2022 Consumer Confidence Report

Water System Name: STRICKLAND MUTUAL WATER Co.

Report Date:

June 2023

We test the drinking water quality for many constituents as required by state and federal regulations. This report shows the results of our monitoring for the period of January 1 - December 31, 2022.

Este informe contiene información muy importante sobre su agua potable. Tradúzcalo ó hable con alquien que lo entienda bien.

Type of water source(s) in use: According to SWRCB records, the Sources are Groundwater. This Assessment was done using the Default Groundwater System Method.

Your water comes from 2 source(s): WELL 02 and WELL 03

Opportunities for public participation in decisions that affect drinking water quality: Water Board meetings are scheduled irregularly, as needed for decision-making, and typically held at 6:30 PM on a weekday. Meeting location varies, please call for more information or, to request to be notified of meetings e-mail Paul McDaniel at mcdanielph@gmail.com

For more information about this report, or any questions relating to your drinking water, please call (805) 647 - 1569 and ask for Theodore Provencio or email <u>theopro64@gmail.com</u>.

TERMS USED IN THIS REPORT Maximum Contaminant Level (MCL): The highest Secondary Drinking Water Standards (SDWS): MCLs for the level of contaminant that is allowed in drinking water. contaminants that affect taste, odor, or appearance of the drinking Primary MCLs are set as close to the PHGs (or MCLGs) water. Contaminants with SDWSs do not affect the health at the MCL as is economically feasible. Secondary MCLs are set to levels. protect the odor, taste, and appearance of drinking water. Treatment Technique (TT): A required process intended to reduce the level of a contaminant in drinking water. Maximum Contaminant Level Goal (MCLG): The level of a contaminant in drinking water below which Regulatory Action Level (AL): The concentration of a contaminant there is no known or expected risk to health. MCLGs are which, if exceeded, triggers treatment or other requirements that a set by the U.S. Environmental Protection Agency water system must follow. (USEPA). Level 1 Assessment: A Level 1 assessment is a study of the water Public Health Goal (PHG): The level of a contaminant system to identify potential problems and determine (if possible) why in drinking water below which there is no known or total coliform bacteria have been found in our water system. expected risk to health. PHGs are set by the California Environmental Protection Agency. Level 2 Assessment: A Level 2 assessment is a very detailed study of the water system to identify potential problems and determine (if Maximum Residual Disinfectant Level (MRDL): The possible) why an E. coli MCL violation has occurred and/or why total highest level of a disinfectant allowed in drinking water. coliform bacteria have been found in our water system on multiple There is convincing evidence that addition of a occasions. disinfectant is necessary for control of microbial contaminants. **ND:** not detectable at testing limit **Maximum Residual Disinfectant Level Goal mg/L:** milligrams per liter or parts per million (ppm) (MRDLG): The level of a drinking water disinfectant below which there is no known or expected risk to **ug/L:** micrograms per liter or parts per billion (ppb) health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants. **pCi/L:** picocuries per liter (a measure of radiation) Primary Drinking Water Standards (PDWS): MCLs NTU: Nephelometric Turbidity Units and MRDLs for the contaminants that affect health along with their monitoring and reporting requirements, and umhos/cm: micro mhos per centimeter water treatment requirements.

The sources of drinking water: (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include:

- *Microbial contaminants,* such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- *Inorganic contaminants,* such as salts and metals, that can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- *Pesticides and herbicides,* that may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses.
- *Organic chemical contaminants,* including synthetic and volatile organic chemicals, that are by-products if industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, agricultural application, and septic systems.
- *Radioactive contaminants,* that can be naturally-occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, the USEPA and the State Water Resource Control Board (State Water Board) prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. State Water Board regulations also establish limits for contaminants in bottled water that provide the same protection for public health.

Tables 1, 2, 3, 4, 5, 6 and 7 list all of the drinking water contaminants that were detected during the most recent sampling for the constituent. The presence of these contaminants in the water does not necessarily indicate that the water poses a health risk. The State Water Board allows us to monitor for certain contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of the data, though representative of the water quality, are more than one year old.

Any violation of MCL, AL or MRDL is highlighted. Additional information regarding the violation is provided later in this report.

Tabl	Table 1 - SAMPLING RESULTS SHOWING THE DETECTION OF LEAD AND COPPER								
Lead and Copper (complete if lead or copper detected in last sample set)	Sample Date	No. of Samples	90th percentile level detected	No. Sites Exceeding AL	AL	PHG	Typical Sources of Contaminant		
Copper (mg/L)	(2020)	5	0.11	0	1.3	.3	Internal corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives		

Table 2 - SAMPLING RESULTS FOR SODIUM AND HARDNESS									
Chemical or Constituent (and reporting units)	Sample Date	Average Level Detected	Range of Detections	MCL	PHG (MCLG)	Typical Sources of Contaminant			
Sodium (mg/L)	(2020)	102	100 - 104	none	none	Salt present in the water and is generally naturally occurring			
Hardness (mg/L)	(2020)	545	475 - 614	none	none	Sum of polyvalent cations present in the water, generally magnesium and calcium, and are usually naturally occurring			

Table 3 - 1	Table 3 - DETECTION OF CONTAMINANTS WITH A <u>PRIMARY</u> DRINKING WATER STANDARD								
Chemical or Constituent (and reporting units)	Sample Date	Average Level Detected	Range of Detections	MCL [MRDL]	PHG (MCLG) [MRDLG]	Typical Sources of Contaminant			
Aluminum (mg/L)	(2020)	ND	ND - 0.06	1		Erosion of natural deposits; residue from some surface water treatment processes			
Fluoride (mg/L)	(2020)	0.6	n/a	2	1	Erosion of natural deposits; water additive that promotes strong teeth; discharge from fertilizer and aluminum factories.			

Nitrate as N (mg/L)	(2022)	1.9	1.8 - 1.9	10	10	Runoff and leaching from fertilizer use; leaching from septic tanks and sewage; erosion of natural deposits
Nitrate + Nitrite as N (mg/L)	(2020)	2	1.6 - 2.4	10	10	Runoff and leaching from fertilizer use; leaching from septic tanks and sewage; erosion of natural deposits
Selenium (ug/L)	(2020)	12	11 - 12	50	30	Discharge from petroleum, glass, and metal refineries; erosion of natural deposits; discharge from mines and chemical manufacturers; runoff from livestock lots(feed additive)
Gross Alpha (pCi/L)	(2020)	11.8	n/a	15	(0)	Erosion of natural deposits.
Uranium (pCi/L)	(2020)	5.27	n/a	20	0.43	Erosion of natural deposits

Table 4 - DETE	ECTION OF C	ONTAMINA	NTS WITH A <u>S</u>	ECON	NDARY DR	INKING WATER STANDARD
Chemical or Constituent (and reporting units)	Sample Date	Average Level Detected	Range of Detections	MCL	PHG (MCLG)	Typical Sources of Contaminant
Chloride (mg/L)	(2020)	53	50 - 56	500	n/a	Runoff/leaching from natural deposits; seawater influence
Iron (ug/L)	(2020)	ND	ND - 140	300	n/a	Leaching from natural deposits; Industrial wastes
Odor Threshold at 60 °C (TON)	(2020)	2	ND - 4	3	n/a	Naturally-occurring organic materials.
Specific Conductance (umhos/cm)	(2020)	1500	1450 - 1550	1600	n/a	Substances that form ions when in water; seawater influence
Sulfate (mg/L)	(2020)	465	420 - 510	500	n/a	Runoff/leaching from natural deposits; industrial wastes
Total Dissolved Solids (mg/L)	(2020)	1095	1030 - 1160	1000	n/a	Runoff/leaching from natural deposits
Turbidity (NTU)	(2020)	0.5	0.3 - 0.7	5	n/a	Soil runoff

Table 5 - DETECTION OF UNREGULATED CONTAMINANTS								
Chemical or Constituent (and reporting units)	Sample Date	Average Level Detected	Range of Detections	Notification Level	Typical Sources of Contaminant			
Boron (mg/L)	(2020)	0.6	n/a	1	Boron exposures resulted in decreased fetal weight (developmental effects) in newborn rats.			

	Table 6 - ADDITIONAL DETECTIONS									
Chemical or Constituent (and reporting units)	Sample Date	Average Level Detected	Range of Detections	Notification Level	Typical Sources of Contaminant					
Calcium (mg/L)	(2020)	134	121 - 147	n/a	n/a					
Magnesium (mg/L)	(2020)	51	42 - 60	n/a	n/a					
pH (units)	(2020)	7.4	7.3 - 7.4	n/a	n/a					
Alkalinity (mg/L)	(2020)	205	200 - 210	n/a	n/a					
Aggressiveness Index	(2020)	12.2	n/a	n/a	n/a					
Langelier Index	(2020)	0.3	n/a	n/a	n/a					

Table 7 - DETECTION OF DISINFECTANT/DISINFECTANT BYPRODUCT RULE							
Chemical or Constituent (and reporting units)	Sample Date	Average Level Detected	Range of Detections	MCL (MRDL)	PHG (MCLG)	Violation	Typical Sources of Contaminant
Total Trihalomethanes (TTHMs) (ug/L)	(2022)	7	n/a	80	n/a		By-product of drinking water disinfection

Haloacetic Acids (five) (ug/L)	(2022)	3	n/a	60	n/a	INO	By-product of drinking water disinfection
-----------------------------------	--------	---	-----	----	-----	-----	---

Additional General Information on Drinking Water

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts if some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the USEPA's Safe Drinking Water Hotline (1-800-426-4791).

Some people may be more vulnerable to contaminants in drinking water than the general population. Immunocompromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. USEPA/ Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* and other microbial contaminants are available from the Safe Drinking Water Hotline (1-800-426-4791).

Lead Specific Language for Community Water Systems: If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with the service lines and home plumbing. *The Mutual Water Co of Strickland Tract* is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/lead.

Per- and Polyfluoroalkyl Substances (PFAS) Monitoring

The State Water Board, Department of Drinking Water (DDW) issued a PFAS monitoring order to SAMWC, dated September 11, 2020. The monitoring order required quarterly sampling for PFAS, beginning on October 1, 2020. SAMWC completed four quarters of sampling in 2020 and 2021. A revised monitoring order was issued on November 3, 2022. SAMWC is required to resume quarterly sampling at the wells by March 31, 2023, per the 2022 monitoring order. Below is a summary of detected PFAS results, from 2020, 2021, and the most recent results from 2023.

Currently, tested levels of PFAS constituents are below the respective Notification Level and Response Levels with the exception of perfluorohexane sulfonic acid (PFHxS). PFHxS exceeded the NL of 3 ng/L in May and July of 2021 (however at that time the notification level had not yet been established). Quarterly monitoring for PFAS shall continue for Strickland Acres Mutual Water Company. If the level of any individual PFAS compound exceeds the respective NL, Strickland Acres MWC will be required to report the data in the CCR and notify DDW, Ventura County Board of Supervisors, and the SAMWC Board.

Stricklan	d Mutual Water Sampling Re	sults for Perflo	ouroctane Sulfo	nate (PFAS) an	d related comp	ounds
Well 02	Sample Date	PFBS	PFOS	PFOA	PFHxS	PFHxA
	5/22/2023	ND	4.0	2.3	ND	2.0
	2/9/2023	ND	ND	ND	ND	ND
	7/29/2021	2.3	3.9	ND	3.4	ND
	5/20/2021	ND	ND	ND	ND	ND
	3/11/2021	2.5	3.2	ND	2.6	ND
	12/29/2020	ND	3.1	ND	1.8	ND
Well 03	Sample Date	PFBS	PFOS	PFOA	PFHxS	PFHxA
	5/22/2023	ND	5.7	3.0	ND	ND
	2/9/2023	1.7	2.1	ND	ND	ND
	7/29/2021	3.1	4.9	3.3	3.2	3.8
	5/20/2021	3.3	4.2	1.8	3.9	ND
	3/29/2021	3.4	3.9	1.7	2.8	ND
	12/29/2020	2.1	3.4	ND	ND	ND
	Notification Level (NL)	500	6.5	5.1	3.0 **	
	Response Level (RL)*	5000	40	10	20	
	Response levels are based	on a running f	our-quarter av	erage		
	** The notification level for	or PFHxS becan	ne effective on	October 31, 20)22	
	All units are in nanograms	per liter (ng/L)) or parts per tr	illion (ppt)		
	ND (Not detected above the	ne analytical lir	nits of detectio	on) (These are a	about 2.0 ppt)	
	This (PFAS) is a developi	ng regulatory a	area. More info	ormation is ava	ilable at	
	https://www.waterboards.	ca.gov/drinkin	g_water/certlic	/drinkingwater	r/pfas.html	

The State Water Resources Control Board maintains a website addressing PFAS: Per- and Polyfluoroalkyl Substances https://www.waterboards.ca.gov/drinking_water/certlic/drinkingwater/pfas.html

<u>http</u>	https://www.waterboards.ca.gov/drinking water/certlic/drinkingwater/pfas.html								
Abbreviation	Chemical name	Notification Level ng/L (ppt)	Response Level ng/L (ppt)	Date Issued / Status					
PFOA	Perfluorooctanoic acid	5.1	10	6-Feb-20					
PFOS	Perfluorooctane sulfonic acid	6.5	40	6-Feb-20					
PFBS	Perfluorobutane sulfonic acid	500	5000	5-Mar-21					
PFHxS	Perfluorohexane sulfonic acid	3	20	<u>31-Oct-22</u>					
PFHxA	Perfluorohexanoic acid			Requested					
PFHpA	Perfluoroheptanoic acid			Requested					
PFNA	Perfluorononanoic acid			Requested					
PFDA	Perfluorodecanoic acid			Requested					
ADONA	4,8-Dioxa-3H-perfluorononanoic acid			Requested					
PFPeA	Perfluoropentanoic Acid								

Summary Information for Violation of a MCL, MRDL, AL, TT, or **Monitoring and Reporting Requirement**

VIOLATION O	F A MCL,MRDL,AL,TT, OR M	MONITORING A	AND REPORTING	REQUIREMENT
Violation	Explanation	Duration	Actions Taken To Correct the Violation	Health Effects Language
Odor Threshold at 60 °C				Odor was found at levels that exceed the secondary MCL. The Odor MCL was set to protect you against unpleasant aesthetic affects such as color, taste, odor and the staining of plumbing fixtures (e.g., tubs and sinks), and clothing while washing. Violating this MCL does not pose a risk to public health.
Sulfate				Sulfate was found at levels that exceed the secondary MCL. The Sulfate MCL was set to protect you against unpleasant aesthetic effects such as color, taste or odor. Violating this MCL does not pose a risk to public health.
Total Dissolved Solids				The TDS or Total Dissolved Solids in your water was found at levels that exceed the secondary MCL. The TDS MCLs was set to protect you against unpleasant aesthetic affects such as color, taste or hardness. Violating this MCL does not pose a risk to public health.

2022 Consumer Confidence Report

Drinking Water Assessment Information

Assessment Information

A source water assessment was conducted for the WELL 01 of the STRICKLAND ACRES water system in May, 2001.

WELL 02 and Well 03 - are considered vulnerable to the following activities not associated with any detected contaminants:

Septic systems

Discussion of Vulnerability

Following the 2001 sanitary survey, the Strickland Acres area was converted to sewers and all septic tanks in the Strickland Mutual Water service area were abandoned. Three septic systems remain in use nearby at homes along Vineyard Avenue, adjacent to but outside the Strickland Mutual Water Company service area.

Acquiring Information

A copy of the complete assessment may be viewed at: SWRCB Division of Drinking Water 1180 Eugenia Place, Suite 200 Carpinteria, CA 93013

You may request a summary of the assessment be sent to you by contacting: Jeff Densmore **District Engineer** 805 566 1326

The Mutual Water Co of Strickland Tract Analytical Results By FGL - 2022

	LEAD AND COPPER RULE											
		Units	MCLG	CA-MCL	PHG	Sampled	Result	90th Percentile	# Samples			
Copper		mg/L		1.3	.3			0.11	5			
363 Central Ave.	SP 2012497-5	mg/L				2020-09-08	0.17					
4878 Joan Wy.	SP 2012497-2	mg/L				2020-09-08	ND					
4920 Strickland Dr.	SP 2012497-3	mg/L				2020-09-09	ND					
4941 Perry Wy.	SP 2012497-1	mg/L				2020-09-08	ND					
4979 Burson Wy.	SP 2012497-4	mg/L				2020-09-11	0.05					

SAMPLING RESULTS FOR SODIUM AND HARDNESS											
		Units	MCLG	CA-MCL	PHG	Sampled	Result	Avg. Result(a)	Range (b)		
Sodium		mg/L		none	none			102	100 - 104		
WELL 02	SP 2013310-1	mg/L				2020-09-28	100				
WELL 03	SP 2001921-1	mg/L				2020-02-10	104				
Hardness		mg/L		none	none			545	475 - 614		
WELL 02	SP 2013310-1	mg/L				2020-09-28	475				
WELL 03	SP 2001921-1	mg/L				2020-02-10	614				

	PRIMA	RY DRIN	KING WA	TER STANI	DARDS ((PDWS)			
		Units	MCLG	CA-MCL	PHG	Sampled	Result	Avg. Result(a)	Range (b)
Aluminum		mg/L		1	0.6			ND	ND - 0.06
WELL 02	SP 2013310-1	mg/L				2020-09-28	0.06		
WELL 03	SP 2001921-1	mg/L				2020-02-10	ND		
Fluoride		mg/L		2	1			0.6	0.6 - 0.6
WELL 02	SP 2013310-1	mg/L				2020-09-28	0.6		
WELL 03	SP 2001921-1	mg/L				2020-02-10	0.6		
Nitrate as N		mg/L		10	10			1.9	1.8 - 1.9
WELL 02	SP 2214570-1	mg/L				2022-09-12	1.9		
WELL 03	SP 2202819-1	mg/L				2022-02-21	1.8		
Nitrate + Nitrite as N		mg/L		10	10			2.0	1.6 - 2.4
WELL 02	SP 2013310-1	mg/L				2020-09-28	1.6		
WELL 03	SP 2001921-1	mg/L				2020-02-10	2.4		
Selenium		ug/L	50	50	30			12	11 - 12
WELL 02	SP 2013310-1	ug/L				2020-09-28	11		
WELL 03	SP 2001921-1	ug/L				2020-02-10	12		
Gross Alpha		pCi/L		15	(0)			11.8	11.8 - 11.8
WELL 02	SP 2003427-1	pCi/L				2020-03-11	11.8		
Uranium		pCi/L		20	0.43			5.27	5.27 - 5.27
WELL 02	SP 2003427-1	pCi/L				2020-03-11	5.27		

	SECONDARY DRINKING WATER STANDARDS (SDWS)											
		Units	MCLG	CA-MCL	PHG	Sampled	Result	Avg. Result(a)	Range (b)			
Chloride		mg/L		500	n/a			53	50 - 56			
WELL 02	SP 2013310-1	mg/L				2020-09-28	50					
WELL 03	SP 2001921-1	mg/L				2020-02-10	56					
Iron	·	ug/L		300	n/a			ND	ND - 140			
WELL 02	SP 2013310-1	ug/L				2020-09-28	140					
WELL 03	SP 2001921-1	ug/L				2020-02-10	ND					
Odor Threshold at 60 °C		TON		3	n/a			2	ND - 4			
WELL 02	SP 2013310-1	TON				2020-09-28	ND					
WELL 03	SP 2001921-1	TON				2020-02-10	4					
Specific Conductance		umhos/cm		1600	n/a			1500	1450 - 1550			

WELL 02	SP 2013310-1	umhos/cm			2020-09-28	1450		
WELL 03	SP 2001921-1	umhos/cm			2020-02-10	1550		
Sulfate		mg/L	500	n/a			465	420 - 510
WELL 02	SP 2013310-1	mg/L			2020-09-28	420		
WELL 03	SP 2001921-1	mg/L			2020-02-10	510		
Total Dissolved Solids		mg/L	1000	n/a			1095	1030 - 1160
WELL 02	SP 2013310-1	mg/L			2020-09-28	1030		
WELL 03	SP 2001921-1	mg/L			2020-02-10	1160		
Turbidity	-	NTU	5	n/a			0.5	0.3 - 0.7
WELL 02	SP 2013310-1	NTU			2020-09-28	0.7		
WELL 03	SP 2001921-1	NTU			2020-02-10	0.3		

		UNREC	GULATED	CONTAMIN	NANTS				_
		Units	MCLG	CA-MCL	PHG	Sampled	Result	Avg. Result(a)	Range (b)
Boron		mg/L		NS	n/a			0.6	0.6 - 0.6
WELL 02	SP 2013310-1	mg/L				2020-09-28	0.6		
WELL 03	SP 2001921-1	mg/L				2020-02-10	0.6		
Perfluorooctanoic Acid [PFOA]		ng/L		NS	n/a			ND	ND - ND
WELL 02	SP 2110274-1	ng/L				2021-07-29	ND		
WELL 02	SP 2106778-1	ng/L				2021-05-20	ND		
WELL 02	SP 2103452-1	ng/L				2021-03-11	ND		
WELL 02	SP 2017932-1	ng/L				2020-12-29	ND		
WELL 03	SP 2110274-3	ng/L				2021-07-29	ND		
WELL 03	SP 2106778-3	ng/L				2021-05-20	ND		
WELL 03	SP 2104221-3	ng/L				2021-03-29	ND		
WELL 03	SP 2017932-3	ng/L				2020-12-29	ND		
Perfluorooctanesulfonic Acid [H	PFOS]	ng/L		NS	n/a			ND	ND - ND
WELL 02	SP 2110274-1	ng/L				2021-07-29	ND		
WELL 02	SP 2106778-1	ng/L				2021-05-20	ND		
WELL 02	SP 2103452-1	ng/L				2021-03-11	ND		
WELL 02	SP 2017932-1	ng/L				2020-12-29	ND		
WELL 03	SP 2110274-3	ng/L				2021-07-29	ND		
WELL 03	SP 2106778-3	ng/L				2021-05-20	ND		
WELL 03	SP 2104221-3	ng/L				2021-03-29	ND		
WELL 03	SP 2017932-3	ng/L				2020-12-29	ND		
Perfluorobutane Sulfonic Acid	[PFBS]	ng/L		NS	n/a			ND	ND - ND
WELL 02	SP 2110274-1	ng/L				2021-07-29	ND		
WELL 02	SP 2106778-1	ng/L				2021-05-20	ND		
WELL 02	SP 2017932-1	ng/L				2020-12-29	ND		
WELL 03	SP 2110274-3	ng/L				2021-07-29	ND		
WELL 03	SP 2106778-3	ng/L				2021-05-20	ND		
WELL 03	SP 2104221-3	ng/L				2021-03-29	ND		
WELL 03	SP 2017932-3	ng/L				2020-12-29	ND		
Perfluorohexane Sulfonic Acid	[PFHxS]	ng/L		NS	n/a			ND	ND - ND
WELL 02	SP 2110274-1	ng/L				2021-07-29	ND		
WELL 02	SP 2106778-1	ng/L				2021-05-20	ND		
WELL 02	SP 2017932-1	ng/L				2020-12-29	ND		
WELL 03	SP 2110274-3	ng/L				2021-07-29	ND		
WELL 03	SP 2106778-3	ng/L				2021-05-20	ND		
WELL 03	SP 2104221-3	ng/L				2021-03-29	ND		
WELL 03	SP 2017932-3	ng/L				2020-12-29	ND		
Perfluorohexanoic Acid [PFHxA]	ng/L		NS	n/a			ND	ND - ND
WELL 02	SP 2110274-1	ng/L				2021-07-29	ND		
WELL 02	SP 2106778-1	ng/L				2021-05-20	ND		
WELL 02	SP 2017932-1	ng/L			1	2020-12-29	ND		1
WELL 03	SP 2110274-3	ng/L			1	2021-07-29	ND		1
WELL 03	SP 2106778-3	ng/L				2021-05-20	ND		1
WELL 03	SP 2104221-3	ng/L				2021-03-29	ND		1
WELL 03	SP 2017932-3	ng/L				2020-12-29	ND		1

		ADI	DITIONAL	DETECTIO	NS				
		Units	MCLG	CA-MCL	PHG	Sampled	Result	Avg. Result(a)	Range (b)
Calcium		mg/L			n/a			134	121 - 147
WELL 02	SP 2013310-1	mg/L				2020-09-28	121		
WELL 03	SP 2001921-1	mg/L				2020-02-10	147		
Magnesium		mg/L			n/a			51	42 - 60
WELL 02	SP 2013310-1	mg/L				2020-09-28	42		
WELL 03	SP 2001921-1	mg/L				2020-02-10	60		
pH		units			n/a			7.4	7.3 - 7.4
WELL 02	SP 2013310-1	units				2020-09-28	7.4		
WELL 03	SP 2001921-1	units				2020-02-10	7.3		
Alkalinity	•	mg/L			n/a			205	200 - 210
WELL 02	SP 2013310-1	mg/L				2020-09-28	210		
WELL 03	SP 2001921-1	mg/L				2020-02-10	200		
Aggressiveness Index	•				n/a			12.2	12.2 - 12.2
WELL 02	SP 2013310-1					2020-09-28	12.2		
WELL 03	SP 2001921-1					2020-02-10	12.2		
Langelier Index					n/a			0.3	0.3 - 0.3
WELL 02	SP 2013310-1					2020-09-28	0.3		
WELL 03	SP 2001921-1					2020-02-10	0.3		

DETECTION OF DISINFECTANT/DISINFECTANT BYPRODUCT RULE											
		Units	MCLG	CA-MCL	PHG	Sampled	Result	Avg. Result(a)	Range (b)		
Total Trihalomethanes (TTHMs)		ug/L		80	n/a			7	7.00 - 7.00		
STG 2 - 443 Central Ave	SP 2211755-1	ug/L				2022-07-20	7.00				
Average STG 2 - 443 Central Ave								7			
Haloacetic Acids (five)	Haloacetic Acids (five)			60	n/a			3	3 - 3		
STG 2 - 443 Central Ave	SP 2211755-1	ug/L				2022-07-20	3				
Average STG 2 - 443 Central Ave								3			

The Mutual Water Co of Strickland Tract CCR Login Linkage - 2022

FGL Code	Lab ID	Date_Sampled	Method	Description	Property
CuPb-ss05	SP 2012497-5	2020-09-08	Metals, Total	363 Central Ave.	Copper & Lead Monitoring
Bacti-Rout1-Odd	SP 2201166-1	2022-01-21	Coliform	4779 Burson Way	Routine Bacteriological Monitoring - Odd
	SP 2204639-1	2022-03-23	Coliform	4779 Burson Way	Routine Bacteriological Monitoring - Odd
	SP 2207407-1	2022-05-04	Coliform	4779 Burson Way	Routine Bacteriological Monitoring - Odd
	SP 2212210-1	2022-07-28	Coliform	4779 Burson Way	Routine Bacteriological Monitoring - Odd
	SP 2214571-1	2022-09-12	Coliform	4779 Burson Way	Routine Bacteriological Monitoring - Odd
	SP 2218950-1	2022-11-29	Coliform	4779 Burson Way	Routine Bacteriological Monitoring - Odd
CuPb-ss02	SP 2012497-2	2020-09-08	Metals, Total	4878 Joan Wy.	Copper & Lead Monitoring
Bacti-Rout2-Eve	SP 2203105-1	2022-02-28	Coliform	4919 Strickland Drive	Routine Bacteriological Monitoring - Even
	SP 2204871-1	2022-04-13	Coliform	4919 Strickland Drive	Routine Bacteriological Monitoring - Even
	SP 2209398-1	2022-06-03	Coliform	4919 Strickland Drive	Routine Bacteriological Monitoring - Even
	SP 2212715-1	2022-08-05	Coliform	4919 Strickland Drive	Routine Bacteriological Monitoring - Even
	SP 2216599-1	2022-10-17	Coliform	4919 Strickland Drive	Routine Bacteriological Monitoring - Even
	SP 2219082-1	2022-12-01	Coliform	4919 Strickland Drive	Routine Bacteriological Monitoring - Even
CuPb-ss03	SP 2012497-3	2020-09-09	Metals, Total	4920 Strickland Dr.	Copper & Lead Monitoring
CuPb-ss01	SP 2012497-1	2020-09-08	Metals, Total	4941 Perry Wy.	Copper & Lead Monitoring
CuPb-ss04	SP 2012497-4	2020-09-11	Metals, Total	4979 Burson Wy.	Copper & Lead Monitoring
DBP-Stg2-ss01	SP 2211755-1	2022-07-20	EPA 551.1	STG 2 - 443 Central Ave	DBP Monitoring
	SP 2211755-1	2022-07-20	EPA 552.2	STG 2 - 443 Central Ave	DBP Monitoring
WELL 02	SP 2003427-1	2020-03-11	Metals, Total	WELL 02	Radio Monitoring
	SP 2003427-1	2020-03-11	Radio Chemistry	WELL 02	Radio Monitoring
	SP 2013310-1	2020-09-28	Metals, Total	WELL 02	Well Monitioring
	SP 2013310-1	2020-09-28	Wet Chemistry	WELL 02	Well Monitioring
	SP 2013310-1	2020-09-28	General Mineral	WELL 02	Well Monitioring
	SP 2017932-1	2020-12-29		WELL 02	PFAS Monitoring
	SP 2103452-1	2021-03-11		WELL 02	PFAS Monitoring
	SP 2106778-1	2021-05-20		WELL 02	PFAS Monitoring
	SP 2110274-1	2021-07-29		WELL 02	PFAS Monitoring
	SP 2214570-1	2022-09-12	Wet Chemistry	WELL 02	Well Monitioring
WELL 03	SP 2001921-1	2020-02-10	General Mineral	WELL 03	Well 3 - Water Quality
	SP 2001921-1	2020-02-10	Metals, Total	WELL 03	Well 3 - Water Quality
	SP 2001921-1	2020-02-10	Wet Chemistry	WELL 03	Well 3 - Water Quality
	SP 2017932-3	2020-12-29		WELL 03	PFAS Monitoring
	SP 2104221-3	2021-03-29		WELL 03	PFAS Monitoring
	SP 2106778-3	2021-05-20		WELL 03	PFAS Monitoring
	SP 2110274-3	2021-07-29		WELL 03	PFAS Monitoring
	SP 2202819-1	2022-02-21	Wet Chemistry	WELL 03	Well 3 - Water Quality