Treehouse California Almonds, LLC Consumer Confidence Report for 2023

Treehouse California Almonds well water consumer confidence report for Earlimart CA5403139. Prepared April 2024 for the period of January 1, 2023 - December 31 2023 and does include earlier monitoring data.

Name, Location, and Type of Water Source: This report covers the two active wells Treehouse utilizes at the Earlimart facility located at 6914 Road 160, Earlimart, CA, 93219, which are on site and used for almond blanching, plant sanitation and restroom needs.

Drinking water assessment: Treehouse California Almonds certifies that the test results meet requirements for our use in the manufacturing of almonds. Water tests were sampled by McMor Chlorination and tested at BC and Pace laboratories, certification labs.

Public Participation: This well water system is privately owned and controlled for water use only at Treehouse Almonds. No public meetings are held; thus, no public participation is encouraged and has no effect on the decision made in relation to our water. This report will be written in English and posted in our employee break area for access to all persons at Treehouse Earlimart.

Contact: Treehouse California Almonds, LLC is a corporation that is privately owned, and who owns the wells. Brian Ball is the manager that would answer any questions in regard to the water system or the confidence report; you may contact him at (559) 757-5020. If he is unavailable, one may contact Carl Tristao.

Definitions: MCL = Maximum Contamination Level.

Levels of Detected Contaminants: Given within the tables below are found levels of contaminants found at Treehouse California Almonds Earlimart facility.

Summary: Treehouse California Water is clean and drinkable as per the California state water resources control board definitions. TCA meets all MRL – maximum residue levels for all bacteria, heavy metals and pesticides. It is safe to drink as well as use in almond blanching and cleaning.

Table 1: Microbiological Contaminants (Total Coliform Rule)

Contaminant	Month with highest counts	Months with two or more positives/month	Source
Coliform	<1 in 7 months	none	Naturally present in the environment
E. coli	<1 in 7 months	none	Human and animal Fecal waste

Table 2: Lead and Copper

Table 2. Leda dila Coppei								
Contaminant	Method	Result 90% level	Action level	Sites that exceeded AL	Source			
Copper (Cu) five samples	E200.7 EPA 200.8	2.8, <2.0 (2), 8.3. 24 mg/L	50 mg/L	0	Internal pipe corrosion, erosion of natural deposits & leaching from wood preservatives			
Lead (Pb) five samples	E200.8 EPA 200.8	<1.0 (5) mg/L	(5).015 mg/L	0	Internal pipe corrosion, discharges from industrial manufactures & erosion of natural deposits			

Table 3: Sodium and Hardness

Contaminant	Method	Result	Range	Source		
Sodium (Na)	EPA 200.7	68	68	Salt present in water is naturally occurring		
		mg/L	mg/L			
Hardness	SM2340 B	150mg/	150	Sum of Polyvalent cations in water, generally		
(CaCO3)		L	mg/L	Mg & Ca and are naturally occurring		

^{*} Hardness tested for Boiler, water is always hard with out treatment. Water used in the boiler is conditioned.

Table 4: Primary Drinking Water Standard (MCL, MRDL, or TT)

					. , ,
Contaminant	Unit	Level	Range	MCL	Source
Copper (Cu)	ug/L	<10	.0002-	1000	Internal pipe corrosion, erosion of natural
			.0064		deposits & leaching from wood preservatives
Fluoride	ug/L	0.11	0.11	2.0	Erosion of natural deposits
Nitrate (NO3)	ppm	32	32	45	Runoff & leaching from fertilizer
Nitrate as N	mg/L	9.2	4.1-	10	Runoff & leaching from fertilizer, Well #2
(E300.0)			8.69		2023
Nitrite as N	mg/L	<0.05,	0.05-	1.0	Runoff & leaching from fertilizer
(E353.2)		<.10	.10		
Uranium	pCi/L	2.0	1.0-2.0	20	Erosion of natural deposits
Gross Alpha	pCi/L	3.0	3.0	15	Erosion of natural deposits

Table 5: Secondary Drinking Water Standard (MCL)

1 4510 01 00001		<u> </u>	Trate. Ot		
Contaminant	Unit	Level	Range	MCL	Source / Health Effects
Iron (Fe)	ppb	2400	2400	300	Erosion of natural deposits
Specific	μS/c	900	900	1600	Substances that form ions in when in water
Conductance	m				
Chloride	ppm	390	390	500	Runoff/leaching of natural deposits
Odor –	Units	0	0	3	Natural occurring organic material
Threshold					
Manganese	mg/	9.3	9.3	50	High levels have been shown to affect the
(E200.7)	L				nervous system
Sulfate (SO4)	mg/	80	80	500	Runoff/leaching of natural deposits
(E300.0)	L				
Turbidity	NTU	0.22	0.22	5	Soil runoff

Table 6: Unregulated Contaminants

	<u>, </u>				
Contaminant	Unit	Level	Range	MCL	Health Effects
Boron	ug/L	900	900	1000	The babies of some pregnant women who drink water containing boron in excess of the notification level may have an increase risk of developmental effects, based on studies in lab animals.

Table 7: Other Contaminants

Contaminant	Unit	Level	Range	MCL	Notes & Health Effects
1,2-Dichloroethane-d4	ug/L	<0.50	0.5	10	Some people who use water containing 1,2- dichloroethane in excess of the MCL over many years may have an increased risk of getting cancer
Alachlor	ug/L	<0.20	<0.20	2	
Ammonia	ug/L	0.15	0.15		
Atrazine	ug/L	<0.30	<0.30	1	
Bicarbonate	ug/L	380	380		
Bis(2-Ethylhexyl)phthalate	ug/L	<3.0	<3.0	4	

Benzo[a]pyrene	ug/L	<0.10	<0.10	0.2	
Bromodichloromethane	ug/L	<0.5	<0.5	1	
Bromoform	ug/L	<0.5	<0.5	1	
Calcium (Ca)	ug/L	45	45		
Carbonate	ug/L	<2.5	2.5		
Carbon tetrachloride	ug/L	<0.50	<0.50	1	
Chloroform	ug/L	<0.5	<0.5	1	
Chlorobenzene	ug/L	<0.50	<0.50	70	
Dichlorobenzene	ug/L	<0.50	<0.50	0.50	
Cic-1,2-Dichloroethene	ug/L	<0.50	<0.50	6	
cis-1,-3-Dichloropropene	ug/L	<0.50	<0.50	0.5	
1,3-Dichlorobenzene	ug/L	<0.50	<0.50	0.50	
Dichlorodifloromethane	ug/L	<0.50	<0.50	0.50	
Dibromochloromethane	ug/L	<0.5	<0.5	1	
Ethylbenzene	ug/L	<0.50	<0.50	300	
Ethylene dibromide	ug/L	<0.010	<0.010	0.05	
Hexachlorobenzene	ug/L	<0.20	<0.20	1	
Hexachlorocyclopentadiene	ug/L	<1.0	<1.0	50	
Hydroxide	ug/L	ND	ND		
Toluene-d8	ug/L	<.50	.50	150	
Total Trihalomethanes	ug/L	<2.0	<2.0	80	
Dibromoacetic Acid	ug/L	<1.0	<1.0	1	
Dichloroacetic Acid	ug/L	<1.0	<1.0	1	
Magnesium (Mg)	ug/L	9.3	9.3		
Molinate	ug/L	<0.50	<0.50	20	
Monobromoacetic Acid	ug/L	<1.0	<1.0	1	
Monochloroacetic Acid	ug/L	<1.0	<1.0	2	
Methyl t-butyl ether	ug/L	<0.50	<0.50	13	
Methylene chloride	ug/L	<0.50	<0.50	5	
pH, Laboratory	pH	8.09	8.09	<u> </u>	
Phosphate	ug/L	44	44		
Potassium (K)	ug/L ug/L	3.6	3.6		
Radium 226	pCi/L	ND	ND	1.0	
Radium 228	pCi/L	ND	ND ND	1.0	
Simazine	-	<0.30	<0.30	4	
Strontium 90	ug/L				
Styrene	pCi/L	ND -0.50	ND 10.50	2.0	
Thiobencarb	ug/L	<0.50	<0.50	100	
Tritium	ug/L	<0.50	<0.50	70	
Trichloroacetic Acid	pCi/L	ND	ND	1000	
	ug/L	<1.0	<1.0	1	
Trans-1,3-Dichloropropene	ug/L	<0.50	<0.50	0.5	
Trans-1,2-Dichloroethene	ug/L	<0.50	<0.50	10	

1,2-Dibromo-3- chloropropane	ug/L	<0.005	<0.010	0.20	
1,2-Dichloroethane-d4	%	96.1	96.1	125	
1,2-Dichlorobenzene	ug/L	<0.50	<0.50	600	
1,4-Dichlorobenzene	ug/L	<0.50	<0.50	5	
1,2-Dichloroethene	ug/L	<0.50	<0.50	5	
1,1-Dichloroethene	ug/L	<0.50	<0.50	0.50	
1,2-Dichloropropane	ug/L	<0.50	<0.50	5	
Total 1,3-Dichloropropane	ug/L	ND	<0.50	0.50	Well #2 & #3
1,1,2,2-Tetrachloroethane	ug/L	<0.50	<0.50	1	
Tetrachlorethene	ug/L	<0.50	<0.50	5	
Touene	ug/L	<0.50	<0.50	150	
Touene-8B	%	98.5	98.5	120	
1,2,4-Trichlorobenzine	ug/L	<0.50	<0.50	5	
1,1,1-Trichloroethane	ug/L	<0.50	<0.50	200	
1,1,2-Trichloroethane	ug/L	<0.50	<0.50	5	
Trichloroethene	ug/L	<0.50	<0.50	5	
Trichlorofluoromethane	ug/L	<0.50	<0.50	150	
1,12-Trichloro-1,2,2- trifluoroehahane	ug/L	<0.50	<0.50	1200	
4-Bromofluorobenzene	%	95.6	95.6	120	
2,3-Dibromopropionic acid	%	30.6	30.6	130	
Perchlorate	ug/L	<4.0	<4.0	ND	Well #3
Hexavalent Chromium	ug/L	<2.0, 2.7	<2.0- 2.7	10	
1,3-Dichlorpropene	ug/L	<.50	.5		
Vinyl chloride	ug/L	<0.50	<0.50	0.50	
Total Xylenes	ug/L	<0.50	<0.50	1750	

Special Language Section:

Nitrate: Nitrate in drinking water at levels above 45mg/L is a health risk for infants on less than six months of age. Such nitrate levels in drinking water can interfere with the capacity of the infant's blood to carry oxygen resulting in serious illness; symptoms include shortness of breath and blueness of the skin. Nitrate levels above 45 mg/L may also affect the ability of the blood to carry oxygen in other individuals, such as pregnant women and those with specific enzyme deficiencies. If you are caring for an infant, or you are pregnant, you should ask advice form your health car provider.

Nitrate levels may rise quickly for short periods of time because of rainfall or agricultural activity. **Arsenic:** While your drinking water meets the federal and state standard for arsenic, it does contain low levels of arsenic. The arsenic standard balances the current understanding of arsenic's possible health effects of low levels of arsenic, which is a mineral known to cause cancer in humans at high concentrations and is linked to other health effects such as skin damage and circulatory problems.

Lead: If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and plumbing. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using the water for drinking or cooking. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://wwwl.epa.gov/safewater.lead.