Consumer Confidence Report Certification Form

(to be submitted with a copy of the CCR)

(to certify electronic delivery of the CCR, use the certification form on the State Water Board's website at $\underline{ http://www.swrcb.ca.gov/drinking_water/certlic/drinkingwater/CCR.shtml) }$

Water Sy	ystem Nai	ne:	SIERRA KING	HOMEOWNERS ASSN							
Water Sy	ystem Nu	mber:	CA5400940								
07/01/202 certifies	that the in	(da nforma	ate) to customers	certifies that its Consumer C rs (and appropriate notices of in the report is correct and Resources Control Board, I	of availability l consistent wit	nave been given). Furth h the compliance moni	ner, the system				
Certifie	d By:	Nam	e:	Malinee Crapsey							
	Signature:		ature:	m C	0						
		Title:		Board President, SKHA							
		Phon	e Number:	(559) 769-5110		Date: 6/29/2023					
that appl	y and fill- CR was d	in whe	ere appropriate: ated by mail or o	good-faith efforts taken, plea other direct delivery method and managers of short-tern	s. Specify othe	,	-				
				reach non-bill paying custo embers are bill-paying.	mers. Those e	fforts included the follo	owing				
	Post	ed the	e CCR on the int	ternet at http://							
	Mai	led the	e CCR to postal j	patrons within the service a	rea (attach zij	codes used)					
	Adv	ertised	d the availability	of the CCR in news media	(attach a copy	of press release)					
	— bubi	lished	notice, including	a local newspaper of general g name of the newspaper ar	nd date publis	hed)					
	Post	ed the	e CCR in public j	places (attach a list of locati	ions) Posted	on SKHA community mond Drive and Sierra	bulletin board a King.				
	Deli	very o	f multiple copies	s of CCR to single bill addre nesses, and schools			3				
	Deli	very to	o community org	ganizations (attach a list of o	organizations)						
	Oth	er (att	ach a list of othe	er methods used)							
	5			,000 persons: Posted CCR or							
				vered the CCR to the Califor							

2022 Consumer Confidence Report

Water System Name: SIERRA KING HOMEOWNERS ASSN Report Date: May 2023

We test the drinking water quality for many constituents as required by state and federal regulations. This report shows the results of our monitoring for the period of January 1 - December 31, 2022.

Este informe contiene información muy importante sobre su agua potable. Tradúzcalo ó hable con alquien que lo entienda bien.

Type of water source(s) in use: According to SWRCB records, Well 01 - RAW and WELL 02 - RAW are Groundwater. This Assessment was done using the Default Groundwater System Method. Well 01 - RAW and Well 02 - RAW alternate to provide water to residences.

Your water comes from 2 source(s): WELL 01 - RAW and WELL 02 - RAW

Opportunities for public participation in decisions that affect drinking water quality: Members are invited to monthly board meetings. An annual members meeting is held yearly (almost no attendees). Members have been given contact information for all board members. Since COVID, there have been no annual meetings or in-person board meetings, so members have been invited in writing to contact any board member with questions. When there are questions or issues, a newsletter/update is included in the quarterly billing mailed to all members, with contact information.

For more information about this report, or any questions relating to your drinking water, please call (559) 769-5110 and ask for Malinee Crapsey or email mcrapsey3@gmail.com.

TERMS USED IN THIS REPORT

Maximum Contaminant Level (MCL): The highest level of contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs (or MCLGs) as is economically feasible. Secondary MCLs are set to protect the odor, taste, and appearance of drinking water.

Maximum Contaminant Level Goal (MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the U.S. Environmental Protection Agency (USEPA).

Public Health Goal (PHG): The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California Environmental Protection Agency.

Maximum Residual Disinfectant Level (MRDL): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Maximum Residual Disinfectant Level Goal (MRDLG): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

Primary Drinking Water Standards (PDWS): MCLs and MRDLs for the contaminants that affect health along with their monitoring and reporting requirements, and water treatment requirements.

Secondary Drinking Water Standards (SDWS): MCLs for the contaminants that affect taste, odor, or appearance of the drinking water. Contaminants with SDWSs do not affect the health at the MCL levels.

Treatment Technique (TT): A required process intended to reduce the level of a contaminant in drinking water.

Regulatory Action Level (AL): The concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow.

Level 1 Assessment: A Level 1 assessment is a study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system.

Level 2 Assessment: A Level 2 assessment is a very detailed study of the water system to identify potential problems and determine (if possible) why an E. coli MCL violation has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions.

ND: not detectable at testing limit

mg/L: milligrams per liter or parts per million (ppm)

ug/L: micrograms per liter or parts per billion (ppb)

pCi/L: picocuries per liter (a measure of radiation)

NTU: Nephelometric Turbidity Units

umhos/cm: micro mhos per centimeter

The sources of drinking water: (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include:

- *Microbial contaminants*, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- *Inorganic contaminants*, such as salts and metals, that can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- *Pesticides and herbicides,* that may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses.
- Organic chemical contaminants, including synthetic and volatile organic chemicals, that are by-products if industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, agricultural application, and septic systems.
- Radioactive contaminants, that can be naturally-occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, the USEPA and the State Water Resource Control Board (State Water Board) prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. State Water Board regulations also establish limits for contaminants in bottled water that provide the same protection for public health.

Tables 1, 2, 3, 4, 5, 6 and 7 list all of the drinking water contaminants that were detected during the most recent sampling for the constituent. The presence of these contaminants in the water does not necessarily indicate that the water poses a health risk. The State Water Board allows us to monitor for certain contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of the data, though representative of the water quality, are more than one year old.

Any violation of MCL, AL or MRDL is highlighted. Additional information regarding the violation is provided later in this report.

Tabl	Table 1 - SAMPLING RESULTS SHOWING THE DETECTION OF LEAD AND COPPER										
Lead and Copper (complete if lead or copper detected in last sample set)	Sample Date	No. of Samples	90th percentile level detected	No. Sites Exceeding AL	AL	PHG	Typical Sources of Contaminant				
Copper (mg/L)	(2022)	5	0.08	0	1.3	.3	Internal corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives				

	Table 2 - SAMPLING RESULTS FOR SODIUM AND HARDNESS											
Chemical or Constituent (and reporting units)			Typical Sources of Contaminant									
Sodium (mg/L)	(2020 - 2022)	19	18 - 20	none		Salt present in the water and is generally naturally occurring						
Hardness (mg/L)	(2020 - 2022)	122	119 - 125	none	nono	Sum of polyvalent cations present in the water, generally magnesium and calcium, and are usually naturally occurring						

Table 3 - D	Table 3 - DETECTION OF CONTAMINANTS WITH A <u>PRIMARY</u> DRINKING WATER STANDARD										
Chemical or Constituent (and reporting units)	Sample Date	Average Level Detected	Range of MCL [MRDL]		PHG (MCLG) [MRDLG]	Typical Sources of Contaminant					
Arsenic (ug/L)	(2020 - 2022)	12	5 - 18	10		Erosion of natural deposits; runoff from orchards, glass and electronics production wastes					

Fluoride (mg/L)	(2020 - 2022)	0.4	0.2 - 0.5	2	1	Erosion of natural deposits; water additive that promotes strong teeth; discharge from fertilizer and aluminum factories.
Nitrate + Nitrite as N (mg/L)	(2020 - 2022)	ND	ND - 0.5	10	10	Runoff and leaching from fertilizer use; leaching from septic tanks and sewage; erosion of natural deposits
Gross Alpha (pCi/L)	(2020)	3.06	2.35 - 3.76	15	(0)	Erosion of natural deposits.
Uranium (pCi/L)	(2017 - 2019)	7	2.80 - 17.1	20	0.43	Erosion of natural deposits

Table 4 - DET	Table 4 - DETECTION OF CONTAMINANTS WITH A <u>SECONDARY</u> DRINKING WATER STANDARD											
Chemical or Constituent (and reporting units)	Sample Date	Average Level Detected	Range of Detections	MCL PHG (MCLG) Typical Sources of Conta		Typical Sources of Contaminant						
Chloride (mg/L)	(2020 - 2022)	20	9 - 30	500	n/a	Runoff/leaching from natural deposits; seawater influence						
Color (Units)	(2022)	22	n/a	15	n/a	Naturally-occurring organic materials						
Iron (ug/L)	(2022)	230	n/a	300	n/a	Leaching from natural deposits; Industrial wastes						
Specific Conductance (umhos/cm)	(2020 - 2022)	401	381 - 421	1600	n/a	Substances that form ions when in water; seawater influence						
Sulfate (mg/L)	(2020 - 2022)	21.3	10.9 - 31.7	500	n/a	Runoff/leaching from natural deposits; industrial wastes						
Total Dissolved Solids (mg/L)	(2020 - 2022)	250	220 - 280	1000	n/a	Runoff/leaching from natural deposits						
Turbidity (NTU)	(2020 - 2022)	3.8	0.1 - 7.5	5	n/a	Soil runoff						
Zinc (mg/L)	(2020 - 2022)	0.81	0.07 - 1.54	5	n/a	Runoff/leaching from natural deposits						

Table 5 - DETECTION OF UNREGULATED CONTAMINANTS										
Chemical or Constituent (and reporting units)	Sample Date	Average Level Range of Detections		Notification Level	Typical Sources of Contaminant					
Vanadium (ug/L)	(2022)	4	n/a	50	Vanadium exposures resulted in developmental and reproductive effects in rats.					

Table 6 - ADDITIONAL DETECTIONS										
Chemical or Constituent (and reporting units)	Sample Date	Average Level Detected	Range of Detections	Notification Level	Typical Sources of Contaminant					
Calcium (mg/L)	(2020 - 2022)	35	33 - 37	n/a	n/a					
Magnesium (mg/L)	(2020 - 2022)	9	8 - 9	n/a	n/a					
pH (units)	(2020 - 2022)	6.91	6.82 - 7.0	n/a	n/a					
Alkalinity (mg/L)	(2020 - 2022)	135	130 - 140	n/a	n/a					
Aggressiveness Index	(2020 - 2022)	11	10.9 - 11.1	n/a	n/a					
Langelier Index	(2020 - 2022)	-0.9	-1.00.7	n/a	n/a					

Table	Table 7 - DETECTION OF DISINFECTANT/DISINFECTANT BYPRODUCT RULE											
Chemical or Constituent (and reporting units)	Sample Date	Average Level Detected	Range of Detections	MCL (MRDL)	PHG (MCLG)	Violation	Typical Sources of Contaminant					
Total Trihalomethanes (TTHMs) (ug/L)	(2022)	6	n/a	80	n/a		By-product of drinking water disinfection					
Chlorine (mg/L)	(2021)	0.51	.2277	4.0	4.0	No	Drinking water disinfectant added for treatment.					
Haloacetic Acids (five) (ug/L)	(2022)	2	n/a	60	n/a		By-product of drinking water disinfection					

Additional General Information on Drinking Water

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts if some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the USEPA's Safe Drinking Water Hotline (1-800-426-4791).

Some people may be more vulnerable to contaminants in drinking water than the general population. Immunocompromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. USEPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* and other microbial contaminants are available from the Safe Drinking Water Hotline (1-800-426-4791).

Lead Specific Language for Community Water Systems: If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with the service lines and home plumbing. *Sierra King Homeowners Assoc.* is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/lead.

Summary Information for Violation of a MCL, MRDL, AL, TT, or Monitoring and Reporting Requirement

VIOLATION (OF A MCL,MRDL,AL,TT, OR I	MONITORING A	AND REPORTING	REQUIREMENT
Violation	Explanation	Duration	Actions Taken To Correct the Violation	Health Effects Language
sampled annually for it. On that day, the aver-	The level is based on a running average of both wells at the time of sampling. The highest level came from Well 01, which is not in use (Well 02 is currently supplying the system). Arsenic is not uncommon in wells in igneous rock.	ularly tests positive for low levels of arsenic and meet Califor- nia health	ing will be done asap to determine if the higher reading was due to temporary conditions or is recur-	Some people who drink water containing arsenic in excess of the MCL over many years could experience skin damage or problems with their circulatory system, and may have an increased risk of getting cancer.
Color	Observed once; has not recurred.	06/03/2022 on Well 01 sample only	steps to take.	Color was found at levels that exceed the secondary MCL. The color MCL was set to protect you against unpleasant aesthetic affects due to color. Violating this MCL does not pose a risk to public health.

Turbidity	Observed on one sample; has not recurred. Water is disinfected with hypochlorite. No health effects were reported	06/03/2022 on Well 01 sample only	-	Turbidity is Secondary Drinking Water Standards and has found no health effects. However, high levels of turbidity can interfere with disinfection and provide a medium for microbial growth. Turbidity may indicate the presence of disease-causing organisms. These organisms include bacteria, viruses, and parasites that can cause symptoms such as nausea, cramps, diarrhea and associated headaches.
-----------	---	---	--------------	---

About your Arsenic: The arsenic standard balances the current understanding of arsenic's possible health effects against the costs of removing arsenic from drinking water. The U.S. Environmental Protection Agency continues to research the health effects of low levels of arsenic, which is a mineral known to cause cancer in humans at high concentrations and is linked to other health effects such as skin damage and circulatory problems.

2022 Consumer Confidence Report

Drinking Water Assessment Information

Assessment Information

A source water assessment was conducted for the WELL 01 - RAW of the SIERRA KING HOMEOWNERS ASSN. water system in August, 2002. A source water assessment was completed for the WELL 02 - RAW of the SIERRA KING HOMEOWNERS ASSN. water system in February, 2017.

WELL 01 - RAW - is considered most vulnerable to the following activities not associated with any detected contaminants:

Septic systems - low density [<1/acre]

WELL 02 - RAW - is considered most vulnerable to the following activities not associated with any detected contaminants:

Septic systems - low density [<1/acre]

Discussion of Vulnerability

The activity to which the Sierra King Homeowners Association water system is most vulnerable is septic systems. It is important that septic systems be kept in good repair and pumped regularly. It is also necessary to keep the well site clean and free of weeds and debris to prevent contamination. The cement surface seal needs to be checked for cracks and immediately repaired or sealed. Assessment summaries are not available for some sources.

Acquiring Information

The system is no longer overseen by Tulare County. It is now under the purview of the California State Water Resources Control Board, Division of Drinking Water, under Domestic Water Supply Permit No. 03-24-15P-024 as a D1 distribution system.

Per Kevin Bangsund of Tulare County Environmental Health Services Division, 559-624-7405, the county no longer has any documents pertaining to this system; they were turned over to the state several years ago.

A copy of the complete assessment may be viewed through: State Water Resources Control Board
Division of Drinking Water
265 W. Bullard Ave., Suite 101
Fresno, CA 93704
Or contact Lewis Sutfin, VP & DO for SKHA
lsutfin@yahoo.com

Sierra King Homeowners Assoc. Analytical Results By FGL - 2022

	LEAD AND COPPER RULE										
	Units	MCLG	CA-MCL	PHG	Sampled	Result	90th Percentile	# Samples			
Copper	mg/L		1.3	.3			0.08	5			
Avalos -45257 Hammond	VI 2245980-4	mg/L				2022-08-08	ND				
Conover/Nevarez-45059 Sierra K	VI 2245980-3	mg/L				2022-08-08	0.07				
Crapsey -45292 Hammond	VI 2245980-5	mg/L				2022-08-08	ND				
Sutfin-45108 Crest Lane	VI 2245980-1	mg/L				2022-08-08	ND				
Werner-44946 Sierra King	VI 2245980-2	mg/L				2022-08-08	0.09				

SAMPLING RESULTS FOR SODIUM AND HARDNESS										
	Units	MCLG	CA-MCL	PHG	Sampled	Result	Avg. Result(a)	Range (b)		
Sodium		mg/L		none	none			19	18 - 20	
WELL 01 - RAW	VI 2243432-1	mg/L				2022-05-12	18			
WELL 02 - RAW	VI 2043704-1	mg/L				2020-05-21	20			
Hardness		mg/L		none	none			122	119 - 125	
WELL 01 - RAW	VI 2243432-1	mg/L				2022-05-12	119			
WELL 02 - RAW	VI 2043704-1	mg/L				2020-05-21	125			

	PRIMA	RY DRIN	KING WA	TER STAN	DARDS ((PDWS)			
		Units	MCLG	CA-MCL	PHG	Sampled	Result	Avg. Result(a)	Range (b)
Arsenic		ug/L		10	0.004			12	5 - 18
WELL 01 - RAW	VI 2243432-1	ug/L				2022-05-12	18		
WELL 02 - RAW	VI 2043704-1	ug/L				2020-05-21	5		
Fluoride		mg/L		2	1			0.4	0.2 - 0.5
WELL 01 - RAW	VI 2243432-1	mg/L				2022-05-12	0.2		
WELL 02 - RAW	VI 2043704-1	mg/L				2020-05-21	0.5		
Nitrate + Nitrite as N		mg/L		10	10			ND	ND - 0.5
WELL 01 - RAW	VI 2243432-1	mg/L				2022-05-12	ND		
WELL 02 - RAW	VI 2043704-1	mg/L				2020-05-21	0.5		
Gross Alpha	-	pCi/L		15	(0)			3.06	2.35 - 3.76
WELL 01 - RAW	VI 2043705-1	pCi/L				2020-05-21	2.35		
WELL 02 - RAW	VI 2041751-1	pCi/L				2020-03-09	3.76		
Uranium		pCi/L		20	0.43			7.03	2.80 - 17.1
WELL 01 - RAW	VI 1741211-1	pCi/L				2017-05-09	17.1		
WELL 02 - RAW	VI 1945636-1	pCi/L				2019-09-24	2.80		
WELL 02 - RAW	VI 1943138-1	pCi/L				2019-06-25	2.89		
WELL 02 - RAW	VI 1941216-1	pCi/L				2019-03-20	5.34		

	SECON	DARY DRINK	CING WA	TER STANI	DARDS	(SDWS)			
		Units	MCLG	CA-MCL	PHG	Sampled	Result	Avg. Result(a)	Range (b)
Chloride		mg/L		500	n/a			20	9 - 30
WELL 01 - RAW	VI 2243432-1	mg/L				2022-05-12	30		
WELL 02 - RAW	VI 2043704-1	mg/L				2020-05-21	9		
Color	=	Units		15	n/a			22	22 - 22
WELL 01 - RAW	VI 2243025-1	Units				2022-06-03	22		
Iron	-	ug/L		300	n/a			230	230 - 230
WELL 01 - RAW	VI 2243432-1	ug/L				2022-05-12	230		
Specific Conductance	-	umhos/cm		1600	n/a			401	381 - 421
WELL 01 - RAW	VI 2243432-1	umhos/cm				2022-05-12	421		
WELL 02 - RAW	VI 2043704-1	umhos/cm				2020-05-21	381		
Sulfate		mg/L		500	n/a			21.3	10.9 - 31.7
WELL 01 - RAW	VI 2243432-1	mg/L				2022-05-12	10.9		

WELL 02 - RAW	VI 2043704-1	mg/L			2020-05-21	31.7		
Total Dissolved Solids		mg/L	1000	n/a			250	220 - 280
WELL 01 - RAW	VI 2243432-1	mg/L			2022-05-12	280		
WELL 02 - RAW	VI 2043704-1	mg/L			2020-05-21	220		
Turbidity		NTU	5	n/a			3.8	0.1 - 7.5
WELL 01 - RAW	VI 2243025-1	NTU			2022-06-03	7.5		
WELL 02 - RAW	VI 2043704-1	NTU			2020-05-21	0.1		
Zinc		mg/L	5	n/a			0.81	0.07 - 1.54
WELL 01 - RAW	VI 2243432-1	mg/L			2022-05-12	1.54		
WELL 02 - RAW	VI 2043704-1	mg/L			2020-05-21	0.07		

UNREGULATED CONTAMINANTS									
Units MCLG CA-MCL PHG Sampled Result Avg. Range (b)									
Vanadium	ug/L		NS	n/a			4	4 - 4	
WELL 01 - RAW VI 2243432-1 ug/L 2022-05-12 4									

		ADI	DITIONAL	DETECTIO	NS				
		Units	MCLG	CA-MCL	PHG	Sampled	Result	Avg. Result(a)	Range (b)
Calcium		mg/L			n/a			35	33 - 37
WELL 01 - RAW	VI 2243432-1	mg/L				2022-05-12	33		
WELL 02 - RAW	VI 2043704-1	mg/L				2020-05-21	37		
Magnesium		mg/L			n/a			9	8 - 9
WELL 01 - RAW	VI 2243432-1	mg/L				2022-05-12	9		
WELL 02 - RAW	VI 2043704-1	mg/L				2020-05-21	8		
рН		units			n/a			6.91	6.82 - 7.0
WELL 01 - RAW	VI 2243432-1	units				2022-05-12	6.82		
WELL 02 - RAW	VI 2043704-1	units				2020-05-21	7.0		
Alkalinity	=	mg/L			n/a			135	130 - 140
WELL 01 - RAW	VI 2243432-1	mg/L				2022-05-12	130		
WELL 02 - RAW	VI 2043704-1	mg/L				2020-05-21	140		
Aggressiveness Index	-				n/a			11.0	10.9 - 11.1
WELL 01 - RAW	VI 2243432-1					2022-05-12	10.9		
WELL 02 - RAW	VI 2043704-1					2020-05-21	11.1		
Langelier Index					n/a			-0.9	-1.00.7
WELL 01 - RAW	VI 2243432-1					2022-05-12	-1.0		
WELL 02 - RAW	VI 2043704-1					2020-05-21	-0.7		

	DETECTION OF DISINFECTANT/DISINFECTANT BYPRODUCT RULE										
		Units	MCLG	CA-MCL	PHG	Sampled	Result	Avg. Result(a)	Range (b)		
Total Trihalomethanes (TTHMs)		ug/L		80	n/a			6	6 - 6		
ST2S1 - 45247 HAMMOND DR	VI 2247248-1	ug/L				2022-09-14	6				
Average ST2S1 - 45247 HAMMOND DR								6			
Chlorine		mg/L		4.0	4.0			0.51	.2277		
45219 Hammond	VI 2142866-1	mg/L				2021-04-19	.22				
45219 Hammond	VI 2141873-1	mg/L				2021-03-11	.77				
45219 Hammond	VI 2140975-1	mg/L				2021-02-09	0.64				
45219 Hammond	VI 2140319-1	mg/L				2021-01-14	0.41				
Average 45219 Hammond								0.51			
Haloacetic Acids (five)		ug/L		60	n/a			2	2 - 2		
ST2S1 - 45247 HAMMOND DR	VI 2247248-1	ug/L				2022-09-14	2				
Average ST2S1 - 45247 HAMMOND DR								2			

Sierra King Homeowners Assoc. CCR Login Linkage - 2022

FGL Code	Lab ID	Date_Sampled	Method	Description	Property
45108CrestLn	VI 2240282-3	2022-01-13	Coliform	45108 Crest Lane	Drinking Water Monitoring
	VI 2240909-3	2022-02-09	Coliform	45108 Crest Lane	Drinking Water Monitoring
	VI 2241726-3	2022-03-14	Coliform	45108 Crest Lane	Drinking Water Monitoring
	VI 2242854-3	2022-04-21	Coliform	45108 Crest Lane	Drinking Water Monitoring
	VI 2243569-3	2022-05-18	Coliform	45108 Crest Lane	Drinking Water Monitoring
	VI 2243553-3	2022-06-03	Coliform	45108 Crest Lane	Drinking Water Monitoring
	VI 2244197-1	2022-06-13	Coliform	45108 Crest Lane	Drinking Water Monitoring
	VI 2245320-3	2022-07-14	Coliform	45108 Crest Lane	Drinking Water Monitoring
	VI 2246420-3	2022-08-18	Coliform	45108 Crest Lane	Drinking Water Monitoring
	VI 2247246-3	2022-09-14	Coliform	45108 Crest Lane	Drinking Water Monitoring
	VI 2248082-3	2022-10-13	Coliform	45108 Crest Lane	Drinking Water Monitoring
	VI 2248857-3	2022-11-09	Coliform	45108 Crest Lane	Drinking Water Monitoring
	VI 2249779-3	2022-12-15	Coliform	45108 Crest Lane	Drinking Water Monitoring
45215 Hammond	VI 2244197-2	2022-06-13	Coliform	45215 Hammond	Drinking Water Monitoring
	VI 2244290-1	2022-06-15	Coliform	45215 Hammond	Sierra King Water Analysis
	VI 2247001-1	2022-09-06	Coliform	45215 Hammond	Bacti Monitoring
	VI 2247049-1	2022-09-07	Coliform	45215 Hammond	Bacti Repeats 2
45218Hammond	VI 2247001-2	2022-09-06	Coliform	45218 Hammond	Bacti Monitoring
	VI 2247049-2	2022-09-07	Coliform	45218 Hammond	Bacti Repeats 2
45219Hammond	VI 2140319-1	2021-01-14	Field Test	45219 Hammond	Drinking Water Monitoring
	VI 2140975-1	2021-02-09	Field Test	45219 Hammond	Drinking Water Monitoring
	VI 2141873-1	2021-03-11	Field Test	45219 Hammond	Drinking Water Monitoring
	VI 2142866-1	2021-04-19	Field Test	45219 Hammond	Drinking Water Monitoring
	VI 2240282-1	2022-01-13	Coliform	45219 Hammond	Drinking Water Monitoring
	VI 2240909-1	2022-02-09	Coliform	45219 Hammond	Drinking Water Monitoring
	VI 2241726-1	2022-03-14	Coliform	45219 Hammond	Drinking Water Monitoring
	VI 2242854-1	2022-04-21	Coliform	45219 Hammond	Drinking Water Monitoring
	VI 2243569-1	2022-05-18	Coliform	45219 Hammond	Drinking Water Monitoring
	VI 2243553-1	2022-06-03	Coliform	45219 Hammond	Drinking Water Monitoring
	VI 2245320-1	2022-07-14	Coliform	45219 Hammond	Drinking Water Monitoring
	VI 2246420-1	2022-08-18	Coliform	45219 Hammond	Drinking Water Monitoring
	VI 2247246-1	2022-09-14	Coliform	45219 Hammond	Drinking Water Monitoring
	VI 2248082-1	2022-10-13	Coliform	45219 Hammond	Drinking Water Monitoring
	VI 2248857-1	2022-11-09	Coliform	45219 Hammond	Drinking Water Monitoring
	VI 2249779-1	2022-12-15	Coliform	45219 Hammond	Drinking Water Monitoring
45247 Hammond D	VI 2247001-3	2022-09-06	Coliform	45247 Hammond	Bacti Monitoring
45257 Hammond B	VI 2244197-3	2022-06-13	Coliform	45257 Hammond	Drinking Water Monitoring
45257 Hammond	VI 2247049-3	2022-09-07	Coliform	45257 Hammond	Bacti Repeats 2
45292 Hammond	VI 2247043 3	2022-09-06	Coliform	45292 Hammond	Bacti Monitoring
10232 Hummond	VI 2247049-4	2022-09-07	Coliform	45292 Hammond	Bacti Repeats 2
45441 Hammond	VI 2244197-4	2022-06-13	Coliform	45441 Hammond	Drinking Water Monitoring
10111 Hummond	VI 2244290-2	2022-06-15	Coliform	45441 Hammond	Sierra King Water Analysis
45852 Mineral K	VI 2244290 2	2022-06-13	Coliform	45852 Mineral King	Drinking Water Monitoring
45052 Millerar K	VI 2244290-3	2022-06-15	Coliform	45852 Mineral King	Sierra King Water Analysis
Avalos -45257 H	VI 2245980-4	2022-08-08	Metals, Total	Avalos -45257 Hammond	Copper & Lead Monitoring
Conover/Nevarez	VI 2245980-4 VI 2245980-3	2022-08-08	Metals, Total	Conover/Nevarez-45059 Sierra K	
Crapsey -45292	VI 2245980-5	2022-08-08	Metals, Total	Crapsey -45292 Hammond	Copper & Lead Monitoring Copper & Lead Monitoring
DBP	VI 2247248-1	2022-08-08	EPA 551.1	ST2S1 - 45247 HAMMOND DR	DBP Monitoring
ועע	VI 2247248-1	2022-09-14	EPA 552.2	ST2S1 - 45247 HAMMOND DR	DBP Monitoring
Sutfin-45108 Cr	VI 2247248-1 VI 2245980-1	2022-09-14	Metals, Total	Sutfin-45108 Crest Lane	Copper & Lead Monitoring
WELL 01	VI 2243980-1 VI 1741211-1	2022-08-08	Radio Chemistry	WELL 01 - RAW	Well 01 Radio Monitoring
WEEL VI	VI 1741211-1 VI 2043705-1	2017-05-09	Radio Chemistry Radio Chemistry	WELL 01 - RAW	Well 01 Radio Monitoring Well 01 Radio Monitoring
	VI 2243432-1	2020-03-21	General Mineral	WELL 01 - RAW WELL 01 - RAW	-
					Well 01 Quality Monitoring
	VI 2243432-1	2022-05-12	Metals, Total	WELL 01 - RAW	Well 01 Quality Monitoring
l	VI 2243025-1	2022-06-03	Wet Chemistry	WELL 01 - RAW	Well 01 Quality Monitoring

WELL 02	VI 1941216-1	2019-03-20	Metals, Total	WELL 02 - RAW	Well 02 Radio Monitoring
	VI 1943138-1	2019-06-25	Metals, Total	WELL 02 - RAW	Well 02 Radio Monitoring
	VI 1945636-1	2019-09-24	Metals, Total	WELL 02 - RAW	Well 02 Radio Monitoring
	VI 2041751-1	2020-03-09	Radio Chemistry	WELL 02 - RAW	Well 02 Radio Monitoring
	VI 2043704-1	2020-05-21	General Mineral	WELL 02 - RAW	Well 02 Quality Monitoring
	VI 2043704-1	2020-05-21	Metals, Total	WELL 02 - RAW	Well 02 Quality Monitoring
	VI 2043704-1	2020-05-21	Wet Chemistry	WELL 02 - RAW	Well 02 Quality Monitoring
Werner-44946 Si	VI 2245980-2	2022-08-08	Metals, Total	Werner-44946 Sierra King	Copper & Lead Monitoring