Consumer Confidence Report Certification Form

(to be submitted with a copy of the CCR)

(to certify electronic delivery of the CCR, use the certification form on the State Water Board's website at <u>http://www.swrcb.ca.gov/drinking_water/certlic/drinkingwater/CCR.shtml</u>)

Water System Name:	MONSON WATER SYSTEM
Water System Number:	CA5403212

The water system named above hereby certifies that its Consumer Confidence Report was distributed on

<u>06-29-2023</u> (date) to customers (and appropriate notices of availability have been given). Further, the system certifies that the information contained in the report is correct and consistent with the compliance monitoring data previously submitted to the State Water Resources Control Board, Division of Drinking Water.

Certified By:	Name:	Celeste Perez		
	Signature:			
	Title:	General Manager/Secretary	-	
	Phone Number:	(559) 730-8035	Date:	June 29, 2023

To summarize report delivery used and good-faith efforts taken, please complete the form below by checking all items that apply and fill-in where appropriate:

X CCR was distributed by mail or other direct delivery methods. Specify other direct delivery methods used:

	Posted the CCR on the internet at http://
	Mailed the CCR to postal patrons within the service area (attach zip codes used)
	Advertised the availability of the CCR in news media (attach a copy of press release)
	Publication of the CCR in a local newspaper of general circulation (attach a copy of the published notice, including name of the newspaper and date published)
X	Posted the CCR in public places (attach a list of locations) Monson Market, Sultana Post Office
	Delivery of multiple copies of CCR to single bill addresses serving several persons, such as apartments, businesses, and schools
	Delivery to community organizations (attach a list of organizations)
	Other (attach a list of other methods used)
For s	ystems serving at least 100,000 persons: Posted CCR on a publicly-accessible internet site
	following address: http://

2022 Consumer Confidence Report

Water System Name: MONSON WATER SYSTEM

Report Date:

March 2023

We test the drinking water quality for many constituents as required by state and federal regulations. This report shows the results of our monitoring for the period of January 1 - December 31, 2022.

Este informe contiene información muy importante sobre su agua potable. Tradúzcalo ó hable con alquien que lo entienda bien.

Type of water source(s) in use: Information regarding the type of water source in use is not available, as this water system does not have a completed assessment on file. Please see the Drinking Water Source Assessment Information section located at the end of this report for more details.

Your water comes from 1 source(s): WELL 01 - RAW

Opportunities for public participation in decisions that affect drinking water quality: Regularly-scheduled water board or city/county council meetings are held at Monson-School District 10643 Ave. 416 Dinuba, Ca. 93618 every first Thursday of each month.

For more information about this report, or any questions relating to your drinking water, please call (559) 458 - 6144 and ask for Jose Padilla.

TERMS U	TERMS USED IN THIS REPORT								
Maximum Contaminant Level (MCL): The highest level of contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs (or MCLGs) as is economically feasible. Secondary MCLs are set to protect the odor, taste, and appearance of drinking	Secondary Drinking Water Standards (SDWS): MCLs for the contaminants that affect taste, odor, or appearance of the drinking water. Contaminants with SDWSs do not affect the health at the MCL levels.								
water.	Treatment Technique (TT): A required process intended to reduce the level of a contaminant in drinking water.								
Maximum Contaminant Level Goal (MCLG): The									
level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the U.S. Environmental Protection Agency (USEPA).	Regulatory Action Level (AL): The concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow.								
Public Health Goal (PHG): The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California	Level 1 Assessment: A Level 1 assessment is a study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system.								
Environmental Protection Agency. Maximum Residual Disinfectant Level (MRDL): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial	Level 2 Assessment: A Level 2 assessment is a very detailed study of the water system to identify potential problems and determine (if possible) why an E. coli MCL violation has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions.								
contaminants.	ND: not detectable at testing limit								
Maximum Residual Disinfectant Level Goal (MRDLG): The level of a drinking water disinfectant	mg/L: milligrams per liter or parts per million (ppm)								
below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of	ug/L: micrograms per liter or parts per billion (ppb)								
disinfectants to control microbial contaminants.	pCi/L: picocuries per liter (a measure of radiation)								
Primary Drinking Water Standards (PDWS): MCLs and MRDLs for the contaminants that affect health along	NTU: Nephelometric Turbidity Units								
with their monitoring and reporting requirements, and water treatment requirements.	umhos/cm: micro mhos per centimeter								

The sources of drinking water: (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include:

- *Microbial contaminants,* such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- *Inorganic contaminants,* such as salts and metals, that can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- *Pesticides and herbicides,* that may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses.
- Organic chemical contaminants, including synthetic and volatile organic chemicals, that are by-products if industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, agricultural application, and septic systems.
- *Radioactive contaminants,* that can be naturally-occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, the USEPA and the State Water Resource Control Board (State Water Board) prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. State Water Board regulations also establish limits for contaminants in bottled water that provide the same protection for public health.

Tables 1, 2, 3, 4, 5 and 6 list all of the drinking water contaminants that were detected during the most recent sampling for the constituent. The presence of these contaminants in the water does not necessarily indicate that the water poses a health risk. The State Water Board allows us to monitor for certain contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of the data, though representative of the water quality, are more than one year old.

	Table 1 - SAMPLING RESULTS FOR SODIUM AND HARDNESS											
Chemical or Constituent (and reporting units)	Detected Detections (MCLG)					Typical Sources of Contaminant						
Sodium (mg/L)	(2020)	32	n/a	none		Salt present in the water and is generally naturally occurring						
Hardness (mg/L)	(2020)	88.7	n/a	none	nono	Sum of polyvalent cations present in the water, generally magnesium and calcium, and are usually naturally occurring						

Any violation of MCL, AL or MRDL is highlighted. Additional information regarding the violation is provided later in this report.

Table 2 - D	ETECTION (OF CONTAN	MINANTS WI	ГН А <u>PRIN</u>	MARY DRIN	KING WATER STANDARD
Chemical or Constituent (and reporting units)	Sample Date	Average Level Detected	Range of Detections	MCL [MRDL]	PHG (MCLG) [MRDLG]	Typical Sources of Contaminant
Arsenic (ug/L)	(2020)	3	n/a	10	0.004	Erosion of natural deposits; runoff from orchards, glass and electronics production wastes
Fluoride (mg/L)	(2020)	0.2	n/a	2	1	Erosion of natural deposits; water additive that promotes strong teeth; discharge from fertilizer and aluminum factories.
Nitrate as N (mg/L)	(2022)	3.1	n/a	10	10	Runoff and leaching from fertilizer use; leaching from septic tanks and sewage; erosion of natural deposits
Nitrate + Nitrite as N (mg/L)	(2020)	3	2.8 - 3.2	10	10	Runoff and leaching from fertilizer use; leaching from septic tanks and sewage; erosion of natural deposits
Gross Alpha (pCi/L)	(2022)	1.038	ND - 1.87	15	(0)	Erosion of natural deposits.
Total Radium 228 (pCi/L)	(2020)	ND	ND - 0.632	none	n/a	Erosion of natural deposits

Table 3 - DETE	CTION OF C	ONTAMINA	NTS WITH A	SECO	<u>NDARY</u> DI	RINKING WATER STANDARD
Chemical or Constituent (and reporting units)	Sample Date	Average Level Detected	Range of Detections	MCL	PHG (MCLG)	Typical Sources of Contaminant
Chloride (mg/L)	(2020)	21	n/a	500	n/a	Runoff/leaching from natural deposits; seawater influence
Color (Units)	(2020)	5	n/a	15	n/a	Naturally-occurring organic materials
Specific Conductance (umhos/cm)	(2020)	350	n/a	1600	n/a	Substances that form ions when in water; seawater influence
Sulfate (mg/L)	(2020)	4.5	n/a	500	n/a	Runoff/leaching from natural deposits; industrial wastes
Total Dissolved Solids (mg/L)	(2020)	230	n/a	1000	n/a	Runoff/leaching from natural deposits
Turbidity (NTU)	(2020)	1.3	n/a	5	n/a	Soil runoff

	Table 4 - ADDITIONAL DETECTIONS												
Chemical or Constituent (and reporting units)	Sample Date	Average Level Detected	Range of Detections	Notification Level	Typical Sources of Contaminant								
Calcium (mg/L)	(2020)	24	n/a	n/a	n/a								
Magnesium (mg/L)	(2020)	7	n/a	n/a	n/a								
pH (units)	(2020)	8.1	n/a	n/a	n/a								
Alkalinity (mg/L)	(2020)	120	n/a	n/a	n/a								
Aggressiveness Index	(2020)	12	n/a	n/a	n/a								
Langelier Index	(2020)	0.1	n/a	n/a	n/a								

Table	Table 5 - DETECTION OF DISINFECTANT/DISINFECTANT BYPRODUCT RULE												
Chemical or Constituent (and reporting units)	Sample Date	Average Level Detected	Range of Detections	MCL (MRDL)	PHG (MCLG) Violation		Typical Sources of Contaminant						
Total Trihalomethanes (TTHMs) (ug/L)	(2022)	2	n/a	80	n/a		By-product of drinking water disinfection						
Chlorine (mg/L)	(2021)	0.45	.13 - 0.69	4.0	4.0	No	Drinking water disinfectant added for treatment.						

Additional General Information on Drinking Water

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts if some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the USEPA's Safe Drinking Water Hotline (1-800-426-4791).

Some people may be more vulnerable to contaminants in drinking water than the general population. Immunocompromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. USEPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* and other microbial contaminants are available from the Safe Drinking Water Hotline (1-800-426-4791).

Lead Specific Language for Community Water Systems: If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with the service lines and home plumbing. *Monson Water System* is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish

to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at <u>http://www.epa.gov/lead</u>.

2022 Consumer Confidence Report

Drinking Water Assessment Information

Assessment Information

A source water assessment has not been completed for the WELL 01 of the MONSON WATER SYSTEM.

WELL 01 - RAW - does not have an assessment on file.

Discussion of Vulnerability

Assessment summaries are not available for some sources. This is because:

The Assessment has not been completed. Contact the local Department of Health Services (DHS) Drinking Water field office or the water system to find out when the Assessment is scheduled to be done.

☐ The source is not active. It may be out of service, or new and not yet in service.

The Assessment was not submitted electronically. The site used to obtain Assessments only provides access to Assessment summaries submitted electronically.

Acquiring Information

For more info you may visit https://www.waterboards.ca.gov/drinking_water/certlic/drinkingwater/DWSAP.html or contact the health department in the county to which the water system belongs as indicated on this following link: https://www.waterboards.ca.gov/drinking_water/programs/documents/ddwem/DDWdistrictofficesmap.pdf

Monson Water System Analytical Results By FGL - 2022

SAMPLING RESULTS FOR SODIUM AND HARDNESS									
	Units	MCLG	CA-MCL	PHG	Sampled	Result	Avg. Result(a)	Range (b)	
Sodium		mg/L		none	none			32	32 - 32
WELL 01 - RAW	VI 2041698-1	mg/L				2020-03-06	32		
Hardness		mg/L		none	none			88.7	88.7 - 88.7
WELL 01 - RAW	VI 2041698-1	mg/L				2020-03-06	88.7		

	PRIMA	RY DRIN	KING WA	TER STAN	DARDS (PDWS)			
		Units	MCLG	CA-MCL	PHG	Sampled	Result	Avg. Result(a)	Range (b)
Arsenic		ug/L		10	0.004			3	3 - 3
WELL 01 - RAW	VI 2041698-1	ug/L				2020-03-06	3		
Fluoride		mg/L		2	1			0.2	0.2 - 0.2
WELL 01 - RAW	VI 2041698-1	mg/L				2020-03-06	0.2		
Nitrate as N		mg/L		10	10			3.1	3.1 - 3.1
WELL 01 - RAW	VI 2240864-1	mg/L				2022-02-10	3.1		
Nitrate + Nitrite as N	_	mg/L		10	10			3.0	2.8 - 3.2
WELL 01 - RAW	VI 2042753-1	mg/L				2020-04-22	2.8		
WELL 01 - RAW	VI 2041698-1	mg/L				2020-03-06	3.2		
Gross Alpha		pCi/L		15	(0)			1.038	ND - 1.87
WELL 01 - RAW	VI 2248743-1	pCi/L				2022-11-07	1.18		
WELL 01 - RAW	VI 2246082-1	pCi/L				2022-08-09	1.87		
WELL 01 - RAW	VI 2243464-1	pCi/L				2022-05-16	1.10		
WELL 01 - RAW	VI 2240864-1	pCi/L				2022-02-10	ND		
Total Radium 228		pCi/L	0.019	none	n/a			ND	ND - 0.632
WELL 01 - RAW	VI 2044629-1	pCi/L				2020-06-16	0.632		
WELL 01 - RAW	VI 2041711-1	pCi/L				2020-03-06	ND		

	SECONI	DARY DRINK	KING WA	TER STANI	DARDS	(SDWS)			
		Units	MCLG	CA-MCL	PHG	Sampled	Result	Avg. Result(a)	Range (b)
Chloride	-	mg/L		500	n/a			21	21 - 21
WELL 01 - RAW	VI 2041698-1	mg/L				2020-03-06	21		
Color		Units		15	n/a			5	5 - 5
WELL 01 - RAW	VI 2041698-1	Units				2020-03-06	5		
Specific Conductance		umhos/cm		1600	n/a			350	350 - 350
WELL 01 - RAW	VI 2041698-1	umhos/cm				2020-03-06	350		
Sulfate	-	mg/L		500	n/a			4.5	4.5 - 4.5
WELL 01 - RAW	VI 2041698-1	mg/L				2020-03-06	4.5		
Total Dissolved Solids		mg/L		1000	n/a			230	230 - 230
WELL 01 - RAW	VI 2041698-1	mg/L				2020-03-06	230		
Turbidity		NTU		5	n/a			1.3	1.3 - 1.3
WELL 01 - RAW	VI 2041698-1	NTU				2020-03-06	1.3		

ADDITIONAL DETECTIONS									
		Units	MCLG	CA-MCL	PHG	Sampled	Result	Avg. Result(a)	Range (b)
Calcium		mg/L			n/a			24	24 - 24
WELL 01 - RAW	VI 2041698-1	mg/L				2020-03-06	24		
Magnesium		mg/L			n/a			7	7 - 7
WELL 01 - RAW	VI 2041698-1	mg/L				2020-03-06	7		
pH		units			n/a			8.1	8.1 - 8.1
WELL 01 - RAW	VI 2041698-1	units				2020-03-06	8.1		
Alkalinity		mg/L			n/a			120	120 - 120
WELL 01 - RAW	VI 2041698-1	mg/L				2020-03-06	120		

Aggressiveness Index			n/a			12.0	12.0 - 12.0
WELL 01 - RAW	VI 2041698-1			2020-03-06	12.0		
Langelier Index			n/a			0.1	0.1 - 0.1
WELL 01 - RAW	VI 2041698-1			2020-03-06	0.1		

DETECTION OF DISINFECTANT/DISINFECTANT BYPRODUCT RULE									
		Units	MCLG	CA-MCL	PHG	Sampled	Result	Avg. Result(a)	Range (b)
Total Trihalomethanes (TTHMs)		ug/L		80	n/a			2	2.00 - 2.00
ST2S1 - 10678 SIMPSON DR	VI 2245362-1	ug/L				2022-07-15	2.00		
Average ST2S1 - 10678 SIMPSON DR								2	
Chlorine		mg/L		4.0	4.0			0.45	.13 - 0.69
Monson Hyd #3	VI 2142829-1	mg/L				2021-04-15	.13		
Monson Hyd #3	VI 2141971-1	mg/L				2021-03-15	0.56		
Monson Hyd #3	VI 2141249-1	mg/L				2021-02-18	0.41		
Monson Hyd #3	VI 2140420-1	mg/L				2021-01-19	0.69		
Average Monson Hyd #3								0.45	

Monson Water System CCR Login Linkage - 2022

FGL Code	Lab ID	Date_Sampled	Method	Description	Property
CA5403212_LCR	VI 2146128-4	2021-08-06	Metals, Total	10591 Lewis Dr	Monson - Lead & Copper
_	VI 2147593-3	2021-09-24	Metals, Total	10596 Lewis Dr	Monson - Lead & Copper
	VI 2147593-5	2021-09-24	Metals, Total	38660 Monson Dr	Monson - Lead & Copper
	VI 2146128-5	2021-08-06	Metals, Total	38686 Monson Dr.	Monson - Lead & Copper
	VI 2147593-2	2021-09-24	Metals, Total	38734 Monson Dr	Monson - Lead & Copper
	VI 2146128-3	2021-08-06	Metals, Total	38737 Campbell Dr	Monson - Lead & Copper
	VI 2147593-4	2021-09-24	Metals, Total	38785 Campbell Dr	Monson - Lead & Copper
	VI 2146128-2	2021-08-06	Metals, Total	38795 Campbell Dr	Monson - Lead & Copper
	VI 2147593-1	2021-09-24	Metals, Total	38845 Monson Dr	MONSON WATER SYSTEM
	VI 2146128-1	2021-08-06	Metals, Total	Lead and Copper Monitoring	MONSON WATER SYSTEM
10678 Simpson R	VI 1842736-10		Metals, Total	M-10678 Simpson Rd.	Monson Residents
38660 Monson Dr			Metals, Total	M-38660 Monson Dr.	Monson Residents
38686 Monson Dr			Metals, Total	M-38686 Monson Dr.	Monson Residents
	VI 2140420-1	2021-01-19	Field Test	Monson Hyd #3	Monson - Routine Monitoring
	VI 2141249-1	2021-02-18	Field Test	Monson Hyd #3	Monson - Routine Monitoring
MONSON HYD3	VI 2141971-1		Field Test	Monson Hyd #3	Monson - Routine Monitoring
	VI 2142829-1	2021-04-15	Field Test	Monson Hyd #3	Monson - Routine Monitoring
MONSON HYD3	VI 2240124-1		Coliform	Monson Hyd #3	Monson - Routine Monitoring
	VI 2240788-1	2022-02-08	Coliform	Monson Hyd #3	Monson - Routine Monitoring
	VI 2241495-1		Coliform	Monson Hyd #3	Monson - Routine Monitoring
	VI 2242895-1	2022-04-25	Coliform	Monson Hyd #3	Monson - Routine Monitoring
	VI 2243465-1	2022-05-16	Coliform	Monson Hyd #3	Monson - Routine Monitoring
	VI 2244161-1	2022-06-09	Coliform	Monson Hyd #3	Monson - Routine Monitoring
	VI 2245361-1	2022-07-15	Coliform	Monson Hyd #3	Monson - Routine Monitoring
	VI 2246087-1	2022-08-09	Coliform	Monson Hyd #3	Monson - Routine Monitoring
	VI 2247586-1	2022-09-26	Coliform	Monson Hyd #3	Monson - Routine Monitoring
	VI 2248399-1	2022-10-24	Coliform	Monson Hyd #3	Monson - Routine Monitoring
	VI 2248742-1	2022-11-07	Coliform	Monson Hyd #3	Monson - Routine Monitoring
	VI 2249648-1		Coliform	Monson Hyd #3	Monson - Routine Monitoring
ST2S1	VI 2245362-1	2022-07-15	EPA 551.1	ST2S1 - 10678 SIMPSON DR	MONSON WATER SYSTEM
Well	VI 1742919-1	2017-06-26	Sub Contracted	WELL 01 - RAW	Drinking Water Monitoring
MONSON WELL					Monson Water-Well 01 Water Quality
(RA	VI 2041698-1	2020-03-06	Wet Chemistry	WELL 01 - RAW	Monitoring
	VI 2041698-1	2020-03-06	Metals, Total	WELL 01 - RAW	Monson Water-Well 01 Water Quality Monitoring
	VI 2041711-1	2020-03-06	Radio Chemistry	WELL 01 - RAW	Monson Water-Well 01 Radio Monitoring
	VI 2041698-1	2020-03-06	General Mineral	WELL 01 - RAW	Monson Water-Well 01 Water Quality Monitoring
	VI 2042753-1	2020-04-22	Wet Chemistry	WELL 01 - RAW	MONSON WATER SYSTEM
	VI 2044629-1	2020-06-16	Radio Chemistry	WELL 01 - RAW	Monson Water-Well 01 Radio Monitoring
WELL01	VI 2240864-1	2022-02-10	Wet Chemistry	WELL 01 - RAW	Monson Water-Well 01 WQ 2
7 7 7	VI 2240864-1	2022-02-10	Radio Chemistry	WELL 01 - RAW	Monson Water-Well 01 WQ 2
	VI 2243464-1	2022-05-16	Radio Chemistry	WELL 01 - RAW	Monson Water-Well 01 WQ 2
	VI 2246082-1	2022-08-09	Radio Chemistry	WELL 01 - RAW	Monson Water-Well 01 WQ 2
	VI 2247587-1	2022-09-26		WELL 01 - RAW	Monson Water-Well 01 VOC Monitoring
	VI 2248743-1		Radio Chemistry	WELL 01 - RAW	Monson Water-Well 01 WO 2