2021 Consumer Confidence Report

Water System Name: Thomas Aquinas College

Report Date: June 14, 2022

We test the drinking water quality for many constituents as required by state and federal regulations. This report shows the results of our monitoring for the period of January 1 - December 31, 2018 and may include earlier monitoring data.

Este informe contiene información muy importante sobre su agua potable. Tradúzcalo ó hable con alguien que lo entienda bien.

Type of water source(s) in use: _____Two (2) groundwater source wells

Name & general location of source(s): <u>The two source water wells are on the northeast of the college property.</u> Supply wells are designated as Well 03 (5601139-002-002 and Well 04 (5601139-006-006) separately identified under state water system IDs.

Drinking Water Source Assessment information: <u>A drinking water source assessment was conducted by the CDPH</u> (California Department of Public Health), now the State Water Resources Control Board – Division of Drinking Water

In May of 2001. In the assessment, the source waters are considered most vulnerable to activities at the Parks, School, Road and Creek, wastewater treatment plant, dorms, stream/river and the highway.

A water system inspection, by the CDPH, occurred on March 23rd, 2017. You may request summaries directly from the Division of Drinking Water – Field Operations, 1180 Eugenia Place, Suite 200, Carpinteria, CA 93013. Also, a summary may be requested by contacting Jeff Densmore, District Engineer at (805) 566-1326.

Time and place of regularly scheduled board meetings for public participation: <u>Annual meetings are held in a school</u> year orientation, at the beginning of the school year – 10000 Ojai Road, Santa Paula.

For more information, contact: Clark Tulberg, Facilities Manager Phone: (805) 421-5938

TERMS USED IN THIS REPORT

Maximum Contaminant Level (MCL): The highest level of a contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs (or MCLGs) as is economically and technologically feasible. Secondary MCLs are set to protect the odor, taste, and appearance of drinking water.

Maximum Contaminant Level Goal (MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the U.S. Environmental Protection Agency (USEPA).

Public Health Goal (PHG): The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California Environmental Protection Agency.

Maximum Residual Disinfectant Level (MRDL): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Maximum Residual Disinfectant Level Goal (MRDLG): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

Secondary Drinking Water Standards (SDWS): MCLs for contaminants that affect taste, odor, or appearance of the drinking water. Contaminants with SDWSs do not affect the health at the MCL levels.

Treatment Technique (TT): A required process intended to reduce the level of a contaminant in drinking water.

Specific Conductance (uS/cm): The unit of measurement for conductivity is expressed as micro-Siemens (uS/cm) which is the reciprocal of the unit of resistance. Specific conductance is measured by passing a current between two electrodes (one centimeter apart) that are placed into a sample of water.

Regulatory Action Level (AL): The concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow.

Variances and Exemptions: State Board permission to exceed an MCL or not comply with a treatment technique under certain conditions.

Level 1 Assessment: A Level 1 assessment is a study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system.

Level 2 Assessment: A Level 2 assessment is a very detailed study of the water system to identify potential problems and determine (if possible) why an *E. coli* MCL violation has occurred and/or why total coliform bacteria have been found

Primary Drinking Water Standards (PDWS): MCLs and MRDLs for contaminants that affect health along with their monitoring and reporting requirements, and water treatment requirements.

in our water system on multiple occasions.

ND: not detectable at testing limit

water treatment requirements.							
Unit	īS	Equivalence					
mg/L – milligrams per liter	ppm – parts per million	1 second in 11.5 days					
$\mu g/L$ – micrograms per liter	ppb – parts per billion	1 second in nearly 32 years					
ng/L – nanograms per liter	ppt – parts per trillion	1 second in nearly 32,000 years					
pg/L – picograms per liter	ppq – parts per quadrillion	1 second in nearly 32,000,000 years					

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include:

- *Microbial contaminants*, such as viruses and bacteria that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- *Inorganic contaminants*, such as salts and metals, that can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- *Pesticides and herbicides*, may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses.
- Organic chemical contaminants, including synthetic and volatile organic chemicals that are by-products of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, agricultural application, and septic systems.
- *Radioactive contaminants,* can be naturally-occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, the USEPA and the State Water Resources Control Board (State Board) prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. State Board regulations also establish limits for contaminants in bottled water that provide the same protection for public health.

Tables 1, 2, 3, 4, 5, and 6 list all of the drinking water contaminants that were detected during the most recent sampling for the constituent. The presence of these contaminants in the water does not necessarily indicate that the water poses a health risk. The State Board allows us to monitor for certain contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of the data, though representative of the water quality, are more than one year old. Any violation of an AL, MCL, MRDL, or TT is asterisked. Additional information regarding the violation is provided later in this report.

Microbiological Contaminants (complete if bacteria detected)	Highest No. of Detections	No. of months in violation	MCL	MCLG	Typical Source of Bacteria
Total Coliform Bacteria (state Total Coliform Rule)	(In a mo.)	1	1 positive monthly sample	0	Naturally present in the environment
Fecal Coliform or <i>E. coli</i> (state Total Coliform Rule)	(In the year)	0	A routine sample and a repeat sample are total coliform positive, and one of these is also fecal coliform or <i>E. coli</i> positive	0	Human and animal fecal waste
<i>E. coli</i> (federal Revised Total Coliform Rule)	(from 1/1/21- 12/31/21)	0	(a)	0	Human and animal fecal waste

TABLE 2	- SAMPLIN	NG RESUI		WING THE I	DETECTIO	N OF LEA	D AND COPPER
Lead and Copper (complete if lead or copper detected in the last sample set)	Sample Date	No. of samples collected	90 th percentile level detected	exceeding	AL	PHG	Typical Source of Contaminant
Lead (ppb)	8/25/2021	5	0	0	15	0.2	Internal corrosion of household wate plumbing systems; discharges from industrial manufacturers; erosion of natural deposits
Copper (ppm)	8/25/2021	5	0.135	0	1.3	0.3	Internal corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives
	TABLE 3	- SAMPL	ING RES	SULTS FOR S	SODIUM A	ND HARDI	NESS
Chemical or Constituent (and reporting units)	Sample Date	Level Detecto (Averag	ed	Range of Detections	MCL	PHG (MCLG)	Typical Source of Contaminant
Sodium (ppm)	9/4/2019 	29.5		29-30	none	none	Salt present in the water and is generally naturally occurring
Hardness (ppm)	3/20/2019 _ 9/4/2019	378 359		359 - 397	none	none	Sum of polyvalent cations present in the water, generally magnesium and calcium, and are usually naturally occurring
TABLE 4 – DE	FECTION O	F CONTA	MINAN	TS WITH A <u>I</u>	PRIMARY I	DRINKING	WATER STANDARD
Chemical or Constituent (and reporting units)	Sample Date	Level Detecto (Averag	ed	Range of Detections	MCL [MRDL]	PHG (MCL G) [MRDL G]	Typical Source of Contaminant
Aluminum (ppm)	9/4/2019 - 3/17/2021	< 0.05	0	<0.050	1	0.6	Erosion of natural deposits; residue from some surface treatment processes
Fluoride (ppm)	9/4/2019 - 3/17/2021	0.34		0.32 - 0.36	2	1	Erosion of natural deposits; water additive which promotes strong teeth; discharge from fertilizer and aluminum factories
Gross Alpha Particle Activity (pCi/L)	9/4/2019 _ 1/15/2020	4.96		3.00-6.92	15	(0)	Decay of natural and man-made deposits
TABLE 5 – DETH	ECTION OF	CONTAN	AINANTS	S WITH A <u>SE</u>	CONDARY	<u>DRINKIN</u>	G WATER STANDARD
Chemical or Constituent (and reporting units)	Sample Date	Level Detecto (Averag	ed	Range of Detections	MCL	PHG (MCLG)	Typical Source of Contaminant
Calcium (ppm)	3/20/2019 - 9/4/2019	111		104-117			Naturally-occurring mineral in ground and surface water
Chloride (ppm)	3/20/2019 - 9/4/2019	9.6		8.2 - 11	500		Runoff/leaching from natural deposits; seawater influence
Iron (ppm)	9/4/2019 - 3/17/2021	<0.1		<0.1	0.3		Leaching from natural deposits; industrial wastes
Manganese (ppm)	9/4/2019 - 3/17/2021	<0.020	0	< 0.020 - 2	0.05		Leaching from natural deposits
Magnesium (ppm)	3/20/2019 - 9/4/2019	24.8		24.1 - 25.6			Naturally-occurring mineral in ground and surface water
Foaming Agents (MBAS, ppm)	3/20/2019 	<0.5		<0.5	0.5		Municipal and industrial waste discharges

Odor – Threshold,°60 C (TON)	9/4/2019 - 3/17/2021	1	1	3		Naturally-occurring organic materials
Specific Conductance (uS/cm)	3/20/2019 - 9/4/2019	850	800 - 850	1600		Substances that form ions when in water; seawater influence
Sulfate (ppm)	3/20/2019 - 9/4/2019	225	210 - 240	500		Runoff/leaching from natural deposits; industrial wastes
Total Dissolved Solids (ppm)	3/20/2019 	675	550-600	1000		Runoff/leaching from natural deposits
Turbidity, Laboratory (NTU)	9/4/2019 - 3/17/2021	<0.1	<0.1	5		Soil runoff
Zinc (ppb)	9/4/2019 - 3/17/2021	<50	<50	5000		Runoff/leaching from natural deposits; industrial wastes
	TABLE 6	6 – DETECTIO	N OF UNREGUI	LATED CON	TAMINA	NTS
		Level Detected (Average)	Range of Detections	Notificatio	on Level	Health Effects Language
pH, Laboratory (Std. Units)	3/20/2019 	7.04	6.8-7.27	Less than 6.5 Greater than 8		
Aggressiveness Index (Corrosivity) ratio	3/20/2019	12.1	12.1	No standard		Value greater than/equal to 12.0 indicates non-aggressive water to transport pipes
Bicarbonate (as HCO ₃ , mg/L)	3/20/2019 	260	250-270	General infor	mation	

Additional General Information on Drinking Water

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the USEPA's Safe Drinking Water Hotline (1-800-426-4791).

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. USEPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* and other microbial contaminants are available from the Safe Drinking Water Hotline (1-800-426-4791).

Lead-Specific Language for Community Water Systems: If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. <u>Thomas Aquinas College – water system</u> is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. [Optional: If you do so, you may wish to collect the flushed water and reuse it for another beneficial purpose, such as watering plants.] If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline (1-800-426-4701) or at <u>http://www.epa.gov/lead</u>.

Additional unit definitions:

TON = Threshold Odor Number; approximate quantitative measurements of odor intensity (human sensory) NTU = Nephelometric Turbidity Units; intensity of light scattered at 90° to the path of incident light.

Summary Information for Violation of a MCL, MRDL, AL, TT, or Monitoring and Reporting Requirement

VIOLATION OF A MCL, MRDL, AL, TT, OR MONITORING AND REPORTING REQUIREMENT							
ViolationExplanationDurationActions Taken to Correct the ViolationHealth Effects Language							
Citation No. 04_06_21C_009	Listed On Next Page	NA	Explained On Next Page	None			

IMPORTANT INFORMATION ABOUT YOUR DRINKING WATER

Monitoring Requirements Not Met for Thomas Aquinas College water system

Our water system failed to monitor as required for drinking water standards during the past year and, therefore, was in violation of the regulations. Even though this failure was not an emergency, as our customers, you have a right to know what you should do, what happened, and what we did to correct this situation.

We are required to monitor your drinking water for specific contaminants on a regular basis. Results of regular monitoring are an indicator of whether or not our drinking water meets health standards. During May 2021, we did not complete all monitoring or testing for bacteria and therefore, cannot be sure of the quality of our drinking water during that time.

What should I do?

- There is nothing you need to do at this time.
- The table below lists the contaminant(s) we did not properly test for during the last year, how many samples we are required to take and how often, how many samples we took, when samples should have been taken, and the date on which follow-up samples were (or will be) taken.

Contaminant	Required Sampling Frequency	Number of Samples Taken	When All Samples Should Have Been Taken	<i>When Samples Were or Will Be Taken</i>
Total Coliform and E. coli	Collect 5 bacteria samples in the month following a total coliform- positive sample	1	May 2021	5 bacteria samples are to be collected during June 2021

• If you have health issues concerning the consumption of this water, you may wish to consult your doctor. What happened? What is being done?

Thomas Aquinas College is a nontransient-noncommunity public water system which samples its water monthly to test for total coliform and E. coli bacteria. A routine bacteria sample collected on April 13, 2021 from the water distribution system tested positive for total coliform (it did not show the presence E. coli). Bacteria samples collected from the two supply wells on April 13, 2021, also tested positive for total coliform (they did not show the presence of E. coli). In follow up, Thomas Aquinas College collected five bacteria samples on April 15, 2021 from different distribution system locations (one being the same as from April 13, 2021) and none showed the presence of total coliform or E. coli. Thomas Aquinas College also collected bacteria samples on April 15, 2021 from the two supply wells and none showed the presence of total coliform or E. coli. Because of the one total coliform-positive sample collected in April 2021, Thomas Aquinas College was required to collect five bacteria samples from the water distribution system during May 2021. However, Thomas Aquinas College collected only one bacteria sample from the water distribution system during May 2021 (which did not show the presence of total coliform or E. coli). Thomas Aquinas College will collect five bacteria samples during June 2021 and then continue its routine monthly bacteria sampling to verify water quality.

For more information, please contact Pete Chartier at 805-658-4654 or 1001 Partridge Dr. Suite 150 Ventura, CA 93003.

Please share this information with all the other people who drink this water, especially those who may not have received this notice directly (for example, people in apartments, nursing homes, schools, and businesses). You can do this by posting this public notice in a public place or distributing copies by hand or mail.

Secondary Notification Requirements

Upon receipt of notification from a person operating a public water system, the following notification must be given within 10 days [Health and Safety Code Section 116450(g)]:

- SCHOOLS: Must notify school employees, students, and parents (if the students are minors).
- RESIDENTIAL RENTAL PROPERTY OWNERS OR MANAGERS (including nursing homes and care facilities): Must notify tenants.
- BUSINESS PROPERTY OWNERS, MANAGERS, OR OPERATORS: Must notify employees of businesses located on the property.

This notice is being sent to you by Thomas Aquinas College.

State Water System ID#: CA5601139. Date distributed: 6/17/2021.

For Water Systems Providing Ground Water as a Source of Drinking Water

TABLE 7 – SAMPLING RESULTS SHOWING FECAL INDICATOR-POSITIVE GROUND WATER SOURCE SAMPLES							
Microbiological Contaminants (complete if fecal-indicator detected)Total No. of DetectionsSample DatesMCL 							
E. coli	(In the year) 0		0	(0)	Human and animal fecal waste		
Enterococci	(In the year) 0	NA	TT	n/a	Human and animal fecal waste		
Coliphage	(In the year) 0		TT	n/a	Human and animal fecal waste		

Summary Information for Fecal Indicator-Positive Ground Water Source Samples, Uncorrected Significant Deficiencies, or Ground Water TT

SPECIAL	NOTICE OF FECAL IND	DICATOR-POSITIVE G	ROUND WATER SOURCE	SAMPLE
	SPECIAL NOTICE FOR	UNCORRECTED SIGN	NFICANT DEFICIENCIES	
	VIOI A	TION OF GROUND WA	ATER TT	
TT Violation	Explanation	Duration	Actions Taken to Correct the Violation	Health Effects Language

For Systems Providing Surface Water as a Source of Drinking Water

TABLE 8 - SAMPLING RESULTS SHOWING TREATMENT OF SURFACE WATER SOURCES

Treatment Technique ^(a) (Type of approved filtration technology used)	
	Turbidity of the filtered water must:
Turbidity Performance Standards ^(b) (that must be met through the water treatment process)	1 – Be less than or equal to NTU in 95% of measurements in a month.
	2 – Not exceed NTU for more than eight consecutive hours.
	3 – Not exceed NTU at any time.
Lowest monthly percentage of samples that met Turbidity Performance Standard No. 1.	
Highest single turbidity measurement during the year	
Number of violations of any surface water treatment requirements	

(a) A required process intended to reduce the level of a contaminant in drinking water.

(b) Turbidity (measured in NTU) is a measurement of the cloudiness of water and is a good indicator of water quality and filtration performance. Turbidity results which meet performance standards are considered to be in compliance with filtration requirements.

Summary Information for Violation of a Surface Water TT

VIOLATION OF A SURFACE WATER TT							
TT ViolationExplanationDurationActions Taken to Correct the ViolationHealth Lang							

Summary Information for Operating Under a Variance or Exemption