Consumer Confidence Report Certification Form

(to be submitted with a copy of the CCR)

(to certify electronic delivery of the CCR, use the certification form on the State Water Board's website at $\underline{ http://www.swrcb.ca.gov/drinking_water/certlic/drinkingwater/CCR.shtml)}$

Water	System N	ame:	NYELAND A	CRES N	MUTUA	AL WATER CO	
Water	System N	umber:	5602111				
certific	es that the	(da	te) to custome	ers (and l in the	l approp report	its Consumer Confidence Report was distributed on priate notices of availability have been given). Further, is correct and consistent with the compliance monitoring Control Board, Division of Drinking Water.	-
Certif	fied By:	Name);				
		Signa	ture:				
		Title:					
		Phone	e Number:	()	Date:	
	CCR was	distribut	ed by mail or	other d	lirect de	elivery methods. Specify other direct delivery methods	used:
	methods:		ts were used t			ill paying customers. Those efforts included the followin	.g
	M	ailed the	CCR to posta	l patror	ns withi	in the service area (attach zip codes used)	
	Ac	lvertised	the availabili	ty of the	e CCR i	in news media (attach a copy of press release)	
	—				_	paper of general circulation (attach a copy of the e newspaper and date published)	
	Po	sted the	CCR in public	places	s (attach	h a list of locations)	
		•	multiple copi artments, bus			single bill addresses serving several persons, chools	
	□ De	elivery to	community o	rganiza	itions (a	attach a list of organizations)	
	Ot	her (atta	ch a list of otl	ner met	thods us	sed)	
	For syste	ms servii	ng at least 100	0,000 p	ersons:	: Posted CCR on a publicly-accessible internet site	
-	at the foll	lowing a	ddress: http://				
	For inves	tor-owne	d utilities: De	livered	the CC	CR to the California Public Utilities Commission	

2020 Consumer Confidence Report

Water System Name: NYELAND ACRES MUTUAL WATER CO Report Date: April 2021

We test the drinking water quality for many constituents as required by state and federal regulations. This report shows the results of our monitoring for the period of January 1 - December 31, 2020.

Este informe contiene información muy importante sobre su agua potable. Tradúzcalo ó hable con alquien que lo entienda bien.

Type of water source(s) in use: According to SWRCB DDW records, this Source is Groundwater. This Assessment was done using the Default Groundwater System Method.

Your water comes from 1 source(s): Well 04

Opportunities for public participation in decisions that affect drinking water quality: Regularly-scheduled water board or city/county council meetings are held at the Nyeland Acres Mutual Water Company Office at 3190 Santa Clara Ave., Oxnard CA every last Tuesday of the month at 7:30 p.m.

For more information about this report, or any questions relating to your drinking water, please call (805)485-5113 and ask for Rosa Stehly.

TERMS USED IN THIS REPORT

Maximum Contaminant Level (MCL): The highest level of contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs (or MCLGs) as is economically feasible. Secondary MCLs are set to protect the odor, taste, and appearance of drinking water.

Maximum Contaminant Level Goal (MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the U.S. Environmental Protection Agency (USEPA).

Public Health Goal (PHG): The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California Environmental Protection Agency.

Maximum Residual Disinfectant Level (MRDL): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Maximum Residual Disinfectant Level Goal (MRDLG): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

Primary Drinking Water Standards (PDWS): MCLs and MRDLs for the contaminants that affect health along with their monitoring and reporting requirements, and water treatment requirements.

Secondary Drinking Water Standards (SDWS): MCLs for the contaminants that affect taste, odor, or appearance of the drinking water. Contaminants with SDWSs do not affect the health at the MCL levels.

Treatment Technique (TT): A required process intended to reduce the level of a contaminant in drinking water.

Regulatory Action Level (AL): The concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow.

Level 1 Assessment: A Level 1 assessment is a study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system.

Level 2 Assessment: A Level 2 assessment is a very detailed study of the water system to identify potential problems and determine (if possible) why an E. coli MCL violation has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions.

mg/L: milligrams per liter or parts per million (ppm)

ug/L: micrograms per liter or parts per billion (ppb)

pCi/L: picocuries per liter (a measure of radiation)

NTU: Nephelometric Turbidity Units

umhos/cm: micro mhos per centimeter

The sources of drinking water: (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include:

- *Microbial contaminants*, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- *Inorganic contaminants*, such as salts and metals, that can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- *Pesticides and herbicides,* that may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses.
- Organic chemical contaminants, including synthetic and volatile organic chemicals, that are by-products if industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, agricultural application, and septic systems.
- Radioactive contaminants, that can be naturally-occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, the USEPA and the State Water Resource Control Board (State Water Board) prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. State Water Board regulations also establish limits for contaminants in bottled water that provide the same protection for public health.

Tables 1, 2, 3, 4, 5, 6 and 7 list all of the drinking water contaminants that were detected during the most recent sampling for the constituent. The presence of these contaminants in the water does not necessarily indicate that the water poses a health risk. The State Water Board allows us to monitor for certain contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of the data, though representative of the water quality, are more than one year old.

Any violation of MCL, AL or MRDL is highlighted. Additional information regarding the violation is provided later in this report.

Tabl	Table 1 - SAMPLING RESULTS SHOWING THE DETECTION OF LEAD AND COPPER												
Lead and Copper (complete if lead or copper detected in last sample set)	Sample Date	No. of Samples	90th percentile level detected	No. Sites Exceeding AL	AL	PHG	Typical Sources of Contaminant						
Copper (mg/L)	(2018)	9	0.68	0	1.3	.3	Internal corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives						

	Table 2 - SAMPLING RESULTS FOR SODIUM AND HARDNESS											
Chemical or Constituent (and reporting units)	Sample Date	Average Level Detected	Range of Detections	MCL	PHG (MCLG)	Typical Sources of Contaminant						
Sodium (mg/L)	(2018)	97	n/a	none		Salt present in the water and is generally naturally occurring						
Hardness (mg/L)	(2018)	524	n/a	none	nono	Sum of polyvalent cations present in the water, generally magnesium and calcium, and are usually naturally occurring						

Table 3 - 1	Table 3 - DETECTION OF CONTAMINANTS WITH A <u>PRIMARY</u> DRINKING WATER STANDARD											
Chemical or Constituent (and reporting units)	Sample Date	Average Level Detected	Range of Detections	MCL [MRDL]	PHG (MCLG) [MRDLG]	Typical Sources of Contaminant						
Fluoride (mg/L)	(2018)	0.7	n/a	2	1	Erosion of natural deposits; water additive that promotes strong teeth; discharge from fertilizer and aluminum factories.						

Nitrate as N (mg/L)	(2020)	1	n/a	10	10	Runoff and leaching from fertilizer use; leaching from septic tanks and sewage; erosion of natural deposits
Nitrate + Nitrite as N (mg/L)	(2018)	1.2	n/a	10	10	Runoff and leaching from fertilizer use; leaching from septic tanks and sewage; erosion of natural deposits
Selenium (ug/L)	(2018)	7	n/a	50	30	Discharge from petroleum, glass, and metal refineries; erosion of natural deposits; discharge from mines and chemical manufacturers; runoff from livestock lots(feed additive)
Gross Alpha (pCi/L)	(2020)	7.17	n/a	15	(0)	Erosion of natural deposits.
Uranium (pCi/L)	(2017 - 2020)	8.17	8.05 - 8.29	20	0.43	Erosion of natural deposits

Table 4 - DETEC	Table 4 - DETECTION OF CONTAMINANTS WITH A <u>SECONDARY</u> DRINKING WATER STANDARD												
Chemical or Constituent (and reporting units)	Sample Date	Average Level Detected	Range of Detections	MCL	PHG (MCLG)	Typical Sources of Contaminant							
Chloride (mg/L)	(2018)	49	n/a	500	n/a	Runoff/leaching from natural deposits; seawater influence							
Specific Conductance (umhos/cm)	(2018)	1330	n/a	1600	n/a	Substances that form ions when in water; seawater influence							
Sulfate (mg/L)	(2018)	432	n/a	500	n/a	Runoff/leaching from natural deposits; industrial wastes							
Total Dissolved Solids (mg/L)	(2018)	950	n/a	1000	n/a	Runoff/leaching from natural deposits							
Turbidity (NTU)	(2018)	0.3	n/a	5	n/a	Soil runoff							

	Table 5 - DETECTION OF UNREGULATED CONTAMINANTS												
Chemical or Constituent (and reporting units)	Sample Date Average Level Detected		Range of Detections	Notification Level	Typical Sources of Contaminant								
Boron (mg/L)	(2018)	0.7	n/a	1	Boron exposures resulted in decreased fetal weight (developmental effects) in newborn rats.								
Vanadium (mg/L)	(2018)	0.011	n/a	0.05	Vanadium exposures resulted in developmental and reproductive effects in rats.								

	Table 6 - ADDITIONAL DETECTIONS												
Chemical or Constituent (and reporting units)	Sample Date	Average Level Detected	Range of Detections	Notification Level	Typical Sources of Contaminant								
Calcium (mg/L)	(2018)	134	n/a	n/a	n/a								
Magnesium (mg/L)	(2018)	46	n/a	n/a	n/a								
pH (units)	(2018)	7.2	n/a	n/a	n/a								
Alkalinity (mg/L)	(2018)	200	n/a	n/a	n/a								
Aggressiveness Index	(2018)	12	n/a	n/a	n/a								
Langelier Index	(2018)	0.1	n/a	n/a	n/a								

Table	Table 7 - DETECTION OF DISINFECTANT/DISINFECTANT BYPRODUCT RULE												
Chemical or Constituent (and reporting units)	Sample Date	Average Level Detected	Range of Detections	MCL (MRDL)	PHG (MCLG)	Violation	Typical Sources of Contaminant						
Total Trihalomethanes (TTHMs) (ug/L)	(2020)	10	n/a	80	n/a		By-product of drinking water disinfection						
Haloacetic Acids (five) (ug/L)	(2020)	3	n/a	60	n/a		By-product of drinking water disinfection						

Additional General Information on Drinking Water

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts if some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the USEPA's Safe Drinking Water Hotline (1-800-426-4791).

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. USEPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* and other microbial contaminants are available from the Safe Drinking Water Hotline (1-800-426-4791).

Lead Specific Language for Community Water Systems: If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with the service lines and home plumbing. *Nyeland Acres Mutual* is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/lead.

2020 Consumer Confidence Report

Drinking Water Assessment Information

Assessment Information

A source water assessment was conducted for the WELL 04 of the NYELAND ACRES MUTUAL WATER CO water system in May, 2001.

Well 04 - is considered most vulnerable to the following activities not associated with any detected contaminants: Automobile - Gas stations

Acquiring Information

A copy of the complete assessment may be viewed at: SWRCB Division of Drinking Water 1180 Eugenia Place Suite 200 Carpinteria, CA 93013

You may request a summary of the assessment be sent to you by contacting: Jeff Densmore
District Engineer
805 566 1326

Nyeland Acres Mutual Analytical Results By FGL - 2020

	LEAD AND COPPER RULE											
		Units	MCLG	CA-MCL	PHG	Sampled	Result	90th Percentile	# Samples			
Copper		mg/L		1.3	.3			0.68	9			
2511 Eucalyptus	SP 1808806-7	mg/L				2018-06-27	0.14					
2605 Eucalyptus	SP 1808806-1	mg/L				2018-06-29	0.08					
2724 1/2 Friedrich	SP 1808806-8	mg/L				2018-06-30	0.16					
2724 Friedrich	SP 1808806-3	mg/L				2018-06-27	0.22					
3190 Santa Clara	SP 1808806-9	mg/L				2018-07-05	ND					
3421 Nyeland	SP 1808806-4	mg/L				2018-06-27	0.68					
3549 Nyeland	SP 1808806-5	mg/L				2018-06-28	0.26					
3574 Nyeland	SP 1808806-2	mg/L				2018-07-01	0.16					
3581 Nyeland	SP 1808806-6	mg/L				2018-06-28	0.72					

	SAMPLING RESULTS FOR SODIUM AND HARDNESS												
			MCLG	CA-MCL	PHG	Sampled	Result	Avg. Result(a)	Range (b)				
Sodium		mg/L		none	none			97	97 - 97				
Well 04	SP 1802185-1	mg/L				2018-02-19	97						
Hardness		mg/L		none	none			524	524 - 524				
Well 04	SP 1802185-1	mg/L				2018-02-19	524						

	PRIMA	RY DRIN	KING WA	TER STANI	OARDS ((PDWS)			
		Units	MCLG	CA-MCL	PHG	Sampled	Result	Avg. Result(a)	Range (b)
Fluoride		mg/L		2	1			0.7	0.7 - 0.7
Well 04	SP 1802185-1	mg/L				2018-02-19	0.7		
Nitrate as N		mg/L		10	10			1.0	1 - 1
Well 04	SP 2001850-1	mg/L				2020-02-07	1		
Nitrate + Nitrite as N		mg/L		10	10			1.2	1.2 - 1.2
Well 04	SP 1802185-1	mg/L				2018-02-19	1.2		
Selenium		ug/L	50	50	30			7	7 - 7
Well 04	SP 1802185-1	ug/L				2018-02-19	7		
Gross Alpha		pCi/L		15	(0)			7.17	7.17 - 7.17
Well 04	SP 2002894-1	pCi/L				2020-03-02	7.17		
Uranium		pCi/L		20	0.43			8.17	8.05 - 8.29
Well 04	SP 2002894-1	pCi/L				2020-03-02	8.29		
Well 04	SP 1703539-1	pCi/L				2017-03-22	8.05		

SECONDARY DRINKING WATER STANDARDS (SDWS)											
		Units	MCLG	CA-MCL	PHG	Sampled	Result	Avg. Result(a)	Range (b)		
Chloride		mg/L		500	n/a			49	49 - 49		
Well 04	SP 1802185-1	mg/L				2018-02-19	49				
Specific Conductance		umhos/cm		1600	n/a			1330	1330 - 1330		
Well 04	SP 1802185-1	umhos/cm				2018-02-19	1330				
Sulfate		mg/L		500	n/a			432	432 - 432		
Well 04	SP 1802185-1	mg/L				2018-02-19	432				
Total Dissolved Solids	•	mg/L		1000	n/a			950	950 - 950		
Well 04	SP 1802185-1	mg/L				2018-02-19	950				
Turbidity	•	NTU		5	n/a			0.3	0.3 - 0.3		
Well 04	SP 1802185-1	NTU				2018-02-19	0.3				

UNREGULATED CONTAMINANTS								
	Units	MCLG	CA-MCL	PHG	Sampled	Result	Avg. Result(a)	Range (b)

Boron		mg/L	NS	n/a			0.7	0.7 - 0.7
Well 04	SP 1802185-1	mg/L			2018-02-19	0.7		
Vanadium		mg/L	NS	n/a			0.011	0.011 - 0.011
Well 04	SP 1802185-1	mg/L			2018-02-19	0.011		

	ADDITIONAL DETECTIONS										
		Units	MCLG	CA-MCL	PHG	Sampled	Result	Avg. Result(a)	Range (b)		
Calcium		mg/L			n/a			134	134 - 134		
Well 04	SP 1802185-1	mg/L				2018-02-19	134				
Magnesium		mg/L			n/a			46	46 - 46		
Well 04	SP 1802185-1	mg/L				2018-02-19	46				
рН		units			n/a			7.2	7.2 - 7.2		
Well 04	SP 1802185-1	units				2018-02-19	7.2				
Alkalinity		mg/L			n/a			200	200 - 200		
Well 04	SP 1802185-1	mg/L				2018-02-19	200				
Aggressiveness Index					n/a			12.0	12.0 - 12.0		
Well 04	SP 1802185-1					2018-02-19	12.0				
Langelier Index					n/a			0.1	0.1 - 0.1		
Well 04	SP 1802185-1					2018-02-19	0.1				

DETECTION OF DISINFECTANT/DISINFECTANT BYPRODUCT RULE											
		Units	MCLG	CA-MCL	PHG	Sampled	Result	Avg. Result(a)	Range (b)		
Total Trihalomethanes (TTHMs)		ug/L		80	n/a			10	10 - 10		
2582 Friedrich Drive SS - STG	SP 2010843-1	ug/L				2020-08-12	10				
Average 2582 Friedrich Drive SS - STG								10			
Haloacetic Acids (five)	•	ug/L		60	n/a			3	3 - 3		
2582 Friedrich Drive SS - STG	SP 2010843-1	ug/L				2020-08-12	3				
Average 2582 Friedrich Drive SS - STG								3			

Nyeland Acres Mutual CCR Login Linkage - 2020

FGL Code	Lab ID	Date_Sampled	Method	Description	Property
2511 Eucalyptus	SP 1808806-7	2018-06-27	Metals, Total	2511 Eucalyptus	Lead & Copper Monitoring
DBPR-ss01	SP 2010843-1	2020-08-12	EPA 552.2	2582 Friedrich Drive SS - STG	STG2 DPR - THMs/HAA5
	SP 2010843-1	2020-08-12	EPA 551.1	2582 Friedrich Drive SS - STG	STG2 DPR - THMs/HAA5
Bacti-Rout-ss01	SP 2000481-1	2020-01-10	Coliform	2592 Friedrich Dr.	Water Quality Monitoring
	SP 2001849-1	2020-02-07	Coliform	2592 Friedrich Dr.	Water Quality Monitoring
	SP 2002893-1	2020-03-02	Coliform	2592 Friedrich Dr.	Water Quality Monitoring
	SP 2004862-1	2020-04-13	Coliform	2592 Friedrich Dr.	Water Quality Monitoring
	SP 2006408-1	2020-05-15	Coliform	2592 Friedrich Dr.	Water Quality Monitoring
	SP 2007668-1	2020-06-10	Coliform	2592 Friedrich Dr.	Water Quality Monitoring
	SP 2009159-1	2020-07-13	Coliform	2592 Friedrich Dr.	Water Quality Monitoring
	SP 2010848-1	2020-08-12	Coliform	2592 Friedrich Dr.	Water Quality Monitoring
	SP 2012192-1	2020-09-08	Coliform	2592 Friedrich Dr.	Water Quality Monitoring
	SP 2013865-1	2020-10-08	Coliform	2592 Friedrich Dr.	Water Quality Monitoring
	SP 2015831-1	2020-11-16	Coliform	2592 Friedrich Dr.	Water Quality Monitoring
	SP 2017146-1	2020-12-10	Coliform	2592 Friedrich Dr.	Water Quality Monitoring
2605 Eucalyptus	SP 1808806-1	2018-06-29	Metals, Total	2605 Eucalyptus	Lead & Copper Monitoring
2724 1/2 Friedr	SP 1808806-8	2018-06-30	Metals, Total	2724 1/2 Friedrich	Lead & Copper Monitoring
2724 Friedrich	SP 1808806-3	2018-06-27	Metals, Total	2724 Friedrich	Lead & Copper Monitoring
3190 Santa Clar	SP 1808806-9	2018-07-05	Metals, Total	3190 Santa Clara	Lead & Copper Monitoring
3421 Nyeland	SP 1808806-4	2018-06-27	Metals, Total	3421 Nyeland	Lead & Copper Monitoring
3549 Nyeland	SP 1808806-5	2018-06-28	Metals, Total	3549 Nyeland	Lead & Copper Monitoring
3574 Nyeland	SP 1808806-2	2018-07-01	Metals, Total	3574 Nyeland	Lead & Copper Monitoring
3581 Nyeland	SP 1808806-6	2018-06-28	Metals, Total	3581 Nyeland	Lead & Copper Monitoring
WELL04	SP 1703539-1	2017-03-22	Radio Chemistry	Well 04	Radio Monitoring
	SP 1802185-1	2018-02-19	General Mineral	Well 04	DHS Monitoring
	SP 1802185-1	2018-02-19	Metals, Total	Well 04	DHS Monitoring
	SP 1802185-1	2018-02-19	Wet Chemistry	Well 04	DHS Monitoring
	SP 2001850-1	2020-02-07	Wet Chemistry	Well 04	DHS Monitoring
	SP 2002894-1	2020-03-02	Radio Chemistry	Well 04	Radio Monitoring
	SP 2002894-1	2020-03-02	Metals, Total	Well 04	Radio Monitoring