## **Consumer Confidence Report Certification Form**

(to be submitted with a copy of the CCR)

(to certify electronic delivery of the CCR, use the certification form on the State Water Board's website at <a href="http://www.swrcb.ca.gov/drinking\_water/certlic/drinkingwater/CCR.shtml">http://www.swrcb.ca.gov/drinking\_water/certlic/drinkingwater/CCR.shtml</a>)

| Water    | System N               | lame:                 | CAL FIRE BAS                           | ELINE CONSERVATION CAMP                                                                                                                                                                                                                                                    | 7 |
|----------|------------------------|-----------------------|----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| Water    | System N               | lumber:               | CA5510852                              |                                                                                                                                                                                                                                                                            |   |
| certifie | es that the            | (da<br>informa        | ite) to customers<br>ation contained i | pertifies that its Consumer Confidence Report was distributed on a (and appropriate notices of availability have been given). Further, the son the report is correct and consistent with the compliance monitoring da Resources Control Board, Division of Drinking Water. |   |
| Certif   | ied By:                | Name                  | e:                                     | BRIAN WEST                                                                                                                                                                                                                                                                 | 7 |
|          |                        | Signa                 | ature:                                 | River                                                                                                                                                                                                                                                                      |   |
|          |                        | Title:                |                                        | WASPO                                                                                                                                                                                                                                                                      |   |
|          |                        | Phon                  | e Number:                              | (209) 984-5287 Date: 8/13/2024                                                                                                                                                                                                                                             |   |
|          | oply and fi<br>CCR was | ll-in whe<br>distribu | ere appropriate:<br>ted by mail or ot  | nood-faith efforts taken, please complete the form below by checking all in the direct delivery methods. Specify other direct delivery methods used:                                                                                                                       |   |
|          | methods:               |                       | ts were used to                        | reach non-bill paying customers. Those efforts included the following                                                                                                                                                                                                      |   |
|          | M                      | ailed the             | CCR to postal p                        | patrons within the service area (attach zip codes used)                                                                                                                                                                                                                    |   |
|          | Ac                     | lvertised             | l the availability                     | of the CCR in news media (attach a copy of press release)                                                                                                                                                                                                                  |   |
|          |                        |                       |                                        | a local newspaper of general circulation (attach a copy of the g name of the newspaper and date published)                                                                                                                                                                 |   |
|          | Po                     | sted the              | CCR in public p                        | places (attach a list of locations)                                                                                                                                                                                                                                        |   |
|          |                        |                       |                                        | s of CCR to single bill addresses serving several persons, esses, and schools                                                                                                                                                                                              |   |
|          | ☐ De                   | elivery to            | community org                          | anizations (attach a list of organizations)                                                                                                                                                                                                                                |   |
|          | Ot                     | ther (atta            | ach a list of othe                     | r methods used)                                                                                                                                                                                                                                                            |   |
|          |                        |                       |                                        | 2000 persons: Posted CCR on a publicly-accessible internet site                                                                                                                                                                                                            |   |
| П        |                        |                       |                                        | vered the CCR to the California Public Utilities Commission                                                                                                                                                                                                                |   |
|          | 101 11100              | oor own               | ca anninos. Donv                       | 200 May 2011 to the outlier and outlines continues                                                                                                                                                                                                                         |   |



# CALIFORNIA DEPARTMENT OF FORESTRY AND FIRE PROTECTION

2023
ANNUAL
WATER QUALITY
REPORT
OR
CCR

**BASELINE FIRE CENTER** 

#### **2023 Consumer Confidence Report**

Water System Name: CAL FIRE BASELINE CONSERVATION CAMP Report Date: August 2024

We test the drinking water quality for many constituents as required by state and federal regulations. This report shows the results of our monitoring for the period of January 1 - December 31, 2023.

Este informe contiene información muy importante sobre su agua potable. Tradúzcalo ó hable con alquien que lo entienda bien.

Type of water source(s) in use: Surface Water

Your water comes from 1 source(s): TULLOCH RESERVOIR - RAW and from 1 treated location(s): BASELINE WTP (WATER BOY) - TRE

Opportunities for public participation in decisions that affect drinking water quality: Baseline Camp

For more information about this report, or any questions relating to your drinking water, please call (209)419-4443 and ask for Brian West.

#### TERMS USED IN THIS REPORT

Maximum Contaminant Level (MCL): The highest level of contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs (or MCLGs) as is economically feasible. Secondary MCLs are set to protect the odor, taste, and appearance of drinking water.

Maximum Contaminant Level Goal (MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the U.S. Environmental Protection Agency (USEPA).

**Public Health Goal (PHG):** The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California Environmental Protection Agency.

Maximum Residual Disinfectant Level (MRDL): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

**Primary Drinking Water Standards (PDWS):** MCLs and MRDLs for the contaminants that affect health along with their monitoring and reporting requirements, and water treatment requirements.

Secondary Drinking Water Standards (SDWS): MCLs for the contaminants that affect taste, odor, or appearance of the drinking water. Contaminants with SDWSs do not affect the health at the MCL levels.

**Treatment Technique (TT):** A required process intended to reduce the level of a contaminant in drinking water.

**Regulatory Action Level (AL):** The concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow.

**Level 1 Assessment:** A Level 1 assessment is a study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system.

**Level 2 Assessment:** A Level 2 assessment is a very detailed study of the water system to identify potential problems and determine (if possible) why an E. coli MCL violation has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions.

ND: not detectable at testing limit

mg/L: milligrams per liter or parts per million (ppm)

ug/L: micrograms per liter or parts per billion (ppb)

NTU: Nephelometric Turbidity Units

umhos/cm: micro mhos per centimeter

The sources of drinking water: (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

#### Contaminants that may be present in source water include:

- Microbial contaminants, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- *Inorganic contaminants*, such as salts and metals, that can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- Pesticides and herbicides, that may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses.
- Organic chemical contaminants, including synthetic and volatile organic chemicals, that are by-products if industrial
  processes and petroleum production, and can also come from gas stations, urban stormwater runoff, agricultural
  application, and septic systems.
- Radioactive contaminants, that can be naturally-occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, the USEPA and the State Water Resource Control Board (State Water Board) prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. State Water Board regulations also establish limits for contaminants in bottled water that provide the same protection for public health.

Table(s) 1, 2, 3, 4, 5, 6, 7 and 8 list all of the drinking water contaminants that were detected during the most recent sampling for the constituent. The presence of these contaminants in the water does not necessarily indicate that the water poses a health risk. The State Water Board allows us to monitor for certain contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of the data, though representative of the water quality, are more than one year old.

Any violation of MCL, AL or MRDL is highlighted. Additional information regarding the violation is provided later in this report.

| Table 1 - SAMPLING RESULTS SHOWING THE DETECTION OF COLIFORM BACTERIA |                           |                               |                                              |      |                                       |  |  |  |  |
|-----------------------------------------------------------------------|---------------------------|-------------------------------|----------------------------------------------|------|---------------------------------------|--|--|--|--|
| Microbiological<br>Contaminants<br>(complete if bacteria detected)    | Highest No. of Detections | No. of Months<br>in Violation | MCL                                          | MCLG | Typical Sources of<br>Contaminant     |  |  |  |  |
| Total Coliform Bacteria                                               | 0<br>(2023)               | ND                            | no more than 1<br>positive monthly<br>sample | 1 () | Naturally present in the environment. |  |  |  |  |
| Fecal coliform and E. coli                                            | 0<br>(2023)               | ND                            |                                              |      | Human and animal fecal waste.         |  |  |  |  |

| Ta                                                                       | Table 2 - SAMPLING RESULTS SHOWING THE DETECTION OF LEAD AND COPPER |                   |                                      |                           |     |     |                                                                                                                               |  |  |
|--------------------------------------------------------------------------|---------------------------------------------------------------------|-------------------|--------------------------------------|---------------------------|-----|-----|-------------------------------------------------------------------------------------------------------------------------------|--|--|
| Lead and Copper (complete if lead or copper detected in last sample set) | Sample Date                                                         | No. of<br>Samples | 90th<br>percentile<br>level detected | No. Sites<br>Exceeding AL | AL  | PHG | Typical Sources of Contaminant                                                                                                |  |  |
| Lead (ug/L)                                                              | (2023)                                                              | 5                 | 0                                    | 0                         | 15  | 0.2 | Internal corrosion of household water plumbing systems; discharges from industrial manufacturers, erosion of natural deposits |  |  |
| Copper (mg/L)                                                            | (2023)                                                              | 5                 | 0.22                                 | 0                         | 1.3 |     | Internal corrosion of household plumbing<br>systems; erosion of natural deposits;<br>leaching from wood preservatives         |  |  |

| Table 3 - SAMPLING RESULTS FOR SODIUM AND HARDNESS                                   |        |   |     |      |               |                                                                |  |  |  |
|--------------------------------------------------------------------------------------|--------|---|-----|------|---------------|----------------------------------------------------------------|--|--|--|
| Chemical or Constituent (and reporting units)  Sample Date  Average Level Detections |        |   |     |      | PHG<br>(MCLG) | Typical Sources of Contaminant                                 |  |  |  |
| Sodium (mg/L)                                                                        | (2023) | 6 | n/a | none | none          | Salt present in the water and is generally naturally occurring |  |  |  |

| Hardness (mg/L) | (2023) | 57.1 | n/a | none | none | Sum of polyvalent cations present in the water, generally magnesium and calcium, and are usually naturally occurring |
|-----------------|--------|------|-----|------|------|----------------------------------------------------------------------------------------------------------------------|
|-----------------|--------|------|-----|------|------|----------------------------------------------------------------------------------------------------------------------|

| Table 4 - DETE                                      | CTION OF C  | ONTAMINA                     | NTS WITH A             | SEC  | ONDARY I      | DRINKING WATER STANDARD                                     |
|-----------------------------------------------------|-------------|------------------------------|------------------------|------|---------------|-------------------------------------------------------------|
| Chemical or<br>Constituent<br>(and reporting units) | Sample Date | Average<br>Level<br>Detected | Range of<br>Detections | MCL  | PHG<br>(MCLG) | Typical Sources of Contaminant                              |
| Chloride (mg/L)                                     | (2023)      | 1                            | n/a                    | 500  | n/a           | Runoff/leaching from natural deposits; seawater influence   |
| Color (Units)                                       | (2023)      | 5                            | n/a                    | 15   | n/a           | Naturally-occurring organic materials                       |
| Iron (ug/L)                                         | (2023)      | 40                           | n/a                    | 300  | n/a           | Leaching from natural deposits; Industrial wastes           |
| Manganese (ug/L)                                    | (2023)      | 20                           | n/a                    | 50   | n/a           | Leaching from natural deposits                              |
| Odor Threshold at 60 °C (TON)                       | (2023)      | 2                            | n/a                    | 3    | n/a           | Naturally-occurring organic materials.                      |
| Specific Conductance<br>(umhos/cm)                  | (2023)      | 66                           | n/a                    | 1600 | n/a           | Substances that form ions when in water; seawater influence |
| Sulfate (mg/L)                                      | (2023)      | 2.5                          | n/a                    | 500  | n/a           | Runoff/leaching from natural deposits; industrial wastes    |
| Total Dissolved Solids (mg/L)                       | (2023)      | 90                           | n/a                    | 1000 | n/a           | Runoff/leaching from natural deposits                       |
| Turbidity (NTU)                                     | (2023)      | 1.4                          | n/a                    | 5    | n/a           | Soil runoff                                                 |
| Zinc (mg/L)                                         | (2023)      | 0.04                         | n/a                    | 5    | n/a           | Runoff/leaching from natural deposits                       |

| Table 5 - DETECTION OF UNREGULATED CONTAMINANTS     |             |                           |                        |                       |                                                                                                                                                              |  |  |  |  |
|-----------------------------------------------------|-------------|---------------------------|------------------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Chemical or<br>Constituent<br>(and reporting units) | Sample Date | Average Level<br>Detected | Range of<br>Detections | Notification<br>Level | Health Effects                                                                                                                                               |  |  |  |  |
| Manganese (ug/L)                                    | (2023)      | 20                        | n/a                    | 500                   | Manganese exposures resulted in neurological effects. High levels of manganese in people have been shown to result in adverse effects to the nervous system. |  |  |  |  |
| Total Organic Carbon<br>(ug/L)                      | (2023)      | 2150                      | 1800 - 2500            | n/a                   | n/a                                                                                                                                                          |  |  |  |  |

| Table 6 - TREATED DETECTION OF UNREGULATED CONTAMINANTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        |      |     |     |     |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|------|-----|-----|-----|--|--|--|
| Chemical or Constituent (and reporting units)    Chemical or Constituent (and reporting units)   Chemical or Constituent (and reporting units)   Chemical or Constituent (and reporting units)   Chemical or Constituent (and reporting units)   Chemical or Constituent (and reporting units)   Chemical or Constituent (and reporting units)   Chemical or Constituent (and reporting units)   Chemical or Constituent (and reporting units)   Chemical or Constituent (and reporting units)   Chemical or Constituent (and reporting units)   Chemical or Constituent (and reporting units)   Chemical or Constituent (and reporting units)   Chemical or Constituent (and reporting units)   Chemical or Constituent (and reporting units)   Chemical or Constituent (and reporting units)   Chemical or Constituent (and reporting units)   Chemical or Constituent (and reporting units)   Chemical or Constituent (and reporting units)   Chemical or Constituent (and reporting units)   Chemical or Constituent (and reporting units)   Chemical or Constituent (and reporting units)   Chemical or Constituent (and reporting units)   Chemical or Constituent (and reporting units)   Chemical or Constituent (and reporting units)   Chemical or Constituent (and reporting units)   Chemical or Constituent (and reporting units)   Chemical or Constituent (and reporting units)   Chemical or Constituent (and reporting units)   Chemical or Constituent (and reporting units)   Chemical or Constituent (and reporting units)   Chemical or Constituent (and reporting units)   Chemical or Constituent (and reporting units)   Chemical or Constituent (and reporting units)   Chemical or Constituent (and reporting units)   Chemical or Constituent (and reporting units)   Chemical or Constituent (and reporting units)   Chemical or Constituent (and reporting units)   Chemical or Chemi |        |      |     |     |     |  |  |  |
| Total Organic Carbon<br>(ug/L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (2023) | 2400 | n/a | n/a | n/a |  |  |  |

| Table 7 - ADDITIONAL DETECTIONS               |               |                        |                        |                    |                                   |  |  |  |  |
|-----------------------------------------------|---------------|------------------------|------------------------|--------------------|-----------------------------------|--|--|--|--|
| Chemical or Constituent (and reporting units) | Sample Date   | Average Level Detected | Range of<br>Detections | Notification Level | Typical Sources of<br>Contaminant |  |  |  |  |
| Calcium (mg/L)                                | (2023)        | 13                     | n/a                    | n/a                | n/a                               |  |  |  |  |
| Magnesium (mg/L)                              | (2023)        | 6                      | n/a                    | n/a                | n/a                               |  |  |  |  |
| pH (units)                                    | (2023)        | 7.6                    | n/a                    | n/a                | n/a                               |  |  |  |  |
| Alkalinity (mg/L)                             | (2022 - 2023) | 38                     | 20 - 80                | n/a                | n/a                               |  |  |  |  |
| Aggressiveness Index                          | (2023)        | 10.6                   | n/a                    | n/a                | n/a                               |  |  |  |  |
| Langelier Index                               | (2023)        | -1.2                   | n/a                    | n/a                | n/a                               |  |  |  |  |

| Table 8 - TREATED ADDITIONAL DETECTIONS                                                                                                                   |  |  |  |  |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|
| Chemical or Constituent (and reporting units)  Average Level Detected  Range of Detections Notification Level Contaminant  Typical Sources of Contaminant |  |  |  |  |  |  |  |  |  |
| Alkalinity (mg/L) (2023) 70 n/a n/a n/a                                                                                                                   |  |  |  |  |  |  |  |  |  |

| Table                                               | Table 9 - DETECTION OF DISINFECTANT/DISINFECTANT BYPRODUCT RULE |                              |                        |               |               |           |                                           |  |  |
|-----------------------------------------------------|-----------------------------------------------------------------|------------------------------|------------------------|---------------|---------------|-----------|-------------------------------------------|--|--|
| Chemical or<br>Constituent<br>(and reporting units) | Sample Date                                                     | Average<br>Level<br>Detected | Range of<br>Detections | MCL<br>(MRDL) | PHG<br>(MCLG) | Violation | Typical Sources of<br>Contaminant         |  |  |
| Total Trihalomethanes<br>(TTHMs) (ug/L)             | (2023)                                                          | 44                           | 29 - 62.0              | 80            | n/a           |           | By-product of drinking water disinfection |  |  |
| Haloacetic Acids (five)<br>(ug/L)                   | (2023)                                                          | 57                           | 51 - 65                | 60            | n/a           |           | By-product of drinking water disinfection |  |  |

Any violation of MCL, AL or MRDL is highlighted. Additional information regarding the violation is provided later in this report.

### **Additional General Information on Drinking Water**

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts if some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the USEPA's Safe Drinking Water Hotline (1-800-426-4791).

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. USEPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* and other microbial contaminants are available from the Safe Drinking Water Hotline (1-800-426-4791).

Lead Specific Language for Community Water Systems: If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with the service lines and home plumbing. *CAL Fire-Jamestown* is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at <a href="http://www.epa.gov/lead">http://www.epa.gov/lead</a>.

### Summary Information for Violation of a MCL, MRDL, AL, TT, or Monitoring and Reporting Requirement

| VIOLATION C             | VIOLATION OF A MCL,MRDL,AL,TT, OR MONITORING AND REPORTING REQUIREMENT |          |                                              |                                                                                                                                           |  |  |  |  |  |  |
|-------------------------|------------------------------------------------------------------------|----------|----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Violation               | Explanation                                                            | Duration | Actions Taken To<br>Correct the<br>Violation | Health Effects Language                                                                                                                   |  |  |  |  |  |  |
| Haloacetic Acids (five) |                                                                        | *        |                                              | Some people who drink water containing halocetic acids in excess of the MCL over many years may have an increased risk of getting cancer. |  |  |  |  |  |  |

## **2023 Consumer Confidence Report**Drinking Water Assessment Information

## CAL Fire-Jamestown Analytical Results By FGL - 2023

|             |              | LF    | AD AND | COPPER RU | LE  |            |        |                    |           |
|-------------|--------------|-------|--------|-----------|-----|------------|--------|--------------------|-----------|
|             |              | Units | MCLG   | CA-MCL    | PHG | Sampled    | Result | 90th<br>Percentile | # Samples |
| Copper      |              | mg/L  |        | 1.3       | .3  |            |        | 0.215              | 5         |
| Auto Shop   | STK2352159-1 | mg/L  |        |           |     | 2023-09-06 | 0.09   |                    |           |
| CDC Laundry | STK2352159-5 | mg/L  |        |           |     | 2023-09-06 | 0.34   |                    |           |
| CDC Office  | STK2352159-4 | mg/L  |        |           |     | 2023-09-06 | 0.07   |                    |           |
| CDF Office  | STK2352159-2 | mg/L  |        |           |     | 2023-09-06 | ND     |                    |           |
| Main Shop   | STK2352159-3 | mg/L  |        |           |     | 2023-09-06 | 0.09   |                    |           |

|                         | SAMP         | LING RES | ULTS FO | R SODIUM | AND HA | RDNESS     | SAMPLING RESULTS FOR SODIUM AND HARDNESS |                   |             |  |  |  |  |  |  |  |  |
|-------------------------|--------------|----------|---------|----------|--------|------------|------------------------------------------|-------------------|-------------|--|--|--|--|--|--|--|--|
|                         |              | Units    | MCLG    | CA-MCL   | PHG    | Sampled    | Result                                   | Avg.<br>Result(a) | Range (b)   |  |  |  |  |  |  |  |  |
| Sodium                  |              | mg/L     |         | none     | none   |            |                                          | 6                 | 6-6         |  |  |  |  |  |  |  |  |
| TULLOCH RESERVOIR - RAW | STK2355118-1 | mg/L     |         |          |        | 2023-11-01 | 6                                        |                   |             |  |  |  |  |  |  |  |  |
| Hardness                |              | mg/L     |         | none     | none   |            |                                          | 57.1              | 57.1 - 57.1 |  |  |  |  |  |  |  |  |
| TULLOCH RESERVOIR - RAW | STK2355118-1 | mg/L     |         |          |        | 2023-11-01 | 57.1                                     |                   |             |  |  |  |  |  |  |  |  |

|                         | SECON        | DARY DRIN | KING WA | TER STAN | DARDS | (SDWS)     |        |                   |             |
|-------------------------|--------------|-----------|---------|----------|-------|------------|--------|-------------------|-------------|
|                         |              | Units     | MCLG    | CA-MCL   | PHG   | Sampled    | Result | Avg.<br>Result(a) | Range (b)   |
| Chloride                |              | mg/L      |         | 500      | n/a   |            |        | 1                 | 1 - 1       |
| TULLOCH RESERVOIR - RAW | STK2355118-1 | mg/L      |         |          |       | 2023-11-01 | 1      |                   |             |
| Color                   |              | Units     |         | 15       | n/a   |            |        | 5                 | 5-5         |
| TULLOCH RESERVOIR - RAW | STK2355118-1 | Units     |         |          |       | 2023-11-01 | 5      |                   |             |
| Iron                    |              | ug/L      |         | 300      | n/a   |            |        | 40                | 40 - 40     |
| TULLOCH RESERVOIR - RAW | STK2355118-1 | ug/L      |         |          |       | 2023-11-01 | 40     |                   |             |
| Manganese               |              | ug/L      |         | 50       | n/a   |            |        | 20                | 20 - 20     |
| TULLOCH RESERVOIR - RAW | STK2355118-1 | ug/L      |         |          |       | 2023-11-01 | 20     |                   |             |
| Odor Threshold at 60 °C |              | TON       |         | 3        | n/a   |            |        | 2                 | 2-2         |
| TULLOCH RESERVOIR - RAW | STK2355118-1 | TON       |         |          |       | 2023-11-01 | 2      |                   |             |
| Specific Conductance    |              | umhos/cm  |         | 1600     | n/a   |            |        | 66                | 66 - 66     |
| TULLOCH RESERVOIR - RAW | STK2355118-1 | umhos/cm  |         |          |       | 2023-11-01 | 66     |                   |             |
| Sulfate                 |              | mg/L      |         | 500      | n/a   |            |        | 2.5               | 2.5 - 2.5   |
| TULLOCH RESERVOIR - RAW | STK2355118-1 | mg/L      |         |          |       | 2023-11-01 | 2.5    |                   |             |
| Total Dissolved Solids  |              | mg/L      | -       | 1000     | n/a   |            |        | 90                | 90 - 90     |
| TULLOCH RESERVOIR - RAW | STK2355118-1 | mg/L      |         |          |       | 2023-11-01 | 90     |                   |             |
| Turbidity               |              | NTU       |         | 5        | n/a   |            |        | 1.4               | 1.4 - 1.4   |
| TULLOCH RESERVOIR - RAW | STK2355118-1 | NTU       |         |          |       | 2023-11-01 | 1.4    |                   |             |
| Zinc                    |              | mg/L      |         | 5        | n/a   |            |        | 0.04              | 0.04 - 0.04 |
| TULLOCH RESERVOIR - RAW | STK2355118-1 | mg/L      |         |          |       | 2023-11-01 | 0.04   |                   |             |

|                         |              | UNRE  | GULATED | CONTAMI | NANTS |            |        |                   |             |
|-------------------------|--------------|-------|---------|---------|-------|------------|--------|-------------------|-------------|
|                         |              | Units | MCLG    | CA-MCL  | PHG   | Sampled    | Result | Avg.<br>Result(a) | Range (b)   |
| Manganese               |              | ug/L  |         | NS      | n/a   |            |        | 20                | 20 - 20     |
| TULLOCH RESERVOIR - RAW | STK2355118-1 | ug/L  |         |         |       | 2023-11-01 | 20     |                   |             |
| Total Organic Carbon    |              | ug/L  |         | NS      | n/a   |            |        | 2150              | 1800 - 2500 |
| DORM 3-4                | STK2331374-1 | ug/L  |         |         |       | 2023-02-01 | 2500   |                   |             |
| Dorm 5 & 6              | STK2332660-1 | ug/L  |         |         |       | 2023-03-01 | 1800   |                   |             |

| T                                       | TREATED UNREGULATED CONTAMINANTS |      |        |     |            |        |                   |             |  |
|-----------------------------------------|----------------------------------|------|--------|-----|------------|--------|-------------------|-------------|--|
|                                         | Units                            | MCLG | CA-MCL | PHG | Sampled    | Result | Avg.<br>Result(a) | Range (b)   |  |
| Total Organic Carbon                    | ug/L                             |      | NS.    | n/a |            |        | 2400              | 2400 - 2400 |  |
| BASELINE WTP (WATER BOY) - STK2330164-2 | ug/L                             |      |        |     | 2023-01-04 | 2400   |                   |             |  |

| ADDITIONAL DETECTIONS   |              |       |                                         |        |     |            |        |                   |                                       |  |  |
|-------------------------|--------------|-------|-----------------------------------------|--------|-----|------------|--------|-------------------|---------------------------------------|--|--|
|                         |              | Units | MCLG                                    | CA-MCL | PHG | Sampled    | Result | Avg.<br>Result(a) | Range (b)                             |  |  |
| Calcium                 |              | mg/L  |                                         |        | n/a |            |        | 13                | 13 - 13                               |  |  |
| TULLOCH RESERVOIR - RAW | STK2355118-1 | mg/L  |                                         |        |     | 2023-11-01 | 13     | , , , , ,         |                                       |  |  |
| Magnesium               |              | mg/L  |                                         |        | n/a |            |        | 6                 | 6-6                                   |  |  |
| TULLOCH RESERVOIR - RAW | STK2355118-1 | mg/L  |                                         |        |     | 2023-11-01 | 6      |                   |                                       |  |  |
| pН                      |              | units |                                         |        | n/a |            |        | 7.6               | 7.6 - 7.6                             |  |  |
| TULLOCH RESERVOIR - RAW | STK2355118-1 | units |                                         |        |     | 2023-11-01 | 7.6    |                   |                                       |  |  |
| Alkalinity              |              | mg/L  |                                         |        | n/a |            |        | 38                | 20 - 80                               |  |  |
| Auto Shop               | STK2334143-1 | mg/L  |                                         |        |     | 2023-04-05 | 30     |                   |                                       |  |  |
| Barber Shop             | STK2337518-1 | mg/L  |                                         |        |     | 2023-06-07 | 30     |                   |                                       |  |  |
| CDC Office              | STK2255732-1 | mg/L  |                                         |        |     | 2022-11-02 | 20     |                   |                                       |  |  |
| CDD Office              | STK2355119-1 | mg/L  |                                         |        |     | 2023-11-01 | 30     |                   |                                       |  |  |
| CDF BOQ                 | STK2352156-1 | mg/L  |                                         |        |     | 2023-09-06 | 30     |                   |                                       |  |  |
| CDF Office              | STK2350351-1 | mg/L  |                                         |        |     | 2023-08-02 | 30     | ,,,,,             |                                       |  |  |
| Dorm 1&2                | STK2330164-1 | mg/L  |                                         |        |     | 2023-01-04 | 50     |                   |                                       |  |  |
| DORM 3-4                | STK2331374-1 | mg/L  |                                         |        |     | 2023-02-01 | 60     |                   |                                       |  |  |
| Dorm 5 & 6              | STK2332660-1 | mg/L  |                                         |        |     | 2023-03-01 | 30     |                   |                                       |  |  |
| Family Visiting         | STK2338756-1 | mg/L  |                                         |        | -   | 2023-07-05 | 30     |                   | <u> </u>                              |  |  |
| Maintenance Shop        | STK2335581-1 | mg/L  |                                         |        |     | 2023-05-03 | 30     |                   |                                       |  |  |
| Mess Hall               | STK2356719-1 | mg/L  | *************************************** |        |     | 2023-12-06 | 50     |                   |                                       |  |  |
| SEW Shop .              | STK2353790-1 | mg/L  |                                         |        |     | 2023-10-04 | 40     |                   |                                       |  |  |
| TULLOCH RESERVOIR - RAW | STK2356718-1 | mg/L  |                                         |        |     | 2023-12-06 | 60     |                   |                                       |  |  |
| TULLOCH RESERVOIR - RAW | STK2355121-1 | mg/L  |                                         |        |     | 2023-11-01 | 30     |                   |                                       |  |  |
| TULLOCH RESERVOIR - RAW | STK2355118-1 | mg/L  |                                         |        |     | 2023-11-01 | 30     |                   |                                       |  |  |
| TULLOCH RESERVOIR - RAW | STK2353793-1 | mg/L  |                                         |        |     | 2023-10-04 | 30     |                   | · · · · · ·                           |  |  |
| TULLOCH RESERVOIR - RAW | STK2352157-1 | mg/L  |                                         |        |     | 2023-09-06 | 30     |                   |                                       |  |  |
| TULLOCH RESERVOIR - RAW | STK2350352-1 | mg/L  |                                         |        |     | 2023-08-02 | 30     |                   |                                       |  |  |
| TULLOCH RESERVOIR - RAW | STK2338757-1 | mg/L  |                                         |        |     | 2023-07-05 | 30     |                   | · · · · · · · · · · · · · · · · · · · |  |  |
| TULLOCH RESERVOIR - RAW | STK2337517-1 | mg/L  |                                         |        |     | 2023-06-07 | 30     | <del></del>       |                                       |  |  |
| TULLOCH RESERVOIR - RAW | STK2335577-1 | mg/L  | -                                       |        |     | 2023-05-03 | 30     |                   |                                       |  |  |
| TULLOCH RESERVOIR - RAW | STK2334145-1 | mg/L  |                                         |        |     | 2023-04-05 | 30     |                   |                                       |  |  |
| TULLOCH RESERVOIR - RAW | STK2332661-1 | mg/L  |                                         |        |     | 2023-03-01 | 60     |                   |                                       |  |  |
| TULLOCH RESERVOIR - RAW | STK2331372-1 | mg/L  |                                         |        |     | 2023-02-01 | 50     |                   |                                       |  |  |
| TULLOCH RESERVOIR - RAW | STK2330162-1 | mg/L  |                                         |        |     | 2023-01-04 | 80     |                   | · · · · · · · · · · · · · · · · · · · |  |  |
| Aggressiveness Index    |              | Ū.    |                                         |        | n/a |            |        | 10.6              | 10.6 - 10.6                           |  |  |
|                         | STK2355118-1 |       |                                         |        |     | 2023-11-01 | 10.6   |                   |                                       |  |  |
| Langelier Index         |              |       |                                         |        | n/a |            |        | -1.2              | -1.21.2                               |  |  |
| <del></del>             | STK2355118-1 |       |                                         |        |     | 2023-11-01 | -1.2   |                   |                                       |  |  |

|                                   |              | TREATE | D ADDITI | ONAL DETI | ECTIONS | S          |        |                   |           |
|-----------------------------------|--------------|--------|----------|-----------|---------|------------|--------|-------------------|-----------|
|                                   |              | Units  | MCLG     | CA-MCL    | PHG     | Sampled    | Result | Avg.<br>Result(a) | Range (b) |
| Alkalinity                        |              | mg/L   |          |           | n/a     |            |        | 70                | 70 - 70   |
| BASELINE WTP (WATER BOY) -<br>TRE | STK2330164-2 | mg/L   |          |           |         | 2023-01-04 | 70     | _                 |           |

|                            | DETECTION OF DISINFECTANT/DISINFECTANT BYPRODUCT RULE |       |      |        |     |            |        |                   |           |  |  |  |
|----------------------------|-------------------------------------------------------|-------|------|--------|-----|------------|--------|-------------------|-----------|--|--|--|
|                            |                                                       | Units | MCLG | CA-MCL | PHG | Sampled    | Result | Avg.<br>Result(a) | Range (b) |  |  |  |
| Total Trihalomethanes (TTI | łMs)                                                  | ug/L  |      | 80     | n/a |            |        | 44                | 29 - 62.0 |  |  |  |
| ST2DBP - SP # 8            | STK2353792-1                                          | ug/L  |      |        |     | 2023-10-04 | 48     |                   |           |  |  |  |
| ST2DBP - SP # 8            | STK2338758-1                                          | ug/L  |      |        |     | 2023-07-05 | 62.0   |                   |           |  |  |  |
| ST2DBP - SP # 8            | STK2334144-1                                          | ug/L  |      |        |     | 2023-04-05 | 36.0   |                   |           |  |  |  |
| ST2DBP - SP # 8            | STK2330163-1                                          | ug/L  |      |        |     | 2023-01-04 | 29     |                   |           |  |  |  |
| Average ST2DBP - SP # 8    |                                                       | T     |      |        |     |            |        | 43.75             |           |  |  |  |
| Haloacetic Acids (five)    |                                                       | ug/L  |      | 60     | n/a |            |        | 57                | 51 - 65   |  |  |  |
| ST2DBP - SP # 8            | STK2353792-1                                          | ug/L  |      |        |     | 2023-10-04 | 51     |                   |           |  |  |  |
| ST2DBP - SP # 8            | STK2338758-1                                          | ug/L  |      |        |     | 2023-07-05 | 57     |                   |           |  |  |  |

| ST2DBP - SP # 8         | STK2334144-1 | ug/L |  | 2023-04-05 | 65 |    |  |
|-------------------------|--------------|------|--|------------|----|----|--|
| ST2DBP - SP # 8         | STK2330163-1 | ug/L |  | 2023-01-04 | 55 |    |  |
| Average ST2DBP - SP # 8 |              |      |  |            |    | 57 |  |

·

### CAL Fire-Jamestown CCR Login Linkage - 2023

| FGL Code        | Lab ID                                  | Date_Sampled | Method        | Description                       | Property                               |
|-----------------|-----------------------------------------|--------------|---------------|-----------------------------------|----------------------------------------|
| Auto Shop       | STK2334143-1                            | 2023-04-05   | Coliform      | Auto Shop                         | Baseline Camp - Routine                |
|                 | STK2334143-1                            | 2023-04-05   | Wet Chemistry | Auto Shop                         | Baseline Camp - Routine                |
| DST LCR         | STK2352159-1                            | 2023-09-06   | Metals, Total | Auto Shop                         | Baseline Camp - Lead & Copper          |
| Barber Shop     | STK2337518-1                            | 2023-06-07   | Coliform      | Barber Shop                       | Baseline Camp - Routine                |
|                 | STK2337518-1                            | 2023-06-07   | Wet Chemistry | Barber Shop                       | Baseline Camp - Routine                |
| Water Boy_002   | STK2330164-2                            | 2023-01-04   | Wet Chemistry | BASELINE WTP (WATER BOY) -<br>TRE | Baseline Camp - Routine                |
|                 | STK2330164-2                            | 2023-01-04   | тос           | BASELINE WTP (WATER BOY) -<br>TRE | Baseline Camp - Routine                |
| DST_LCR         | STK2352159-5                            | 2023-09-06   | Metals, Total | CDC Laundry                       | Baseline Camp - Lead & Copper          |
| Routine         | STK2255732-1                            | 2022-11-02   | Wet Chemistry | CDC Office                        | Baseline Camp - Routine                |
| DST_LCR         | STK2352159-4                            | 2023-09-06   | Metals, Total | CDC Office                        | Baseline Camp - Lead & Copper          |
| Routine         | STK2355119-1                            | 2023-11-01   | Coliform      | CDD Office                        | Baseline Camp - Routine                |
|                 | STK2355119-1                            | 2023-11-01   | Wet Chemistry | CDD Office                        | Baseline Camp - Routine                |
|                 | STK2352156-1                            | 2023-09-06   | Wet Chemistry | CDF BOQ                           | Baseline Camp - Routine                |
|                 | STK2352156-1                            | 2023-09-06   | Coliform      | CDF BOQ                           | Baseline Camp - Routine                |
| CDF Office      | STK2350351-1                            | 2023-08-02   | Coliform      | CDF Office                        | CAL FIRE BASELINE<br>CONSERVATION CAMP |
|                 | STK2350351-1                            | 2023-08-02   | Wet Chemistry | CDF Office                        | CAL FIRE BASELINE<br>CONSERVATION CAMP |
| DST_LCR         | STK2352159-2                            | 2023-09-06   | Metals, Total | CDF Office                        | Baseline Camp - Lead & Copper          |
| Dorm 1&2        | STK2330164-1                            | 2023-01-04   | Wet Chemistry | Dorm 1&2                          | Baseline Camp - Routine                |
|                 | STK2330164-1                            | 2023-01-04   | Coliform      | Dorm 1&2                          | Baseline Camp - Routine                |
| DORM 3-4        | STK2331374-1                            | 2023-02-01   | Wet Chemistry | DORM 3-4                          | Baseline Camp - Routine                |
|                 | STK2331374-1                            | 2023-02-01   | TOC           | DORM 3-4                          | Baseline Camp - Routine                |
|                 | STK2331374-1                            | 2023-02-01   | Coliform      | DORM 3-4                          | Baseline Camp - Routine                |
| Dorm 5 & 6      | STK2332660-1                            | 2023-03-01   | Coliform      | Dorm 5 & 6                        | Baseline Camp - Routine                |
|                 | STK2332660-1                            | 2023-03-01   | Wet Chemistry | Dorm 5 & 6                        | Baseline Camp - Routine                |
|                 | STK2332660-1                            | 2023-03-01   | TOC           | Dorm 5 & 6                        | Baseline Camp - Routine                |
| Routine         | STK2338756-1                            | 2023-07-05   | Coliform      | Family Visiting                   | Baseline Camp - Routine                |
| -               | STK2338756-1                            | 2023-07-05   | Wet Chemistry | Family Visiting                   | Baseline Camp - Routine                |
| DST_LCR         | STK2352159-3                            | 2023-09-06   | Metals, Total | Main Shop                         | Baseline Camp - Lead & Copper          |
| Maintenance Sho | STK2335581-1                            | 2023-05-03   | Coliform      | Maintenance Shop                  | Baseline Camp - Routine                |
|                 | STK2335581-1                            | 2023-05-03   | Wet Chemistry | Maintenance Shop                  | Baseline Camp - Routine                |
| Mess Hall       | STK2356719-1                            | 2023-12-06   | Coliform      | Mess Hall                         | Baseline Camp-Routine                  |
|                 | STK2356719-1                            | 2023-12-06   | Wet Chemistry | Mess Hall                         | Baseline Camp-Routine                  |
| SEW Shop        | STK2353790-1                            | 2023-10-04   | Coliform      | SEW Shop                          | CAL FIRE BASELINE<br>CONSERVATION CAMP |
|                 | STK2353790-1                            | 2023-10-04   | Wet Chemistry | SEW Shop                          | CAL FIRE BASELINE<br>CONSERVATION CAMP |
| ST2DBP_900      | STK2330163-1                            | 2023-01-04   | EPA 551.1     | ST2DBP - SP # 8                   | Baseline Camp - DBP Monitoring         |
|                 | STK2330163-1                            | 2023-01-04   | EPA 552.2     | ST2DBP - SP # 8                   | Baseline Camp - DBP Monitoring         |
|                 | STK2334144-1                            | 2023-04-05   | EPA 551.1     | ST2DBP - SP # 8                   | Baseline Camp - DBP Monitoring         |
|                 | STK2334144-1                            | 2023-04-05   | EPA 552.2     | ST2DBP - SP # 8                   | Baseline Camp - DBP Monitoring         |
|                 | STK2338758-1                            | 2023-07-05   | EPA 551.1     | ST2DBP - SP # 8                   | Baseline Camp - DBP Monitoring         |
|                 | STK2338758-1                            | 2023-07-05   | EPA 552.2     | ST2DBP - SP # 8                   | Baseline Camp - DBP Monitoring         |
|                 | STK2353792-1                            | 2023-10-04   | EPA 551.1     | ST2DBP - SP # 8                   | Baseline Camp - DBP Monitoring         |
|                 | STK2353792-1                            | 2023-10-04   | EPA 552.2     | ST2DBP - SP # 8                   | Baseline Camp - DBP Monitoring         |
| Tulloch Res Raw | STK2330162-1                            | 2023-01-04   | Wet Chemistry | TULLOCH RESERVOIR - RAW           | Baseline Camp - Raw                    |
|                 | STK2331372-1                            | 2023-02-01   | Wet Chemistry | TULLOCH RESERVOIR - RAW           | Baseline Camp - Raw                    |
|                 | STK2332661-1                            | 2023-03-01   | Wet Chemistry | TULLOCH RESERVOIR - RAW           | Baseline Camp - Raw                    |
|                 | STK2334145-1                            | 2023-04-05   | Wet Chemistry | TULLOCH RESERVOIR - RAW           | Baseline Camp - Raw                    |
|                 | STK2335577-1                            | 2023-05-03   | Wet Chemistry | TULLOCH RESERVOIR - RAW           | Baseline Camp - Raw                    |
|                 | STK2337517-1                            | 2023-06-07   | Wet Chemistry | TULLOCH RESERVOIR - RAW           | Baseline Camp - Raw                    |
|                 | STK2338757-1                            | 2023-07-05   | Wet Chemistry | TULLOCH RESERVOIR - RAW           | Baseline Camp - Raw                    |
|                 | • · · · · · · · · · · · · · · · · · · · | <del></del>  |               | TULLOCH RESERVOIR - RAW           |                                        |
|                 | STK2350352-1                            | 2023-08-02   | Wet Chemistry | II OLLOCH KESEKVOIK - KAW         | Baseline Camp - Raw                    |

| STK2353793-1 | 2023-10-04 | Wet Chemistry   | TULLOCH RESERVOIR - RAW | Baseline Camp - Raw                       |
|--------------|------------|-----------------|-------------------------|-------------------------------------------|
| STK2355118-1 | 2023-11-01 | General Mineral | TULLOCH RESERVOIR - RAW | Baseline Camp Water Quality<br>Monitoring |
| STK2355121-1 | 2023-11-01 | Wet Chemistry   | TULLOCH RESERVOIR - RAW | Baseline Camp - Raw                       |
| STK2355118-1 | 2023-11-01 | Wet Chemistry   | TULLOCH RESERVOIR - RAW | Baseline Camp Water Quality<br>Monitoring |
| STK2356718-1 | 2023-12-06 | Wet Chemistry   | TULLOCH RESERVOIR - RAW | Baseline Camp - Raw                       |