL SCHOOL
Water System Number:	CA5602408

The water system named above hereby certifies that its Consumer Confidence Report was distributed on June 24th, 2025, to customers (and appropriate notices of availability have been given). Further, the system certifies that the information contained in the report is correct and consistent with the compliance monitoring data previously submitted to the State Water Resources Control Board, Division of Drinking Water (DDW).

Certified by:

Name: Timothy Lewsadder	Title: Water Operator
Signature:	Date: 6/25/25
Phone number: (805) 991-7333 ext. 701	blank

To summarize report delivery used and good-faith efforts taken, please complete this page by checking all items that apply and fill-in where appropriate:

\bigvee	CCR was distributed by mail or other direct delivery methods: CCR was posted on
	the side door leading into the cafeteria.
	CCR was distributed using electronic delivery methods described in the Guidance
	for Electronic Delivery of the Consumer Confidence Report (water systems utilizing
	electronic delivery methods must complete the second page).
	"Good faith" efforts were used to reach non-bill paying consumers. Those efforts
	included the following methods:
	Posting the CCR at the following URL: www
	☐ Mailing the CCR to postal patrons within the service area (attach zip codes
	used)
	Advertising the availability of the CCR in news media (attach copy of press
	release)
	☐ Publication of the CCR in a local newspaper of general circulation (attach a
	copy of the published notice, including name of newspaper and date
	published)
	☐ Posted the CCR in public places (attach a list of locations)
	☐ Delivery of multiple copies of CCR to single-billed addresses serving several
	persons, such as apartments, businesses, and schools
	☐ Delivery to community organizations (attach a list of organizations)
	☐ Publication of the CCR in the electronic city newsletter or electronic community
	newsletter or listserv (attach a copy of the article or notice)

☐ Electronic announcement of CCR availability via social media outlets (attach
list of social media outlets utilized)
☐ Other (attach a list of other methods used)
For systems serving at least 100,000 persons: Posted CCR on a publicly-accessible
internet site at the following URL: www
For privately-owned utilities: Delivered the CCR to the California Public Utilities
Commission

This form is provided as a convenience and may be used to meet the certification requirement of section 64483(c) of the California Code of Regulations.

2024 Consumer Confidence Report

Water System Information

Water System Name: RIO SCHOOL DIST/ RIO REAL SCHOOL

Report Date: June 19, 2025

Type of Water Source(s) in Use: Purchased water from United Water Conservation District (UWCD)

Name and General Location of Source(s): Available from UWCD

Drinking Water Source Assessment Information: Available from UWCD

For More Information, Contact: Kayden Orozco at korozco@rioschools.org

About This Report

We test the drinking water quality for many constituents as required by state and federal regulations. This report shows the results of our monitoring for the period of January 1 to December 31, 2024, and may include earlier monitoring data.

Rio Real School purchases its water from United Water Conservation District (UWCD). This report includes the results of on-site monitoring conducted at Rio Real School. Additional water quality data, including source water and system-wide monitoring results, is available in Appendix A – United Water Conservation District 2024 Consumer Confidence Report, attached at the end of this report

Importance of This Report Statement in Five Non-English Languages (Spanish)

Language in Spanish: Este informe contiene información muy importante sobre su agua para beber. Favor de comunicarse RIO DEL VALLE SCHOOL a (805) 983-1329 para asistirlo en español.

Terms Used in This Report

Term	Definition
Level 1 Assessment	A Level 1 assessment is a study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system.
Level 2 Assessment	A Level 2 assessment is a very detailed study of the water system to identify potential problems and determine (if possible) why an <i>E. coli</i> MCL violation has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions.
Maximum Contaminant Level (MCL)	The highest level of a contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs (or MCLGs) as is economically and technologically feasible. Secondary MCLs are set to protect the odor, taste, and appearance of drinking water.

Term	Definition
Maximum Contaminant Level Goal (MCLG)	The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the U.S. Environmental Protection Agency (U.S. EPA).
Maximum Residual Disinfectant Level (MRDL)	The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.
Maximum Residual Disinfectant Level Goal (MRDLG)	The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.
Primary Drinking Water Standards (PDWS)	MCLs and MRDLs for contaminants that affect health along with their monitoring and reporting requirements, and water treatment requirements.
Public Health Goal (PHG)	The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California Environmental Protection Agency.
Regulatory Action Level (AL)	The concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow.
Secondary Drinking Water Standards (SDWS)	MCLs for contaminants that affect taste, odor, or appearance of the drinking water. Contaminants with SDWSs do not affect the health at the MCL levels.
Treatment Technique (TT)	A required process intended to reduce the level of a contaminant in drinking water.
Variances and Exemptions	Permissions from the State Water Resources Control Board (State Board) to exceed an MCL or not comply with a treatment technique under certain conditions.
ND	Not detectable at testing limit.
ppm	parts per million or milligrams per liter (mg/L)
ppb	parts per billion or micrograms per liter (µg/L)
ppt	parts per trillion or nanograms per liter (ng/L)
ppq	parts per quadrillion or picogram per liter (pg/L)
pCi/L	picocuries per liter (a measure of radiation)

Sources of Drinking Water and Contaminants that May Be Present in Source Water

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include:

• Microbial contaminants, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.

- Inorganic contaminants, such as salts and metals, that can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- Pesticides and herbicides, that may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses.
- Organic chemical contaminants, including synthetic and volatile organic chemicals, that are byproducts of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, agricultural application, and septic systems.
- Radioactive contaminants, that can be naturally-occurring or be the result of oil and gas production and mining activities.

Regulation of Drinking Water and Bottled Water Quality

In order to ensure that tap water is safe to drink, the U.S. EPA and the State Board prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. The U.S. Food and Drug Administration regulations and California law also establish limits for contaminants in bottled water that provide the same protection for public health.

About Your Drinking Water Quality

Drinking Water Contaminants Detected

Tables 1, 2, and 4, list all of the drinking water contaminants that were detected during the most recent sampling for the constituent. The presence of these contaminants in the water does not necessarily indicate that the water poses a health risk. The State Board allows us to monitor for certain contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of the data, though representative of the water quality, are more than one year old. Any violation of an AL, MCL, MRDL, or TT is asterisked. Additional information regarding the violation is provided later in this report.

Table 1. Sampling Results Showing the Detection of Coliform Bacteria

Microbiological Contaminants	Highest No. of Detections	No. of Months in Violation	MCL	MCLG	Typical Source of Bacteria
E. coli	None	0	(a)	0	Human and animal fecal waste

(a) Routine and repeat samples are total coliform-positive and either is *E. coli*-positive or system fails to take repeat samples following *E. coli*-positive routine sample or system fails to analyze total coliform-positive repeat sample for *E. coli*.

Table 2. Sampling Results Showing the Detection of Lead and Copper

Lead and Copper	Sample Date	No. of Samples Collected	90 th Percentile Level Detected	No. Sites Exceeding AL	Range of Results	AL	PHG	Typical Source of Contaminant
Lead (ppb)	2024	10	0	0	None	15	0.2	Corrosion of household plumbing systems; Erosion of natural deposits
Copper (ppm)	2024	10	.85	0	.12 – 1.11	1.3	0.3	Internal corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives

Table 3. Detection of Contaminants with a Primary Drinking Water Standard

Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	MCL [MRDL]	PHG (MCLG) [MRDLG]	Typical Source of Contaminant
TTHMs (ppb)	2024	28	None	80	None	Byproduct of drinking water disinfection
Chlorine (ppm)	2024	.403	.255	4.0 (as Cl ₂)	4.0 (as Cl ₂)	Drinking water disinfectant added for treatment

Additional General Information on Drinking Water

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the U.S. EPA's Safe Drinking Water Hotline (1-800-426-4791).

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. U.S. EPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* and other microbial contaminants are available from the Safe Drinking Water Hotline (1-800-426-4791).

Lead-Specific Language: Lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. RIO REAL SCHOOL is responsible for providing high quality drinking water and removing lead pipes, but cannot control the variety of materials used in plumbing components in your home. You share the responsibility for protecting yourself and your family from the lead in your home plumbing. You can take responsibility by identifying and removing lead materials within your home plumbing and taking steps to reduce your family's risk. Before drinking tap water, flush your pipes for several minutes by running your tap, taking a shower, doing laundry or a load of dishes. You can also use a filter certified by an American National Standards Institute accredited certifier to reduce lead in drinking water. If you are concerned about lead in your water and wish to have your water tested, contact RIO REAL SCHOOL. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available at http://www.epa.gov/safewater/lead.

Appendix A

2024 Consumer Confidence Report

Oxnard Hueneme Water Delivery System

Board of Directors

Lynn E. Maulhardt, President
Catherine P. Keeling, Vice President
Gordon Kimball, Secretary/Treasurer
Keith Ford
Mohammed A. Hasan
Steve Huber
Rachel Jones

General Manager

Mauricio Guardado

Testing and Results

Last year we conducted thousands of tests for over 180 chemicals and contaminants that could be found in your drinking water. We did not detect any contaminants that would make the water unsafe to drink. This report highlights the quality of water we delivered to our customers last year. Included are details about where your water comes from, what it contains, and how it compares to State standards. For more information about your water, please call our Chief Operations Officer Craig Morgan at (805) 485-5114.

Public Meetings

Our monthly Board meetings are usually held on the second Wednesday of every month at 1:00 p.m. in our boardroom, located at 1701 North Lombard Street, Oxnard. Our meetings are open to the public and we would welcome your participation, questions and comments.

About Your Water Supply

United Water's Oxnard Hueneme Delivery System supplies about 11,500 acre-feet of water per year to several agencies in the Oxnard Plain, including the City of Oxnard, the Port Hueneme Water Agency (PHWA), and several smaller water companies. These agencies supply our water to over 230,000 people, most of it treated or blended with other supplies. Our water source is 100% local groundwater, pumped from wells near El Rio, north of Oxnard. Water from these wells has its origin in the mountains and valleys of the 1,600 square mile Santa Clara River watershed. The wells are in an aquifer called the Oxnard Forebay. Our water is naturally high in minerals that affect its taste, but is safe to drink. Our groundwater is considered to be "under the influence of surface water," which means we do extensive monitoring of turbidity and other parameters to meet health regulations.

United Water Conservation District 1701 North Lombard Street, Suite 200 Oxnard, CA 93030 805-525-4431 Fax: 805-525-2661 Water produced by our wells is naturally filtered through the ground. We use chlorine as a disinfectant to kill bacteria, parasites, and viruses. Then we add chloramines to provide a long-lasting disinfection residual to keep the water safe until it reaches our customers. Due to the longer-lasting residual of chloramines, owners of pet fish must treat their tap water before putting it into aquariums or ponds.

Types of Potential Contamination

In general, sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and in some cases, radioactive material can pick up substances resulting from the presence of animals or from human activity. Contaminants that may be present in source water include:

Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife;

Inorganic contaminants, such as salts and metals, which can be naturally-occurring or result from urban storm water runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming;

Organic chemical contamination, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban storm water runoff, agricultural application, and septic systems;

Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban storm water runoff, and residential uses:

Radioactive contaminants, which can be naturally-occurring or be the result of oil and gas production and mining activities.

In order to ensure that your tap water is safe to drink, United States Environmental Protection Agency (USEPA) and the State Water Resources Control Board prescribe regulations that limit the amount of certain contaminants in public drinking water. We treat our water to meet these health regulations. The State Board's regulations also establish limits for contaminants in bottled water, which must provide the same protection for public health. Scientists and health experts are continually studying the effects of various chemicals in drinking water to make sure the public water supply is safe.

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the USEPA's Safe Drinking Water Hotline (800) 426-4791.

Definitions

Public Health Goal (PHG): The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California Environmental Protection Agency.

Maximum Contaminant Level Goal (MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the U.S. Environmental Protection Agency.

Maximum Contaminant Level (MCL): The highest level of a contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs (or MCLGs) as is economically and technologically feasible. Secondary MCLs are set to protect odor, taste and appearance of drinking water.

Primary Drinking Water Standard (PDWS): MCLs for contaminants that affect health along with their monitoring and reporting requirements, and water treatment requirements.

Maximum Residual Disinfectant Level (MRDL): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Maximum Residual Disinfectant Level Goal (MRDLG): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLG's do not reflect the benefits of the use of disinfectants to control microbial contaminants.

Treatment Technique (TT): A required process intended to reduce the level of a contaminant in drinking water.

Detection Limit for Reporting (DLR): The level above which a chemical is to be reported.

NA: not applicable

ppm: parts per million, or milligrams per liter

ppb: parts per billion, or micrograms per liter

ND: none detected

pCi/L: picocuries per liter (a measure of radioactivity)

μS/cm: micro-Siemens/centimeter (a measure of

conductivity)

TON: threshold odor number

NTU: Nephelometric Turbidity Units

ng/L: Nanograms per liter

Turbidity

Turbidity is a measure of the cloudiness of the water. We monitor it because it is a good indicator of the effectiveness of our water treatment. Turbidity is measured in units called NTUs. We achieved 100% compliance with turbidity standards in 2024.

Contaminants Detected in 2024

Contaminant	Units	State MCL [MRDL]	PHG (MCLG) [MRDLG]	Avg	Range	Sample Date	Violation	Typical Sources in Drinking Water		
Microbiological Contaminants										
Total Coliform bacteria	Absence/ Presence/ 100ml	Systems that collect <40 sam- ples/month: no more than 1 positive sample	0	Absent	Absent	2024	No	Naturally present in the environ- ment.		
Fecal Coliform bacteria and <i>E.coli</i>	Absence/ Presence/ 100ml	A routine and repeat sample are total coliform positive, and one of these is fecal or <i>E.coli positive</i>	0	Absent	Absent	2024	No	Human and animal fecal waste.		
Delivered water		TT	NA	Highest	Single Value 0.28	2024	No	Well corrosion byproducts. Micro-		
turbidity	NTU	<0.2 NTU	NA		est monthly % of eeting<0.2 NTU	2024	No	scopic soil particles.		
			Ra	adiological	Contaminants	S				
Gross Alpha	pCi/L	15	0	4.49	3.84-4.88	2024	No	Erosion of natural deposits.		
Radon	pCi/L	NA NA	NA	197	159-299	2024	No	Decay of natural deposits.		
Uranium	pCi/L	20	0.43	5.73	5.26-6.2	2024	No	Erosion of natural deposits.		
			Inorg	anic Conta	minants					
Arsenic	ppb	10	0.004	4	4-4	2024	No	Erosion of natural deposits.		
Fluoride	ppm	2	1	0.55	0.5-0.6	2024	No	Erosion of natural deposits.		
Nitrate (as N)	ppm	10	10	2.68	1.8-3.3	2024	No	Runoff and leaching from fertilizer use; leaching from septic tanks and sewage; erosion of natural deposits		
Selenium	ppb	50	30	19	18-20	2024	No	Erosion of natural deposits. Discharge from mines, runoff from livestock lots.		
				Disinfection	on					
Chloramine Residual (as Cl2)	ppm	[4.0]	[4]	1.96	1.77-2.17	2024	No	Drinking water disinfectant added for treatment.		
Disinfection By- Products										
Haloacetic Acids	ppb	60	NA	5.88	ND-13	2024	No	By-product of drinking water disin- fection.		
Total Trihalome- thanes	ppb	80	NA	35	26-56	2024	No	By-product of drinking water disin- fection.		
			Disinfection	n By-Produ	ıct Precursors	•				
Total Organic Car- bon (TOC)	ppm	TT	NA	1.20	1.1-1.3	2024	No	Various natural and man-made sources.		
			Sec	ondary Sta	ndards					
Chloride	ppm	500	NA	55	53-57	2024	No	Leaching from natural mineral deposits.		
Sodium	ppm	NA	NA	84.5	84-85	2024	No	Leaching from natural mineral deposits.		
Specific Conduct- ance	μS/cm	1600	NA	1244.5	1064-1290	2024	No	Substances that form ions in water; seawater influence		
Sulfate	ppm	500	NA	401.42	375-432	2024	No	Runoff/leaching from natural deposits.		
Total Dissolved Solids, TDS	ppm	1000	NA	940.83	890-1000	2024	Yes	Runoff/leaching from natural deposits.		
Total Hardness	ppm	NA	NA	511.5	505-518	2024	No	Leaching from natural mineral deposits.		
Iron	ppb	300	NA	1.32	30-40	2024	No	Leaching from natural deposits.		
Manganese	ppb	50	NA	0.38	ND-20	2024	No	Leaching from natural deposits.		
			Unre	gulated Ch	emicals					
Boron	ppb	NA	NA	600	600-600	2024	No	Naturally present in the environment.		

Unregulated Contaminants Continued

		State	PHG	_	Sample		Typical Sources in			
Contaminant	Units	DLR	(MCLG) [MRDLG]	Avg	Range	Date	Violation	Drinking Water		
PFAS Chemicals										
PERFLUOROBU- TANESULFONIC ACID (PFBS)	ng/l	2.0	0	0.25	ND-2.0	2024	No	Run-off from airports, military bases and landfills.		
PERFLUORONONA- NOIC ACID (PFNA)	ng/l	2.0	0	ND	ND	2024	No	Run-off from airports, military bases and landfills.		
PERFLUORODECA- NOIC ACID(PFDA)	ng/l	2.0	0	ND	ND	2024	No	Run-off from airports, military bases and landfills.		
PERFLUOROTETRA- DECANOIC ACID (PFTeDA)	ng/L	2.0	0	ND	ND	2024	No	Run-off from airports, military bases and landfills.		
HEXAFLUOROPRO- PYLENE OXIDE DI- MER ACID (HFPO-DA)	ng/L	2.0	0	ND	ND	2024	No	Run-off from airports, military bases and landfills.		
4,8-DIOXA-3H- PERFLUORONONA- NOIC ACID (ADONA)	ng/L	2.0	0	ND	ND	2024	No	Run-off from airports, military bases and landfills.		
PERFLUOROHEP- TANOIC ACID (PFHpA)	ng/L	2.0	0	ND	ND	2024	No	Run-off from airports, military bases and landfills.		
N-ETHYL PERFLUO- ROOCTANESULFONA MIDOACETIC ACID	ng/L	2.0	0	ND	ND	2024	No	Run-off from airports, military bases and landfills.		
PERFLUORODODEC- ANOIC ACID (PFDoA)	ng/L	2.0	0	ND	ND	2024	No	Run-off from airports, military bases and landfills.		
PERFLUOROTRIDE- CANOIC ACID (PFTrDA)	ng/L	2.0	0	ND	ND	2024	No	Run-off from airports, military bases and landfills.		
9 CHLOROHEXADE- CAFLUORO-3- OXANONE-1- SULFONIC ACID	ng/L	2.0	0	ND	ND	2024	No	Run-off from airports, military bases and landfills.		
PERFLUOROOCTANE SULFONIC ACID (PFOS)	ng/L	2.0	0	1.08	1.8-2.5	2024	No	Run-off from airports, military bases and landfills.		
PERFLUOROHEXANE SULFONIC ACID (PFHxS)	ng/L	2.0	0	ND	ND	2024	No	Run-off from airports, military bases and landfills.		
N-METHYL PERFLUO- ROOCTANESULFONA MIDOACETIC ACID	ng/l	2.0	0	ND	ND	2024	No	Run-off from airports, military bases and landfills.		
PERFLUOROHEXANO- IC ACID (PFHxA)	ng/L	2.0	0	0.5	ND-2.0	2024	No	Run-off from airports, military bases and landfills		
PERFLUOROUNDECA- NOIC ACID (PFUnA)	ng/L	2.0	0	ND	ND	2024	No	Run-off from airports, military bases and landfills.		
11- CHLOROEICO- SAFLUORO-3- OXAUNDECANE-1- SULFONIC ACID	ng/L	2.0	0	ND	ND	2024	No	Run-off from airports, military bases and landfills.		
PERFLUOROBUTA- NOIC ACID(PFBA)	ng/L	2.0	0	1.63	2.1-4.4	2024	No	Run-off from airports, military bases and landfills.		
PERFLUOROOC- TANOIC ACID (PFOA)	ng/L	2.0	0	ND	ND	2024	No	Run-off from airports, military bases and landfills.		
PERFLUOROPENTA- NOIC ACID (PFPeA)	ng/L	2.0	0	0.6	ND-2.4	2024	No	Run-off from airports, military bases and landfills.		
PERFLUORO-4- METHOXYBUTANOIC ACID (PFMBA)	ng/L	2.0	0	ND	ND	2024	No	Run-off from airports, military bases and landfills.		

Water Quality Data

The table on page three lists all of the drinking water contaminants that we detected during the 2024 calendar year. The presence of these contaminants in the water does not indicate that the water poses a health risk. In addition to the contaminants on the table, we tested for many other chemicals which were not detected at significant levels. Please call us if you would like a copy of the complete list of chemicals we tested for and the test results.

Secondary Drinking Water Standards

Chloride, Sodium, Specific Conductance, Sulfate, TDS, Total Hardness, Iron and Manganese are secondary standards related to the taste of the water, and water exceeding the MCL is generally safe for human consumption. Our water exceeds the secondary standards for TDS and Sulfate because of naturally occurring minerals in the water.

Source Water Assessment

Drinking Water Source Assessments were completed for United Water Conservation District's water wells in 2001, 2015, and 2024. These reports are available to the public upon request. The assessments provide a survey of potential sources of contamination of the groundwater that supplies our wells. Activities that constitute the highest risk to our water are the following: Petroleum storage tanks, fueling operations and septic systems. The tri-annual sanitary survey for the Oxnard Hueneme Delivery System was completed in 2020.

Cryptosporidium

Cryptosporidium is a microbial pathogen found in surface water throughout the U.S. Although filtration removes Cryptosporidium, the most commonly-used filtration methods cannot guarantee 100 percent removal. Our source water monitoring in 2017 did not indicate the presence of this organism.

Security of your Water

We have completed a Vulnerability Assessment of our OH water facilities. This work, funded by an EPA grant, has improved the security and safety of our water supply.

PFAS (per-and polyfluoroalkyl substances)

PFAS are used as coatings for non-stick pans, food packaging, and personal hygiene products. They tend to accumulate in groundwater from run-off near airports, landfills and military bases, which use PFAS filled foam to suppress jet fuel fires. Laboratory tests have shown certain types of these compounds can cause adverse health affects.

Radon

Radon is a radioactive gas that you cannot see, taste or smell. It is found throughout the U.S. Radon can move up through the ground and into a home through cracks and holes in the foundation. Radon can build up to high levels in all types of homes. Radon can also get into indoor air when released from tap water through showering, washing dishes and other household activities. Compared to radon entering the home through soil, radon entering the home through tap water will be a small source of radon in indoor air. Radon is a known human carcinogen. Breathing air containing radon can lead to lung cancer. Drinking water containing radon may also cause increased risk of stomach cancer. If you are concerned about radon in your home, you may test the air in your home. There are simple ways to fix a radon problem that are not costly. For additional information, call the National Safety Council's Radon Hotline 800-SOS-RADON.

About Nitrate

Nitrate in drinking water at levels above 10 mg/L is a health risk for infants of less than six months of age. Such nitrate levels in drinking water can interfere with the capacity of the infant's blood to carry oxygen, resulting in a serious illness; symptoms include shortness of breath and blueness of the skin. Nitrate levels above 10 mg/L may also affect the ability of the blood to carry oxygen in other individuals, such as pregnant women and those with certain specific enzyme deficiencies. If you are caring for an infant or you are pregnant, you should seek advice from your health care provider. Nitrate levels may rise quickly because of rainfall or agricultural activity.

Immuno-compromised Persons

Some people may be more vulnerable to contaminants in drinking water than the general population. Immune-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. USEPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* and other microbial contaminants are available from the Safe Drinking Water Hotline (800) 426-4791.

Hablamos Español

Este informe contiene información muy importante sobre su agua potable. Para información en español llámenos al: (805) 525-4431.

United Water

CONSERVATION DISTRICT

