Consumer Confidence Report Certification Form

(to be submitted with a copy of the CCR)

(to certify electronic delivery of the CCR, use the certification form on the State Water Board's website at <u>http://www.swrcb.ca.gov/drinking_water/certlic/drinkingwater/CCR.shtml</u>)

Water System Name:	SIERRA KING HOMEOWNERS ASSN
Water System Number:	5400940

 The water system named above hereby certifies that its Consumer Confidence Report was distributed on

 July 1, 2021 (date) to customers (and appropriate notices of availability have been given). Further, the system certifies that the information contained in the report

 'ith the compliance monitoring data previously submitted to the State Water Resources C

Certified By:	Name:	Malinee Crapsey				
	Signature:	Maline Crapsey				
	Title:	President of the Board, Sierra Kings Homeowners Association				
	Phone Number:	(559) 769-5110	Date: 6/20/21			

To summarize report delivery used and good-faith efforts taken, please complete the form below by checking all items that apply and fill-in where appropriate:

CCR was distributed by mail or other direct delivery methods. Specify other direct delivery methods used:

e-mail

XX

"Good faith" efforts were used to reach non-bill paying customers. Those efforts included the following methods:

Posted the CCR on the internet at http://	
I Usted the CON on the internet at http://	

Mailed the CCR to postal patrons within the service area (attach zip codes used)

Advertised the availability of the CCR in news media (attach a copy of press release)

Publication of the CCR in a local newspaper of general circulation (attach a copy of the published notice, including name of the newspaper and date published)

Posted the CCR in public places (attach a list of locations) SKHA neighborhood bulletin board

]	Delivery of multiple copies of CCR to single bill addresses serving several persons,
	such as apartments, businesses, and schools

Delivery to community organizations (attach a list of organizations)

Other (attach a list of other methods used)

For systems serving at least 100,000 persons: Posted CCR on a publicly-accessible internet site
at the following address: http://

For investor-owned utilities: Delivered the CCR to the California Public Utilities Commission

(This form is provided as a convenience and may be used to meet the certification requirement of section 64483(c), California Code of Regulations.)

2020 Consumer Confidence Report

Water System Name: SIERRA KING HOMEOWNERS ASSN

Report Date:

March 2021

We test the drinking water quality for many constituents as required by state and federal regulations. This report shows the results of our monitoring for the period of January 1 - December 31, 2020.

Este informe contiene información muy importante sobre su agua potable. Tradúzcalo ó hable con alquien que lo entienda bien.

Type of water source(s) in use: According to SWRCB records, Well 01 is Groundwater. This Assessment was done using the Default Groundwater System Method. Well 01 and Well 02, both Groundwater, alternate to provide water to residences.

Your water comes from 2 source(s): Well 01 and Well 02

Opportunities for public participation in decisions that affect drinking water quality: Members are invited to monthly board meetings. An annual members meeting is held yearly (almost no attendees). Members have been given contact information for all board members. Since COVID, there have been no annual meetings or in-person board meetings, so members have been invited in writing to contact any board member with questions. When there are questions or issues, a newsletter/update is included in the quarterly billing mailed to all members, with contact information.

For more information about this report, or any questions relating to your drinking water, please call (559) 769-5110 and ask for Malinee Crapsey or email <u>mcrapsey3@gmail.com</u>.

TERMS USED IN THIS REPORT								
Maximum Contaminant Level (MCL): The highest level of contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs (or MCLGs) as is economically feasible. Secondary MCLs are set to protect the odor, taste, and appearance of drinking	Secondary Drinking Water Standards (SDWS): MCLs for the contaminants that affect taste, odor, or appearance of the drinking water. Contaminants with SDWSs do not affect the health at the MCL levels.							
water.	Treatment Technique (TT): A required process intended to reduce the level of a contaminant in drinking water.							
Maximum Contaminant Level Goal (MCLG): The								
level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the U.S. Environmental Protection Agency (USEPA).	Regulatory Action Level (AL): The concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow.							
Public Health Goal (PHG): The level of a contaminant in drinking water below which there is no known or	Level 1 Assessment: A Level 1 assessment is a study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system.							
expected risk to health. PHGs are set by the California Environmental Protection Agency. Maximum Residual Disinfectant Level (MRDL): The	Level 2 Assessment: A Level 2 assessment is a very detailed study of the water system to identify potential problems and determine (if possible) why an E. coli MCL violation has occurred and/or why total							
highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial	coliform bacteria have been found in our water system on multiple occasions.							
contaminants.	ND: not detectable at testing limit							
Maximum Residual Disinfectant Level Goal (MRDLG): The level of a drinking water disinfectant	mg/L: milligrams per liter or parts per million (ppm)							
below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of	ug/L: micrograms per liter or parts per billion (ppb)							
disinfectants to control microbial contaminants.	pCi/L: picocuries per liter (a measure of radiation)							
Primary Drinking Water Standards (PDWS): MCLs	NTU: Nephelometric Turbidity Units							
and MRDLs for the contaminants that affect health along with their monitoring and reporting requirements, and water treatment requirements.	umhos/cm: micro mhos per centimeter							

The sources of drinking water: (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include:

- *Microbial contaminants,* such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- *Inorganic contaminants,* such as salts and metals, that can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- *Pesticides and herbicides,* that may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses.
- Organic chemical contaminants, including synthetic and volatile organic chemicals, that are by-products if industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, agricultural application, and septic systems.
- *Radioactive contaminants,* that can be naturally-occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, the USEPA and the State Water Resource Control Board (State Water Board) prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. State Water Board regulations also establish limits for contaminants in bottled water that provide the same protection for public health.

Tables 1, 2, 3, 4, 5, 6 and 7 list all of the drinking water contaminants that were detected during the most recent sampling for the constituent. The presence of these contaminants in the water does not necessarily indicate that the water poses a health risk. The State Water Board allows us to monitor for certain contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of the data, though representative of the water quality, are more than one year old.

Any violation of MCL, AL or MRDL is highlighted. Additional information regarding the violation is provided later in this report.

Tabl	Table 1 - SAMPLING RESULTS SHOWING THE DETECTION OF LEAD AND COPPER									
Lead and Copper (complete if lead or copper detected in last sample set)	Sample Date	No. of Samples	90th percentile level detected	No. Sites Exceeding AL	AL	PHG	Typical Sources of Contaminant			
Copper (mg/L)	(2019)	5	0.11	0	1.3	.3	Internal corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives			

Table 2 - SAMPLING RESULTS FOR SODIUM AND HARDNESS								
Chemical or Constituent (and reporting units)	Sample Date	Average Level Detected	Range of Detections	MCL	PHG (MCLG)	Typical Sources of Contaminant		
Sodium (mg/L)	(2019 - 2020)	24	20 - 27	none	none	Salt present in the water and is generally naturally occurring		
Hardness (mg/L)	(2019 - 2020)	130	125 - 134	none	none	Sum of polyvalent cations present in the water, generally magnesium and calcium, and are usually naturally occurring		

Table 3 - D	Table 3 - DETECTION OF CONTAMINANTS WITH A PRIMARY DRINKING WATER STANDARD								
Chemical or Constituent (and reporting units)	Sample Date	Average Level Detected	Range of Detections	MCL [MRDL]	PHG (MCLG) [MRDLG]	Typical Sources of Contaminant			
Arsenic (ug/L)	(2019 - 2020)	6	5 - 6	10	0.004	Erosion of natural deposits; runoff from orchards, glass and electronics production wastes			

Fluoride (mg/L)	(2019 - 2020)	0.6	0.5 - 0.7	2	1	Erosion of natural deposits; water additive that promotes strong teeth; discharge from fertilizer and aluminum factories.
Nitrate as N (mg/L)	(2020)	0.5	0.4 - 0.5	10	10	Runoff and leaching from fertilizer use; leaching from septic tanks and sewage; erosion of natural deposits
Nitrate + Nitrite as N (mg/L)	(2019 - 2020)	0.9	0.5 - 1.3	10	10	Runoff and leaching from fertilizer use; leaching from septic tanks and sewage; erosion of natural deposits
Gross Alpha (pCi/L)	(2020)	3.06	2.35 - 3.76	15	(0)	Erosion of natural deposits.
Uranium (pCi/L)	(2017 - 2019)	7	2.80 - 17.1	20	0.43	Erosion of natural deposits
Total Radium 228 (pCi/L)	(2020)	0.923	ND - 1.68	none	n/a	Erosion of natural deposits

Table 4 - DETE	Table 4 - DETECTION OF CONTAMINANTS WITH A SECONDARY DRINKING WATER STANDARD									
Chemical or Constituent (and reporting units)	Sample Date	Average Level Detected	Range of Detections	MCL	PHG (MCLG)	Typical Sources of Contaminant				
Chloride (mg/L)	(2019 - 2020)	11	9 - 13	500	n/a	Runoff/leaching from natural deposits; seawater influence				
Odor Threshold at 60 °C (TON)	(2020)	4	ND - 8	3	n/a	Naturally-occurring organic materials.				
Specific Conductance (umhos/cm)	(2019 - 2020)	371	360 - 381	1600	n/a	Substances that form ions when in water; seawater influence				
Sulfate (mg/L)	(2019 - 2020)	28.9	26.0 - 31.7	500	n/a	Runoff/leaching from natural deposits; industrial wastes				
Total Dissolved Solids (mg/L)	(2019 - 2020)	235	220 - 250	1000	n/a	Runoff/leaching from natural deposits				
Turbidity (NTU)	(2019 - 2020)	0.2	0.1 - 0.2	5	n/a	Soil runoff				
Zinc (mg/L)	(2019 - 2020)	0.54	0.07 - 1.01	5	n/a	Runoff/leaching from natural deposits				

Table 5 - DETECTION OF UNREGULATED CONTAMINANTS								
Chemical or Constituent (and reporting units)	Sample Date	Average Level Detected	Range of Detections	Notification Level	Typical Sources of Contaminant			
Boron (mg/L)	(2019 - 2020)	0.1	ND - 0.2	1	Boron exposures resulted in decreased fetal weight (developmental effects) in newborn rats.			
Vanadium (mg/L)	(2019 - 2020)	0.006	0.005 - 0.007	0.05	Vanadium exposures resulted in developmental and reproductive effects in rats.			

	Table 6 - ADDITIONAL DETECTIONS											
Chemical or Constituent (and reporting units)	Sample Date	Average Level Detected	Range of Detections	Notification Level	Typical Sources of Contaminant							
Calcium (mg/L)	(2019 - 2020)	38	37 - 39	n/a	n/a							
Magnesium (mg/L)	(2019 - 2020)	9	8 - 9	n/a	n/a							
pH (units)	(2019 - 2020)	6.9	6.7 - 7.0	n/a	n/a							
Alkalinity (mg/L)	(2019 - 2020)	135	130 - 140	n/a	n/a							
Aggressiveness Index	(2019 - 2020)	11	10.8 - 11.1	n/a	n/a							
Langelier Index	(2019 - 2020)	-0.9	-1.00.7	n/a	n/a							

T	Table 7 - DETECTION OF DISINFECTANT/DISINFECTANT BYPRODUCT RULE										
Chemical or Constituent (and reporting units)	Sample Date	Average Level Detected	Range of Detections	MCL (MRDL)	PHG (MCLG)	Violation	Typical Sources of Contaminant				
Chlorine (mg/L)	(2020)	0.56	0.33 - 0.81	4.0	4.0	No	Drinking water disinfectant added for treatment.				

Additional General Information on Drinking Water

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts if some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the USEPA's Safe Drinking Water Hotline (1-800-426-4791).

Some people may be more vulnerable to contaminants in drinking water than the general population. Immunocompromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. USEPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* and other microbial contaminants are available from the Safe Drinking Water Hotline (1-800-426-4791).

Lead Specific Language for Community Water Systems: If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with the service lines and home plumbing. *Sierra King Homeowners Assoc.* is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/lead.

Summary Information for Violation of a MCL, MRDL, AL, TT, or Monitoring and Reporting Requirement

VIOLATION C	OF A MCL,MRDL,AL,TT, OR N	MONITORING A	AND REPORTING	REQUIREMENT
Violation	Explanation	Duration	Actions Taken To Correct the Violation	Health Effects Language
Odor Threshold at 60 °C				Odor was found at levels that exceed the secondary MCL. The Odor MCL was set to protect you against unpleasant aesthetic affects such as color, taste, odor and the staining of plumbing fixtures (e.g., tubs and sinks), and clothing while washing. Violating this MCL does not pose a risk to public health.

About your Arsenic: For Arsenic detected above 5 ug/L (50% of the MCL) but below 10 ug/L: While your drinking water meets the federal and state standard for arsenic, it does contain low levels of arsenic. The arsenic standard balances the current understanding of arsenic's possible health effects against the costs of removing arsenic from drinking water. The U.S. Environmental Protection Agency continues to research the health effects of low levels of

arsenic, which is a mineral known to cause cancer in humans at high concentrations and is linked to other health effects such as skin damage and circulatory problems.

2020 Consumer Confidence Report

Drinking Water Assessment Information

Assessment Information

A source water assessment was conducted for the WELL 01 of the SIERRA KING HOMEOWNERS ASSN. water system in August, 2002.*A source water assessment has not been completed for the WELL 02 of the SIERRA KING HOMEOWNERS ASSN. water system. *Update from SKHA: A source water assessment for Well 02 was completed and submitted in 2017.

- Well 01 is considered most vulnerable to the following activities not associated with any detected contaminants: Septic systems - low density [<1/acre]
- Well 02 does not have a completed Source Water Assessment on file.*See Update, above.

Discussion of Vulnerability

The activity to which the Sierra King Homeowners Association water system is most vulnerable is septic systems. It is important that septic systems be kept in good repair and pumped regularly. It is also necessary to keep the well site clean and free of weeds and debris to prevent contamination. The cement surface seal needs to be checked for cracks and immediately repaired or sealed. Assessment summaries are not available for some sources.

Acquiring Information

The system is no longer overseen by Tulare County. It is now under the purview of the California State Water Resources Control Board, Division of Drinking Water, under Domestic Water Supply Permit No. 03-24-15P-024 as a D1 distribution system.

Per Kevin Bangsund of Tulare County Environmental Health Services Division, 559-624-7405, the county no longer has any documents pertaining to this system; they were turned over to the state several years ago.

Sierra King Homeowners Assoc. Analytical Results By FGL - 2020

	LEAD AND COPPER RULE										
		Units	MCLG	CA-MCL	PHG	Sampled	Result	90th Percentile	# Samples		
Copper		mg/L		1.3	.3			0.11	5		
Avalos - 45257 Hammond Drive	VI 1944792-5	mg/L				2019-08-27	ND				
Crapsey- 45292 Hammond Dr	VI 1944792-4	mg/L				2019-08-27	ND				
Nevarez/Conover-45059 Sierra K	VI 1944792-3	mg/L				2019-08-27	0.09				
Sutfin-45108 Crest Lane	VI 1944792-1	mg/L				2019-08-27	ND				
Werner-44946 Sierra King	VI 1944792-2	mg/L				2019-08-27	0.13				

	SAMPL	ING RES	SAMPLING RESULTS FOR SODIUM AND HARDNESS										
		Units	MCLG	CA-MCL	PHG	Sampled	Result	Avg. Result(a)	Range (b)				
Sodium		mg/L		none	none			24	20 - 27				
Well 01	VI 1942343-1	mg/L				2019-05-22	27						
Well 02	VI 2043704-1	mg/L				2020-05-21	20						
Hardness	•	mg/L		none	none			130	125 - 134				
Well 01	VI 1942343-1	mg/L				2019-05-22	134						
Well 02	VI 2043704-1	mg/L				2020-05-21	125						

	PRIMA	RY DRIN	KING WA	TER STAN	DARDS (PDWS)			
		Units	MCLG	CA-MCL	PHG	Sampled	Result	Avg. Result(a)	Range (b)
Arsenic		ug/L		10	0.004			6	5 - 6
Well 01	VI 1942343-1	ug/L				2019-05-22	6		
Well 02	VI 2043704-1	ug/L				2020-05-21	5		
Fluoride		mg/L		2	1			0.6	0.5 - 0.7
Well 01	VI 1942343-1	mg/L				2019-05-22	0.7		
Well 02	VI 2043704-1	mg/L				2020-05-21	0.5		
Nitrate as N		mg/L		10	10			0.5	0.4 - 0.5
Well 01	VI 2043703-1	mg/L				2020-05-21	0.4		
Well 02	VI 2043704-1	mg/L				2020-05-21	0.5		
Nitrate + Nitrite as N	-	mg/L		10	10			0.9	0.5 - 1.3
Well 01	VI 1942343-1	mg/L				2019-05-22	1.3		
Well 02	VI 2043704-1	mg/L				2020-05-21	0.5		
Gross Alpha		pCi/L		15	(0)			3.06	2.35 - 3.76
Well 01	VI 2043705-1	pCi/L				2020-05-21	2.35		
Well 02	VI 2041751-1	pCi/L				2020-03-09	3.76		
Uranium		pCi/L		20	0.43			7.03	2.80 - 17.1
Well 01	VI 1741211-1	pCi/L				2017-05-09	17.1		
Well 02	VI 1945636-1	pCi/L				2019-09-24	2.80		
Well 02	VI 1943138-1	pCi/L				2019-06-25	2.89		
Well 02	VI 1941216-1	pCi/L				2019-03-20	5.34		
Total Radium 228		pCi/L	0.019	none	n/a			0.923	ND - 1.68
Well 01	VI 2060030-1	pCi/L				2020-12-22	1.68		
Well 01	VI 2041750-1	pCi/L				2020-03-09	1.09		
Well 02	VI 2041751-1	pCi/L				2020-03-09	ND		

	SECONDARY DRINKING WATER STANDARDS (SDWS)											
		Units	MCLG	CA-MCL	PHG	Sampled	Result	Avg. Result(a)	Range (b)			
Chloride		mg/L		500	n/a			11	9 - 13			
Well 01	VI 1942343-1	mg/L				2019-05-22	13					
Well 02	VI 2043704-1	mg/L				2020-05-21	9					
Odor Threshold at 60 °C		TON		3	n/a			4	ND - 8			
Well 01	VI 2047205-1	TON				2020-09-16	8					

Well 02	VI 2043704-1	TON			2020-05-21	ND		
Specific Conductance	_	umhos/cm	1600	n/a			371	360 - 381
Well 01	VI 1942343-1	umhos/cm			2019-05-22	360		
Well 02	VI 2043704-1	umhos/cm			2020-05-21	381		
Sulfate		mg/L	500	n/a			28.9	26.0 - 31.7
Well 01	VI 1942343-1	mg/L			2019-05-22	26.0		
Well 02	VI 2043704-1	mg/L			2020-05-21	31.7		
Total Dissolved Solids	-	mg/L	1000	n/a			235	220 - 250
Well 01	VI 1942343-1	mg/L			2019-05-22	250		
Well 02	VI 2043704-1	mg/L			2020-05-21	220		
Turbidity		NTU	5	n/a			0.2	0.1 - 0.2
Well 01	VI 1942343-1	NTU			2019-05-22	0.2		
Well 02	VI 2043704-1	NTU			2020-05-21	0.1		
Zinc		mg/L	5	n/a			0.54	0.07 - 1.01
Well 01	VI 1942343-1	mg/L			2019-05-22	1.01		
Well 02	VI 2043704-1	mg/L			2020-05-21	0.07		

	UNREGULATED CONTAMINANTS										
	Units	MCLG	CA-MCL	PHG	Sampled	Result	Avg. Result(a)	Range (b)			
Boron		mg/L		NS	n/a			0.1	ND - 0.2		
Well 01	VI 1942343-1	mg/L				2019-05-22	0.2				
Well 02	VI 2043704-1	mg/L				2020-05-21	ND				
Vanadium	-	mg/L		NS	n/a			0.006	0.005 - 0.007		
Well 01	VI 1942343-1	mg/L				2019-05-22	0.005				
Well 02	VI 2043704-1	mg/L				2020-05-21	0.007				

		ADI	DITIONAL	DETECTIO	NS				
		Units	MCLG	CA-MCL	PHG	Sampled	Result	Avg. Result(a)	Range (b)
Calcium		mg/L			n/a			38	37 - 39
Well 01	VI 1942343-1	mg/L				2019-05-22	39		
Well 02	VI 2043704-1	mg/L				2020-05-21	37		
Magnesium		mg/L			n/a			9	8 - 9
Well 01	VI 1942343-1	mg/L				2019-05-22	9		
Well 02	VI 2043704-1	mg/L				2020-05-21	8		
pH		units			n/a			6.9	6.7 - 7.0
Well 01	VI 1942343-1	units				2019-05-22	6.7		
Well 02	VI 2043704-1	units				2020-05-21	7.0		
Alkalinity	•	mg/L			n/a			135	130 - 140
Well 01	VI 1942343-1	mg/L				2019-05-22	130		
Well 02	VI 2043704-1	mg/L				2020-05-21	140		
Aggressiveness Index					n/a			11.0	10.8 - 11.1
Well 01	VI 1942343-1					2019-05-22	10.8		
Well 02	VI 2043704-1					2020-05-21	11.1		
Langelier Index	•				n/a			-0.9	-1.00.7
Well 01	VI 1942343-1					2019-05-22	-1.0		
Well 02	VI 2043704-1					2020-05-21	-0.7		

	DETECTION OF	DISINF	ECTANT/I	DISINFECT	ANT BY	PRODUCT RU	LE		
		Units	MCLG	CA-MCL	PHG	Sampled	Result	Avg. Result(a)	Range (b)
Chlorine		mg/L		4.0	4.0			0.56	0.33 - 0.81
45219 Hammond	VI 2060020-1	mg/L				2020-12-22	0.81		
45219 Hammond	VI 2049078-1	mg/L				2020-11-17	.49		
45219 Hammond	VI 2048250-1	mg/L				2020-10-22	0.69		
45219 Hammond	VI 2047068-1	mg/L				2020-09-10	.66		
45219 Hammond	VI 2046177-1	mg/L				2020-08-12	0.50		
45219 Hammond	VI 2045593-1	mg/L				2020-07-22	0.51		

45219 Hammond	VI 2044731-1	mg/L		2020-06-18	0.33		
45219 Hammond	VI 2043696-1	mg/L		2020-05-21	0.69		
45219 Hammond	VI 2042691-1	mg/L		2020-04-21	0.59		
45219 Hammond	VI 2041752-1	mg/L		2020-03-09	.62		
45219 Hammond	VI 2041097-1	mg/L		2020-02-17	0.50		
45219 Hammond	VI 2040410-1	mg/L		2020-01-21	0.34		
Average 45219 Hammond						0.56	

Sierra King Homeowners Assoc. CCR Login Linkage - 2020

FGL Code	Lab ID	Date_Sampled	Method	Description	Property
45219Hammond	VI 2040410-1	2020-01-21	Coliform	45219 Hammond	Drinking Water Monitoring
	VI 2040410-1	2020-01-21	Field Test	45219 Hammond	Drinking Water Monitoring
	VI 2041097-1	2020-02-17	Field Test	45219 Hammond	Drinking Water Monitoring
	VI 2041097-1	2020-02-17	Coliform	45219 Hammond	Drinking Water Monitoring
	VI 2041752-1	2020-03-09	Coliform	45219 Hammond	Drinking Water Monitoring
	VI 2041752-1	2020-03-09	Field Test	45219 Hammond	Drinking Water Monitoring
	VI 2042691-1	2020-04-21	Coliform	45219 Hammond	Drinking Water Monitoring
	VI 2042691-1	2020-04-21	Field Test	45219 Hammond	Drinking Water Monitoring
	VI 2043696-1	2020-05-21	Coliform	45219 Hammond	Drinking Water Monitoring
	VI 2043696-1	2020-05-21	Field Test	45219 Hammond	Drinking Water Monitoring
	VI 2044731-1	2020-06-18	Coliform	45219 Hammond	Drinking Water Monitoring
	VI 2044731-1	2020-06-18	Field Test	45219 Hammond	Drinking Water Monitoring
	VI 2045593-1	2020-07-22	Field Test	45219 Hammond	Drinking Water Monitoring
	VI 2045593-1	2020-07-22	Coliform	45219 Hammond	Drinking Water Monitoring
	VI 2046177-1	2020-08-12	Coliform	45219 Hammond	Drinking Water Monitoring
	VI 2046177-1	2020-08-12	Field Test	45219 Hammond	Drinking Water Monitoring
	VI 2047068-1	2020-09-10	Field Test	45219 Hammond	Drinking Water Monitoring
	VI 2047068-1	2020-09-10	Coliform	45219 Hammond	Drinking Water Monitoring
	VI 2048250-1	2020-10-22	Coliform	45219 Hammond	Drinking Water Monitoring
	VI 2048250-1	2020-10-22	Field Test	45219 Hammond	Drinking Water Monitoring
	VI 2049078-1	2020-11-17	Coliform	45219 Hammond	Drinking Water Monitoring
	VI 2049078-1	2020-11-17	Field Test	45219 Hammond	Drinking Water Monitoring
	VI 2060020-1	2020-12-22	Coliform	45219 Hammond	Drinking Water Monitoring
	VI 2060020-1	2020-12-22	Field Test	45219 Hammond	Drinking Water Monitoring
Spurger-45482 M	VI 1944792-5	2019-08-27	Metals, Total	Avalos - 45257 Hammond Drive	Copper & Lead Monitoring
Smith-45277 Ham	VI 1944792-4	2019-08-27	Metals, Total	Crapsey- 45292 Hammond Dr	Copper & Lead Monitoring
Stone-45086 Sie	VI 1944792-3	2019-08-27	Metals, Total	Nevarez/Conover-45059 Sierra K	Copper & Lead Monitoring
Sutfin-45108 Cr	VI 1944792-1	2019-08-27	Metals, Total	Sutfin-45108 Crest Lane	Copper & Lead Monitoring
WELL 01	VI 1741211-1	2017-05-09	Radio Chemistry	Well 01	Well 01 Radio Monitoring
	VI 1942343-1	2019-05-22	Wet Chemistry	Well 01	Well 01 Quality Monitoring
	VI 1942343-1	2019-05-22	Metals, Total	Well 01	Well 01 Quality Monitoring
	VI 1942343-1	2019-05-22	General Mineral	Well 01	Well 01 Quality Monitoring
	VI 2041750-1	2020-03-09	Radio Chemistry	Well 01	Well 01 -Radium 228 Monitoring
	VI 2043705-1	2020-05-21	Radio Chemistry	Well 01	Well 01 Radio Monitoring
	VI 2043703-1	2020-05-21	Wet Chemistry	Well 01	Well 01 Quality Monitoring
	VI 2047205-1	2020-09-16	Wet Chemistry	Well 01	Well 01 - VOC Monitoring
	VI 2060030-1	2020-12-22	Radio Chemistry	Well 01	Well 01 -Radium 228 Monitoring
WELL 02	VI 1941216-1	2019-03-20	Metals, Total	Well 02	Well 02 Radio Monitoring
	VI 1943138-1	2019-06-25	Metals, Total	Well 02	Well 02 Radio Monitoring
	VI 1945636-1	2019-09-24	Metals, Total	Well 02	Well 02 Radio Monitoring
	VI 2041751-1	2020-03-09	Radio Chemistry	Well 02	Well 02 Radio Monitoring
	VI 2043704-1	2020-05-21	General Mineral	Well 02	Well 02 Quality Monitoring
	VI 2043704-1	2020-05-21	Wet Chemistry	Well 02	Well 02 Quality Monitoring
	VI 2043704-1	2020-05-21	Metals, Total	Well 02	Well 02 Quality Monitoring
Werner-44946 Si	VI 1944792-2	2019-08-27	Metals, Total	Werner-44946 Sierra King	Copper & Lead Monitoring