ANNUAL WATER OUALITY REPORTING YEAR 2020

Presented By Tuolumne Utilities District

Este informe contiene información muy importante sobre su agua potable. Tradúccalo o hable con alguien que lo entienda bien.

Quality First

Once again, we are pleased to present our annual water quality report covering all testing performed between January 1 and December 31, 2020. As in years past, we are committed to delivering the best-quality drinking water possible. To that end, we remain vigilant in meeting the challenges of new regulations, source water protection, water conservation, and community outreach and education while continuing to serve the needs of all our water users. Thank you for allowing us the opportunity to serve you and your family.

We encourage you to share your thoughts with us on the information contained in this report. After all, well-informed customers are our best allies.

Table Talk

Get the most out of the Testing Results data table with this simple suggestion. In less than a minute, you will know all there is to know about your water:

For each substance listed, compare the value in the Amount Detected column against the value in the MCL (or AL, SMCL) column. If the Amount Detected value is smaller, your water meets the health and safety standards set for the substance.

Other Table Information Worth Noting

Verify that there were no violations of the state and/or federal standards in the Violation column. If there was a violation, you will see a detailed description of the event in this report.

If there is an ND or a less-than symbol (<), that means that the substance was not detected (i.e., below the detectable limits of the testing equipment).

The Range column displays the lowest and highest sample readings. If there is an NA showing, that means only a single

sample was taken to test for the substance (assuming there is a reported value in the Amount Detected column).

If there is sufficient evidence to indicate from where the substance originates, it will be listed under Typical Source.

Community Participation

The public is invited and encouraged to attend the District's regularly scheduled Board meetings, which are being held via electronic audio conferencing due to COVID-19 restrictions. All members of the public may observe and participate in the Board meetings by following login instructions posted on the Board meeting agendas. The public may also listen and view the Board meetings by logging onto the District's Web site: https://tudwater.com/board-of-directors/meeting-agenda-minutes-video/.

Tap vs. Bottled

Thanks in part to aggressive marketing, the bottled water industry has successfully convinced us all that water purchased in bottles is a healthier alternative to tap water. However, according to a four-year study conducted by the Natural Resources Defense Council, bottled water is not necessarily cleaner or safer than most tap water. In fact, about 25 percent of bottled water is actually just bottled tap water (40 percent, according to government estimates).

The Food and Drug Administration is responsible for regulating bottled water, but these rules allow for less rigorous testing and purity standards than those required by the U.S. EPA for community tap

> water. For instance, the high mineral content of some bottled waters makes them unsuitable for babies and young children. Furthermore, the FDA completely exempts bottled water that's packaged and sold within the same state, which accounts for about 70 percent of all bottled water sold in the United States.

People spend 10,000 times more per gallon for bottled water than they typically do for tap water. If you get your recommended eight glasses a day from bottled water, you could spend up to \$1,400 annually. The same amount of tap water would cost about 49 cents. Even if you installed a filter device on your tap, your annual expenditure would be far less than what you'd pay for bottled water.

For a detailed discussion on the NRDC study results, check out their Web site at https://goo.gl/Jxb6xG.

QUESTIONS? For more information about this report, or any questions relating to your drinking water, please call Angel Tarango, Regulatory Compliance Specialist, at (209) 532-5536, extension 537.

"

Where Does My Water Come From?

The most important factor in water quality is the water source. There are two sources of water supply from which Tuolumne Utilities District (District, or TUD) receives its water: surface water that originates from rainfall and runoff from snowpack in the Sierra Nevada Mountains and from groundwater wells throughout our water systems. The District comprises 11 water service areas, which include 11 surface water treatment plants and 12 active wells. These produce and supply high-quality drinking water to these service areas.

Our surface water is delivered to TUD treatment plants starting at the South Fork of the Stanislaus River at Lyons Reservoir via the Tuolumne Main Canal by agreement with Pacific Gas and Electric Company (PG&E). PG&E owns and operates Pinecrest Lake, Lyons Reservoir, and the Tuolumne Main Canal. Approximately 96% of TUD's annual water needs are supplied with surface water from Lyons Reservoir and Pinecrest Lake; the other 4% is supplied with groundwater wells either as a primary source or a backup source.

To learn more about our watershed on the Internet, go to the U.S. EPA's How's My Waterway? at http://bit. ly/3vg4si5.

What Are PPCPs?

When cleaning out your medicine cabinet, what do you do with your expired pills? Many people flush them down the toilet or toss them into the trash. Although this seems convenient, these actions could threaten our water supply.

Recent studies are generating a growing concern over pharmaceuticals and personal care products (PPCPs) entering water supplies. PPCPs include human and veterinary drugs (prescription or over-the-counter) and consumer products, such as cosmetics, fragrances, lotions, sunscreens, and household cleaning products. From 2006 to 2010, the number of U.S. prescriptions increased 12 percent to a record 3.7 billion, while nonprescription drug purchases held steady around 3.3 billion. Many of these drugs and personal care products do not biodegrade and may persist in the environment for years.

The best and most cost-effective way to ensure safe water at the tap is to keep our source waters clean. Never flush unused medications down the toilet or sink. Instead, check to see if the pharmacy where you made your purchase accepts medications for disposal, or contact your local health department for information on proper disposal methods and drop-off locations. You can also go on the Web (https://goo.gl/aZPgeB) to find more information about disposal locations in your area.

How Is My Water Treated and Purified?

The typical water treatment process follows several steps. These steps are required to ensure that your water is safe, wholesome, and free of contaminants.

Intake from source water: The water entering the treatment process is screened to remove large debris.

Coagulation: Small particles are brought together to form a large floc, which allows the majority of sediment to settle out of the water.

Filtration: The remaining finer particles are filtered from the water using specially designed filter media.

Disinfection: A disinfectant is applied to the water to kill any bacteria that may be present.

Storage: The finished water product is stored in sealed tanks, from which it is then delivered to the consumer.

Quality Monitoring: Water quality is monitored at the treatment process and throughout the distribution system to ensure that the water is in compliance with federal and state standards at all times.

Important Health Information

Infants and young children are typically more vulnerable to lead in drinking water than the general population. It is possible that lead levels at your home may be higher than at other homes in the community as a result of materials used in your home's plumbing. If you are concerned about elevated lead levels in your home's water, you may wish to have your water tested and/or flush your tap for 30 seconds to 2 minutes before using tap water. Additional information is available from the U.S. EPA's Safe Drinking Water Hotline at (800) 426-4791.

Some people may be more vulnerable to contaminants in drinking water than the general population. Immunocompromised persons such as those with cancer undergoing chemotherapy, those who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants may be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. The U.S. EPA/

CDC (Centers for Disease Control and Prevention) guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* and other microbial contaminants are available from the Safe Drinking Water Hotline at (800) 426-4791 or http://water.epa. gov/drink/hotline.

To the Last Drop

The National Oceanic and Atmospheric Administration (NOAA) defines drought as a deficiency in precipitation over an extended period of time, usually a season or more, resulting in a water shortage causing adverse impacts on vegetation, animals, and/or people. Drought strikes in virtually all climate zones, from very wet to very dry.

There are primarily three types of drought: Meteorological Drought refers to the lack of precipitation, or the degree of dryness and the duration of the dry period; Agricultural Drought refers to the agricultural impact of drought, focusing on precipitation shortages, soil water deficits, and reduced groundwater or reservoir levels needed for irrigation; and Hydrological Drought pertains to drought that usually occurs following periods of extended precipitation shortfalls that can impact water supply (e.g., stream flow, reservoir and lake levels, groundwater).

Drought is a temporary aberration from normal climatic conditions; thus it can vary significantly from one region to another. Although drought occurs normally, human factors, such as water demand, can exacerbate the duration and impact that drought has on a region. By following simple water conservation measures, you can help significantly reduce the lasting effects of extended drought.

Naturally Occurring Bacteria

The simple fact is, bacteria and other microorganisms inhabit our world. They can be found all around us: in our food; on our skin; in our bodies; and in the air, soil, and water. Some are harmful to us and some are not. Coliform bacteria are common in the environment and are generally not harmful themselves. The presence of this bacterial form in drinking water is a concern because it indicates that the water may be contaminated with other organisms that can cause disease. Throughout the year, we tested many water samples for coliform bacteria. In that time, none of the samples came back positive for the bacteria.

Federal regulations require that public water that tests positive for coliform bacteria must be further analyzed for fecal coliform bacteria. Fecal coliform are present only in human and animal waste. Because these bacteria can cause illness, it is unacceptable for fecal coliform to be present in water at any concentration. Our tests indicate no fecal coliform is present in our water.

Substances That Could Be in Water

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

In order to ensure that tap water is safe to drink, the U.S. Environmental Protection Agency (U.S. EPA) and the State Water Resources Control Board (State Board) prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. The U.S. Food and Drug Administration regulations and California law also establish limits for contaminants in bottled water that provide the same protection for public health. Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk.

Contaminants that may be present in source water include:

Microbial Contaminants, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife;

Inorganic Contaminants, such as salts and metals, that can be naturally occurring or can result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming;

Pesticides and Herbicides, that may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses;

Organic Chemical Contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and which can also come from gas stations, urban stormwater runoff, agricultural applications, and septic systems;

Radioactive Contaminants, that can be naturally occurring or can be the result of oil and gas production and mining activities.

More information about contaminants and potential health effects can be obtained by calling the U.S. EPA's Safe Drinking Water Hotline at (800) 426-4791.

Our Commitment

TUD continues providing essential services during the COVID-19 pandemic. All field operations are continuing to provide full service under enhanced safety conditions, with employees wearing face coverings, adhering to good hygiene, wearing personal protective equipment, and following social distancing guidelines as the District remains committed to the health and safety of its employees, customers, and the community.

Lead in Home Plumbing

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. We are responsible for providing high-quality drinking water, but we cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. (If you do so, you may wish to collect the flushed water and reuse it for another

beneficial purpose, such as watering plants.) If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline at (800) 426-4791 or at www.epa.gov/safewater/lead.

Tip Top Tap

The most common signs that your faucet or sink is affecting the quality of your drinking water are discolored water, sink or faucet stains, a buildup of particles, unusual odors or tastes, and a reduced flow of water. The solutions to these problems may be in your hands.

Kitchen Sink and Drain

Hand washing, soap scum buildup, and the handling of raw meats and vegetables can contaminate your sink. Clogged drains can lead to unclean sinks and backedup water in which bacteria (e.g., pink and black slime growth) can grow and contaminate the sink area and faucet, causing a rotten egg odor. Disinfect and clean the sink and drain area regularly. Also, flush regularly with hot water.

Faucets, Screens, and Aerators

Chemicals and bacteria can splash and accumulate on the faucet screen and aerator, which are located on the tip of faucets, and can collect particles like sediment and minerals, resulting in a decreased flow from the faucet. Clean and disinfect the aerators or screens on a regular basis.

Check with your plumber if you find particles in the faucet screen as they could be pieces of plastic from the hot w--ater heater dip tube. Faucet gaskets can break down and cause black, oily slime. If you find this slime, replace the faucet gasket with a higher-quality product. White scaling or hard deposits on faucets and shower heads may be caused by hard water or water with high levels of calcium carbonate. Clean these fixtures with vinegar or use water softening to reduce the calcium carbonate levels for the hot water system.

Water Filtration and Treatment Devices

A smell of rotten eggs can be a sign of bacteria on the filters or in the treatment system. The system can also become clogged over time, so regular filter replacement is important. (Remember to replace your refrigerator filter!)

Benefits of Chlorination

Disinfection, a chemical process used to control disease-causing microorganisms by killing or inactivating them, is unquestionably the most important step in drinking water treatment. By far the most common method of disinfection in North America is chlorination.

Before communities began routinely treating drinking water with chlorine (starting with Chicago and Jersey City in 1908), cholera, typhoid fever, dysentery, and hepatitis A killed thousands of U.S. residents annually. Drinking water chlorination and filtration have helped to virtually eliminate these diseases in the U.S. Significant strides in public health are directly linked to the adoption of drinking water chlorination. In fact, the filtration of drinking water plus the use of chlorine is probably the most significant public health advancement in human history.

How chlorination works:

Potent Germicide Reduction in the level of many disease-causing microorganisms in drinking water to almost immeasurable levels.

Taste and Odor Reduction of many disagreeable tastes and odors like foul-smelling algae secretions, sulfides, and odors from decaying vegetation.

Biological Growth Elimination of slime bacteria, molds, and algae that commonly grow in water supply reservoirs, on the walls of water mains, and in storage tanks.

Chemical Removal of hydrogen sulfide (which has a rotten egg odor), ammonia, and other nitrogenous compounds that have unpleasant tastes and hinder disinfection. It also helps to remove iron and manganese from raw water.

Failure in Flint

The national news coverage of water conditions in Flint, Michigan, has created a great deal of confusion and consternation. The water there has been described as being corrosive; images of corroded batteries and warning labels on bottles of acids come to mind. But is corrosive water bad?

Corrosive water can be defined as a condition of water quality that will dissolve metals (iron, lead, copper, etc.) from metallic plumbing at an excessive rate. There are a few contributing factors but, generally speaking, corrosive water has a pH of less than 7; the lower the pH, the more acidic, or corrosive, the water becomes. (By this definition, many natural waterways throughout the country can be described as corrosive.) While all plumbing will be somewhat affected over time by the water it carries, corrosive water will damage plumbing much more rapidly than water with low corrosivity.

By itself, corrosive water is not a health concern; your morning glass of orange juice is considerably more corrosive than the typical lake or river. What is of concern is that exposure in drinking water to elevated levels of the dissolved metals increases adverse health risks. And there lies the problem.

Public water systems are required to maintain their water at optimal conditions to prevent it from reaching corrosive levels. Rest assured that we routinely monitor our water to make sure that what happened in Flint never happens here.

Count on Us

Delivering high-quality drinking water to our customers involves far more than just pushing water through pipes. Water treatment is a complex, time-consuming process. Because tap water is highly regulated by state and federal laws, water treatment plant and system operators must be licensed and are required to commit to long-term, on-the-job training before becoming fully qualified. Our licensed water professionals have a basic understanding of a wide range of subjects, including mathematics, biology, chemistry, and physics. Some of the tasks they complete on a regular basis include:

- Operating and maintaining equipment to purify and clarify water;
- Monitoring and inspecting machinery, meters, gauges, and operating conditions;
- Conducting tests and inspections on water and evaluating the results;
- Maintaining optimal water chemistry;
- Applying data to formulas that determine treatment requirements, flow levels, and concentration levels;
- Documenting and reporting test results and system operations to regulatory agencies; and
- Serving our community through customer support, education, and outreach.

So, the next time you turn on your faucet, think of the skilled professionals who stand behind each drop.

Safeguard Your Drinking Water

Protection of drinking water is everyone's responsibility. You can help protect your community's drinking water source in several ways:

- Eliminate excess use of lawn and garden fertilizers and pesticides they contain hazardous chemicals that can reach your drinking water source.
- Pick up after your pets.
- If you have your own septic system, properly maintain your system to reduce leaching to water sources or consider connecting to a public water system.
- Dispose of chemicals properly; take used motor oil to a recycling center.
- Volunteer in your community. Find a watershed or wellhead protection organization in your community and volunteer to help. If there are no active groups, consider starting one. Use U.S. EPA's Adopt Your Watershed to locate groups in your community.
- Organize a storm drain stenciling project with others in your neighborhood. Stencil a message next to the street drain reminding people "Dump No Waste – Drains to River" or "Protect Your Water". Produce and distribute a flyer for households to remind residents that storm drains dump directly into your local water body.

What's Your Water Footprint?

You may have some understanding about your carbon footprint, but how much do you know about your water footprint? The water footprint of an individual, community, or business is defined as the total volume of freshwater that is used to produce the goods and services that are consumed by the individual or community or produced

by the business. For example, 11 gallons of water are needed to irrigate and wash the fruit in one half-gallon container of orange juice. Thirty-seven gallons of water are used to grow, produce, package, and ship the beans in that morning cup of coffee. Two hundred and sixty-four gallons of water are required to produce one quart of milk, and 4,200 gallons of water are required to produce two pounds of beef.

According to the U.S. EPA, the average American uses over 180 gallons of water daily. In fact, in the developed world, one flush of a toilet uses as much water as the average person in the developing world allocates for an entire day's cooking, washing, cleaning, and drinking. The annual American per-capita water footprint is about 8,000 cubic feet; twice the global per capita average. With water use increasing six-fold in the past century, our demands for freshwater are rapidly outstripping what the planet can replenish.

To check out your own water footprint, go to www. watercalculator.org.

Protecting Your Water

Bacteria are a natural and important part of our world. There are around 40 trillion bacteria living in each of us; without them, we would not be able to live healthy lives. Coliform bacteria are common in the environment and are generally not harmful themselves. The presence of this bacterial form in drinking water is a concern, however, because it indicates that the water may be contaminated with other organisms that can cause disease.

In 2016, the U.S. EPA passed a regulation called the Revised Total Coliform Rule, which requires additional steps that water systems must take in order to ensure the integrity of the drinking water distribution system by monitoring for the presence of bacteria like total coliform and E. coli. The rule requires more stringent standards than the previous regulation, and it requires water systems that may be vulnerable to contamination to have in place procedures that will minimize the incidence of contamination. Water systems that exceed a specified frequency of total coliform occurrences are required to conduct an assessment of their system and correct any problems quickly. The U.S. EPA anticipates greater public health protection under this regulation due to its more preventive approach to identifying and fixing problems that may affect public health.

Though we have been fortunate to have the highestquality drinking water, our goal is to eliminate all potential pathways of contamination into our distribution system, and this requirement helps us to accomplish that goal.

Water Main Flushing

Distribution mains (pipes) convey water to homes, businesses, and hydrants in your neighborhood. The water entering distribution mains is of very high quality; however, water quality can deteriorate in areas of the distribution mains over time. Water main flushing is the process of cleaning the interior of water distribution mains by sending a rapid flow of water through the mains.

Flushing maintains water quality in several ways. For example, flushing removes sediments like iron and manganese. Although iron and manganese do not themselves pose health concerns, they can affect the taste, clarity, and color of the water. Additionally, sediments can shield microorganisms from the disinfecting power of chlorine, contributing to the growth of microorganisms within distribution mains. Flushing helps remove stale water and ensures the presence of fresh water with sufficient dissolved oxygen and disinfectant levels, and an acceptable taste and smell.

During flushing operations in your neighborhood, some short-term deterioration of water quality, though uncommon, is possible. You should avoid tap water for household uses at such times. If you do use the tap, allow your cold water to run for a few minutes at full velocity before use, and avoid using hot water, to prevent sediment accumulation in your hot water tank.

Please contact us if you have any questions or if you would like more information on our water main flushing schedule.

Water Conservation Tips

You can play a role in conserving water and save yourself money in the process by becoming conscious of the amount of water your household is using and by looking for ways to use less whenever you can. It is not hard to conserve water. Here are a few tips:

- Automatic dishwashers use 15 gallons for every cycle, regardless of how many dishes are loaded. So get a run for your money and load it to capacity.
- Turn off the tap when brushing your teeth.
- Check every faucet in your home for leaks. Just a slow drip can waste 15 to 20 gallons a day. Fix it and you can save almost 6,000 gallons per year.
- Check your toilets for leaks by putting a few drops of food coloring in the tank. Watch for a few minutes to see if the color shows up in the bowl. It is not uncommon to lose up to 100 gallons a day from an invisible toilet leak. Fix it and you save more than 30,000 gallons a year.
- Use your water meter to detect hidden leaks. Simply turn off all taps and water-using appliances. Then check the meter after 15 minutes. If it moved, you have a leak.

What Causes the Pink Stain on Bathroom Fixtures?

The reddish-pink color frequently noted in bathrooms on shower stalls, tubs, tile, toilets, sinks, toothbrush holders, and on pets' water bowls is caused by the growth of the bacterium Serratia marcesens. Serratia is commonly isolated from soil, water, plants, insects, and vertebrates (including man). The bacteria can be introduced into the house through any of the above-mentioned sources. The bathroom provides a perfect environment (moist and warm) for bacteria to thrive.

The best solution to this problem is to continually clean and dry the involved surfaces to keep them free from bacteria. Chlorine-based compounds work best, but keep in mind that abrasive cleaners may scratch fixtures, making them more susceptible to bacterial growth. Chlorine bleach can be used periodically to disinfect the toilet and help to eliminate the occurrence of the pink residue. Keeping bathtubs and sinks wiped down using a solution that contains chlorine will also help to minimize its occurrence.

Serratia will not survive in chlorinated drinking water.

Source Water Assessment

An assessment of the drinking water sources for all TUD water systems was completed in 2013. The vulnerability Summary for each system is included. A copy of the complete assessment of each system may be viewed at the Department of Health Services Water Field Operations Branch, Merced District Office, 265 W Bullard Ave., Suite 101, Fresno, California 93704.

VULNERABILITY	APPLE VALLEY	PEACEFUL PINES	PHOENIX LAKE	SONORA	PONDEROSA	TUOLUMNE	UPPER BASIN	COLUMBIA	CEDAR RIDGE	SCENIC VIEW	WARDS FERRY
Sewer Collection	Х			Х		Х	Х	Х			
Septic System Low Density				Х		Х		Х			Х
Septic System High Density		Х	Х	Х	Х		Х		Х	Х	
Grazing	Х						Х				Х
Other Animal Operations	Х						Х				
Lumber Processing/ Manufacturing	Х			Х							
Wood/Pulp/Mills								Х			
Recreational/Surface water source				Х	Х	Х	Х	Х	Х	Х	
Historic waste dumps/ landfills				Х			Х				
Auto/Machine Shop				Х							
Car Washing				Х							
Dry Cleaners				Х							
Highways/Transportation Corridor				Х							

Test Results

REGULATED SUBSTANCES

Our water is monitored for many different kinds of substances on a very strict sampling schedule. Also, the water we deliver must meet specific health standards. Here, we show only those substances that were detected in our water. (A complete list of all our analytical results is available upon request.) Remember that detecting a substance does not mean the water is unsafe to drink; our goal is to keep all detects below their respective maximum allowed levels.

The state recommends monitoring for certain substances less often than once per year because the concentrations of these substances do not change frequently. In these cases, the most recent sample data are included, along with the year in which the sample was taken.

We participated in the 4th stage of the U.S. EPA's Unregulated Contaminant Monitoring Rule (UCMR4) program by performing additional tests on our drinking water. UCMR4 sampling benefits the environment and public health by providing the EPA with data on the occurrence of contaminants suspected to be in drinking water, in order to determine if the EPA needs to introduce new regulatory standards to improve drinking water quality. Unregulated contaminant monitoring data are available to the public, so please feel free to contact us if you are interested in obtaining that information. If you would like more information on the U.S. EPA's Unregulated Contaminant Monitoring Rule, please call the Safe Drinking Water Hotline at (800) 426-4791.

REGULATED SUBSTAIL													
				Apple	Valley	Cedar	Ridge	Columbia	/Big Hill	Peacef	ul Pines		
SUBSTANCE (UNIT OF MEASURE)	YEAR SAMPLED	MCL [MRDL]	PHG (MCLG) [MRDLG]	AMOUNT DETECTED	RANGE LOW-HIGH	AMOUNT DETECTED	RANGE LOW-HIGH	AMOUNT DETECTED	RANGE LOW-HIGH	AMOUNT DETECTED	RANGE LOW-HIGH	VIOLATION	TYPICAL SOURCE
Arsenic (ppb)	2018	10	0.004	ND	NA	ND ¹	NA ¹	ND^1	NA ¹	ND	NA	No	Erosion of natural deposits; runoff from orchards; glass and electronics production wastes
Chlorine (ppm)	2020	[4.0 (as Cl2)]	[4 (as Cl2)]	0.97	0.8–1.22	1.52	1.4–1.7	1.64	1.55–1.7	1.08	0.79–1.66	No	Drinking water disinfectant added for treatment
Control of DBP precursors [TOC] (Units)	2020	ТТ	NA	NA	NA	1.2	0.8–1.8	NA	NA	NA	NA	No	Various natural and man-made sources
Fluoride (ppm)	2018	2.0	1	ND	NA	0.051	ND-0.1 ¹	ND ¹	NA ¹	0.22	NA	No	Erosion of natural deposits; water additive that promotes strong teeth; discharge from fertilizer and aluminum factories
Gross Alpha Particle Activity (pCi/L)	2020	15	(0)	2.45	NA	ND^2	NA ²	ND ³	NA ³	ND ³	NA ³	No	Erosion of natural deposits
Haloacetic Acids (ppb)	2020	60	NA	2.0	NA	36.3	20–48	44.6	35–52	2.7	NA	No	By-product of drinking water disinfection
Nitrate [as nitrogen] (ppm)	2020	10	10	0.39	ND-0.67	ND	NA	ND	NA	ND	NA	No	Runoff and leaching from fertilizer use; leaching from septic tanks and sewage; erosion of natural deposits
TTHMs [Total Trihalomethanes] (ppb)	2020	80	NA	0.5	NA	38	25–57	44.9	31–63	4.6	NA	No	By-product of drinking water disinfection

Tap water samples were collected for lead and copper analyses from sample sites throughout the community

				Apple	Valley	Cedar	Ridge	Columbia	a/Big Hill	Peacef	ul Pines		
SUBSTANCE (UNIT OF MEASURE)	YEAR SAMPLED	AL	PHG (MCLG)	AMOUNT DETECTED (90TH %ILE)	SITES ABOVE AL/ TOTAL SITES	VIOLATION	TYPICAL SOURCE						
Copper (ppm)	2020	1.3	0.3	0.225	0/5	0.150	0/30	0.120	0/20	0.033	0/5	No	Internal corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives
Lead (ppb)	2020	15	0.2	ND	0/5	7.5	3/30	ND	0/20	ND	0/5	No	Internal corrosion of household water plumbing systems; discharges from industrial manufacturers; erosion of natural deposits

REGULATED SUBSTANCE	S												
				Phoen	nix Lake	Ponderosa		Scenic View		Sor	nora		
SUBSTANCE (UNIT OF MEASURE)	YEAR SAMPLED	MCL [MRDL]	PHG (MCLG) [MRDLG]	AMOUNT RANGE DETECTED LOW-HIGH		AMOUNT DETECTED	- IVIIIGE		RANGE LOW-HIGH	AMOUNT DETECTED	RANGE LOW-HIGH	VIOLATION	TYPICAL SOURCE
Arsenic (ppb)	2018	10	0.004	ND	NA	ND^1	NA ¹	ND^1	NA ¹	ND^1	NA ¹	No	Erosion of natural deposits; runoff from orchards; glass and electronics production wastes
Chlorine (ppm)	2020	[4.0 (as Cl2)]	[4 (as Cl2)]	1.04	0.79–1.31	1.7	1.6–1.8	1.7	1.7–1.7	1.89	1.75–2.2	No	Drinking water disinfectant added for treatment
Control of DBP precursors [TOC] (Units)	2020	ΤT	NA	NA	NA	1.3	0.9–1.8	1.4	0.9–2.0	1.3	1.0–1.7	No	Various natural and man-made sources
Fluoride (ppm)	2018	2.0	1	0.14	NA	ND1	NA ¹	ND	NA ¹	ND ¹	NA ¹	No	Erosion of natural deposits; water additive that promotes strong teeth; discharge from fertilizer and aluminum factories
Gross Alpha Particle Activity (pCi/L)	2020	15	(0)	3.58 ³	NA ³	ND^2	NA ²	13.7	NA	ND^2	NA ²	No	Erosion of natural deposits
Haloacetic Acids (ppb)	2020	60	NA	12	NA	40.5	36-45	27.0	24–33	44	34–58	No	By-product of drinking water disinfection
Nitrate [as nitrogen] (ppm)	2020	10	10	ND	NA	ND	NA	1.95	ND-3.9	ND	NA	No	Runoff and leaching from fertilizer use; leaching from septic tanks and sewage; erosion of natural deposits
TTHMs [Total Trihalomethanes] (ppb)	2020	80	NA	35	NA	43.8	35–56	36.5	28–46	55.9	41–70	No	By-product of drinking water disinfection

Tap water samples were collected for lead and copper analyses from sample sites throughout the community

	Phoenix Lake		ix Lake	Pond	erosa	Sceni	c View	Sor	ora				
SUBSTANCE (UNIT OF MEASURE)	YEAR SAMPLED	AL	PHG (MCLG)	AMOUNT DETECTED (90TH %ILE)	SITES ABOVE AL/ TOTAL SITES	VIOLATION	TYPICAL SOURCE						
Copper (ppm)	2020	1.3	0.3	0.450	0/5	0.0865	0/115	0.1505	0/105	0.0914	0/314	No	Internal corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives
Lead (ppb)	2020	15	0.2	8.2	0/5	9.65	0/115	ND ⁵	0/105	ND⁴	0/314	No	Internal corrosion of household water plumbing systems; discharges from industrial manufacturers; erosion of natural deposits

REGULATED SUBSTANCE	S										
				Tuolur	nne	Upper	Basin	Wards	s Ferry		
SUBSTANCE (UNIT OF MEASURE)	YEAR SAMPLED	MCL [MRDL]	PHG (MCLG) [MRDLG]	AMOUNT DETECTED	RANGE LOW-HIGH	AMOUNT DETECTED	RANGE LOW-HIGH	AMOUNT DETECTED	RANGE LOW-HIGH	VIOLATION	TYPICAL SOURCE
Arsenic (ppb)	2018	10	0.004	ND ¹	NA ¹	ND^1	NA ¹	ND	NA	No	Erosion of natural deposits; runoff from orchards; glass and electronics production wastes
Chlorine (ppm)	2020	[4.0 (as Cl2)]	[4 (as Cl2)]	1.6	1.4–1.6	1.72	1.63–1.84	0.61	0.33–0.80	No	Drinking water disinfectant added for treatment
Control of DBP precursors [TOC] (Units)	2020	ΤT	NA	1.4	0.8–1.9	1.2	0.8–1.8	NA	NA	No	Various natural and man-made sources
Fluoride (ppm)	2018	2.0	1	ND^1	NA ¹	ND^1	NA ¹	ND	NA	No	Erosion of natural deposits; water additive that promotes strong teeth; discharge from fertilizer and aluminum factories
Gross Alpha Particle Activity (pCi/L)	2020	15	(0)	ND ²	NA ²	ND^2	NA ²	1.224	NA ⁴	No	Erosion of natural deposits
Haloacetic Acids (ppb)	2020	60	NA	36.8	28–52	33.1	22–54	2	NA	No	By-product of drinking water disinfection
Nitrate [as nitrogen] (ppm)	2020	10	10	ND	NA	ND	NA	3.7	NA	No	Runoff and leaching from fertilizer use; leaching from septic tanks and sewage; erosion of natural deposits
TTHMs [Total Trihalomethanes] (ppb)	2020	80	NA	41.3	29–54	31.1	20–47	6.8	NA	No	By-product of drinking water disinfection

Tap water samples were collected for lead and copper analyses from sample sites throughout the community

				Tuolu	ımne	Upper	Basin	Wards	s Ferry		
SUBSTANCE (UNIT OF MEASURE)	YEAR SAMPLED	AL	PHG (MCLG)	AMOUNT DETECTED (90TH %ILE)	SITES ABOVE AL/ TOTAL SITES	AMOUNT DETECTED (90TH %ILE)	DETECTED ABOVE AL/		SITES ABOVE AL/ TOTAL SITES	VIOLATION	TYPICAL SOURCE
Copper (ppm)	2020	1.3	0.3	0.1405	0/105	0.200	0/22	0.7605	0/55	No	Internal corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives
Lead (ppb)	2020	15	0.2	ND ⁵	0/105	ND	2/22	ND ⁵	0/55	No	Internal corrosion of household water plumbing systems; discharges from industrial manufacturers; erosion of natural deposits

SECONDARY SUBSTANCES

				Apple V	alley	Cedar Ridge		Columbi	a/Big Hill	Peacefu	ıl Pines		
SUBSTANCE (UNIT OF MEASURE)	YEAR SAMPLED	SMCL	PHG (MCLG)	AMOUNT DETECTED	RANGE LOW-HIGH	AMOUNT DETECTED	RANGE LOW-HIGH	AMOUNT DETECTED	RANGE LOW-HIGH	AMOUNT DETECTED	RANGE LOW-HIGH	EXCEEDANCE	TYPICAL SOURCE
Iron (ppb)	2018	300	NS	ND	NA	320 ^{1,6}	ND-640 ^{1,6}	ND^1	NA ¹	ND^{1}	NA ¹	Yes ⁷	Leaching from natural deposits; industrial wastes
Manganese (ppb)	2018	50	NS	ND	NA	39 ¹	ND-78 ¹	ND^1	NA^1	15.75 ¹	ND-23 ¹	No	Leaching from natural deposits
Sulfate (ppm)	2018	500	NS	9.9	NA	1.45 ¹	ND-2.9 ¹	ND^1	NA ¹	3.5	NA	No	Runoff/leaching from natural deposits; industrial wastes
Turbidity (Units)	2018	5	NS	0.19	NA	0.05 ¹	0.03–0.15 ¹	0.041	0.03–0.12 ¹	0.16	NA	No	Soil runoff
Zinc (ppm)	2018	5.0	NS	0.077	NA	ND^1	NA ¹	ND^1	NA ¹	0.079	NA	No	Runoff/leaching from natural deposits; industrial wastes

				Phoen	ix Lake		Pondero	sa	Scenic	View	So	nora				
SUBSTANCE (UNIT OF MEASURE)	YEAR SAMPLED	SMCL	PHG (MCLG)	AMOUNT DETECTED	RANG			RANGE LOW-HIGH	AMOUNT DETECTED	RANGE LOW-HIGH	AMOUNT DETECTED	RANGE LOW-HIGH	EXCEEDANCE	TYPICAL	SOURCE	
Iron (ppb)	2018	300	NS	ND ¹	ND	¹ N	D ¹	NA ¹	ND^1	NA ¹	ND ¹	NA ¹	Yes ⁷		ing from nat its; industrial	
Manganese (ppb)	2018	50	NS	6.8 ¹	ND-4	48 ¹ N	ID ¹	NA ¹	26 ¹	NA ¹	33 ¹	NA ¹	No	-	ng from natu	
Sulfate (ppm)	2018	500	NS	2.7	NA	A N	ÍD ¹	NA ¹	<1.0 ¹	NA ¹	1.3 ¹	NA ¹	No	Runof	f/leaching front	om natura
Turbidity (Units)	2018	5	NS	0.14	NA	A 0.	05 ¹ 0	$0.05-0.15^{1}$	0.05 ¹	0.03-0.141	0.07 ¹	0.03–0.28 ¹	No	Soil ru	Soil runoff	
Zinc (ppm)	2018	5.0	NS	ND	NA	A N	ID ¹	NA ¹	ND^1	NA ¹	ND^1	NA ¹	No	Runof deposi	Runoff/leaching from deposits; industrial w	
SECONDARY SUBSTANCES	5															
				Tuo	umne		Upper E	Basin	Wards	Ferry						
SUBSTANCE (UNIT OF MEASURE)	YEAR SAMPLED	SMCL	PHG (MCLG)	AMOUNT DETECTED	RANG LOW-HI		OUNT ECTED	RANGE LOW-HIGH	AMOUNT DETECTED	RANGE LOW-HIGH	EXCEEDANCE	TYPICAL SOU	IRCE			
Iron (ppb)	2018	300	NS	ND^1	NA	N ¹ N	JD1	ND^1	ND	NA	Yes ⁷	Leaching f	rom natural de	eposits; ind	dustrial wast	es
Manganese (ppb)	2018	50	NS	ND^1	NA	1	6 ¹	ND-241	ND	NA	No	Leaching f	rom natural de	eposits		
Sulfate (ppm)	2018	500	NS	ND^1	NA	Λ ¹ 0.	.351	ND-1.4 ¹	4	NA	No	Runoff/lea	ching from natural deposits; industrial waste		ial wastes	
Turbidity (Units)	2018	5	NS	0.051	0.03-0	0.14^{1} 0.	.051	0.03–0.141	0.1	NA	No	Soil runof	Soil runoff			
Zinc (ppm)	2018	5.0	NS	ND^1	NA	A ¹ N	${\rm JD}^1$	NA ¹	ND	NA	No	Runoff/lea	ching from na	tural depo	osits; industri	ial wastes
UNREGULATED SUBSTANC	CES ⁸															
					Apple \	Valley	Ce	edar Ridge	Colur	nbia/Big Hill	Peace	ful Pines	Phoenix L	.ake	Pond	lerosa
SUBSTANCE (UNIT OF MEASURE)			YE. SAMF		MOUNT TECTED	RANGE LOW-HIGH	AMOUN DETECTE		AMOUN DETECTE		AMOUNT DETECTED	RANGE LOW-HIGH	AMOUNT DETECTED	RANGE LOW-HIGH	AMOUNT DETECTED	RANGE
Hardness, Total [as CaCO3] (j	ppm)		20	18	200	NA -	38.5 ¹	10–67	¹ 9.1 ¹	9.1–9.1	1 81	NA	280	NA	12 ¹	NA ¹
Sodium (ppm)			20	18	14.0	NA -	3.0 ¹	1.6-4.4	6.35 ¹	5.5–7.2	1 17	NA	21	NA	5.3 ¹	NA ¹
UNREGULATED SUBSTANC	CES ⁸															
							Sc	enic View		Sonora	Tuo	lumne	Upper Ba	isin	Wards	s Ferry
SUBSTANCE (UNIT OF MEASURE)						YEAR AMPLED	AMOUN DETECTE		AMOUN DETECTE		AMOUNT DETECTED	RANGE LOW-HIGH	AMOUNT DETECTED	RANGE LOW-HIGH	AMOUNT DETECTED	RANGE LOW-HIGH
Hardness, Total [as CaCO3] (j	ppm)				1	2018	17 ¹	NA ¹	22 ¹	NA ¹	11 ¹	NA ¹	12.8 ¹	10–18 ¹	160	NA
Sodium (ppm)						2018	9.1 ¹	NA ¹	5.5 ¹	NA^1	6.9 ¹	NA^1	6.0 ¹	3.9–8.2 ¹	12	NA
UNREGULATED CONTAMI	INANT I	MONIT	ORING	RULE PART	4 (UCN	MR4) - SOI	NORA ⁸	¹ Sampled in					is a Cedar Ridg	e exceedar	nce only. Seco	
SUBSTANCE (UNIT OF MEASURE)		YEAR SA	MPLED	AMOUNT DET	ECTED	RANGE LO	OW-HIGH	² Sampled in ³ Sampled in					aminants are re hetics of drinkin	0	, ,	
Bromochloroacetic Acid (ppb)	1	202	20	0.933		0.81-	-1.1	⁴ Sampled in					U.S. EPA has n			
Bromodichloroacetic Acid (pp	ob)	202	20	1.75		1.6-	2.0	⁵ Sampled in ⁶ The Cedar		is treated wit	h Cl2. The well		ciated with exc of for exceedanc			iney nave
Dichloroacetic Acid (ppb)		202	20	14		12–	18	12 days in	2020 and acc	ounted for les	s than 2% of th	e ⁸ Unre	egulated contam			
Manganese (ppb)		202	20	14		NA	A	total wate	r distributed t	o customers i	n 2020.		and the State W etermine where			
Monochloroacetic Acid (ppb)		202	20	2.5		2.1-	3.0					whe	ther the contam	inants nee	d to be regula	ited.
Total Organic Carbon [TOC]	(ppb)	202	20	3,200		1,700–	6,000									

FOG (Fats, Oils, and Grease)

You may not be aware of it, but every time you pour fat, oil, or grease (FOG) down your sink (e.g., bacon grease), you are contributing to a costly problem in the sewer collection system. FOG coats the inner walls of the plumbing in your house as well as the walls of underground piping throughout the community. Over time, these greasy materials build up and form blockages in pipes, which can lead to wastewater backing up into parks, yards, streets, and storm drains. These backups allow FOG to contaminate local waters, including drinking water. Exposure to untreated wastewater is a public health hazard. FOG discharged into septic systems and drain fields can also cause malfunctions, resulting in more frequent tank pump-outs and other expenses.

Communities spend billions of dollars every year to unplug or replace grease-blocked pipes, repair pump stations, and clean up costly and illegal wastewater spills. Here are some tips that you and your family can follow to help maintain a well-run system now and in the future:

NEVER:

- Pour fats, oil, or grease down the house or storm drains.
- Dispose of food scraps by flushing them.
- Use the toilet as a waste basket.

ALWAYS:

- Scrape and collect fat, oil, and grease into a waste container such as an empty coffee can, and dispose of it with your garbage.
- Place food scraps in waste containers or garbage bags for disposal with solid wastes.
- Place a wastebasket in each bathroom for solid wastes like disposable diapers, creams and lotions, and personal hygiene products including nonbiodegradable wipes.

What type of container is best for storing water?

Consumer Reports has consistently advised that glass or BPA-free plastics such as polyethylene are the safest choices. To be on the safe side, don't use any container with markings on the recycle symbol showing "7 PC"(that's code for BPA). You could also consider using stainless steel or aluminum with BPA-free liners.

How much emergency water should I keep?

Typically, 1 gallon per person per day is recommended. For a family of four, that would be 12 gallons for 3 days. Humans can survive without food for 1 month, but can only survive 1 week without water.

How long can I store drinking water?

The disinfectant in drinking water will eventually dissipate, even in a closed container. If that container housed bacteria prior to filling up with the tap water, the bacteria may continue to grow once the disinfectant has dissipated. Some experts believe that water could be stored up to six months before needing to be replaced. Refrigeration will help slow the bacterial growth.

How long does it take a water supplier to produce one glass of drinking water?

It could take up to 45 minutes to produce a single glass of drinking water.

How many community water systems are there in the U.S.?

About 53,000 public water systems across the United States process 34 billion gallons of water per day for home and commercial use. Eighty-five percent of the population is served by these systems.

Which household activity wastes the most water?

Most people would say the majority of water use comes from showering or washing dishes; however, toilet flushing is by far the largest single use of water in a home (accounting for 40% of total water use). Toilets use about 4–6 gallons per flush, so consider an ultra-low-flow (ULF) toilet, which requires only 1.5 gallons.

Definitions

90th %ile: The levels reported for lead and copper represent the 90th percentile of the total number of sites tested. The 90th percentile is equal to or greater than 90% of our lead and copper detections.

AL (Regulatory Action

Level): The concentration of a contaminant that, if exceeded, triggers treatment or other requirements that a water system must follow.

MCL (Maximum

Contaminant Level): The highest level of a contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs (or MCLGs) as is economically and technologically feasible. Secondary MCLs (SMCLs) are set to protect the odor, taste, and appearance of drinking water.

MCLG (Maximum

Contaminant Level Goal): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the U.S. EPA.

MRDL (Maximum Residual

Disinfectant Level): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

MRDLG (Maximum Residual Disinfectant

Level Goal): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

NA: Not applicable

ND (Not detected): Indicates that the substance was not found by laboratory analysis.

NS: No standard

pCi/L (picocuries per liter): A measure of radioactivity.

PDWS (Primary Drinking

Water Standard): MCLs and MRDLs for contaminants that affect health along with their monitoring and reporting requirements, and water treatment requirements.

PHG (Public Health Goal):

The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California EPA.

ppb (parts per billion): One part substance per billion parts water (or micrograms per liter).

ppm (parts per million): One part substance per million parts water (or milligrams per liter).

TT (Treatment Technique): A required process intended to reduce the level of a contaminant in drinking water.