Consumer Confidence Report Certification Form

(to be submitted with a copy of the CCR)

(to certify electronic delivery of the CCR, use the certification form on the State Water Board's website at <u>http://www.swrcb.ca.gov/drinking_water/certlic/drinkingwater/CCR.shtml</u>)

Water System Name:	VILLAGE APARTMENTS
Water System Number:	CA5400875

The water system named above hereby certifies that its Consumer Confidence Report was distributed on

<u>5/11/2022</u> (date) to customers (and appropriate notices of availability have been given). Further, the system certifies that the information contained in the report is correct and consistent with the compliance monitoring data previously submitted to the State Water Resources Control Board, Division of Drinking Water.

Certified By:	Name:	Erin Vincent		
	Signature:	Frin Vincent		
	Title:	Water System Operator		
	Phone Number:	(559)786-8007	Date: 5/7/2022	

To summarize report delivery used and good-faith efforts taken, please complete the form below by checking all items that apply and fill-in where appropriate:

CCR was distributed by mail or other direct delivery methods. Specify other direct delivery methods used:
Customers were emailed and notices were posted

"Good faith" efforts were used to reach non-bill paying customers. Those efforts included the following
methods:

Posted the CCR on the internet at http://

Mailed the CCR to postal patrons within the service area (attach zip codes used)

Advertised the availability of the CCR in news media (attach a copy of press release)

Publication of the CCR in a local newspaper of general circulation (attach a copy of the
published notice, including name of the newspaper and date published)

]	Delivery of multiple copies of CCR to single bill addresses serving several persons,
	such as apartments, businesses, and schools

Delivery to community organizations (attach a list of organizations)

Other (attach a list	of other methods used)
----------------------	------------------------

For systems serving at least 100,000 persons: Posted CCR on a publicly-accessible internet site
at the following address: http://

For investor-owned utilities: Delivered the CCR to the California Public Utilities Commission

(This form is provided as a convenience and may be used to meet the certification requirement of section 64483(c), California Code of Regulations.)

2021 Consumer Confidence Report

Water System Name: VILLAGE APARTMENTS

Report Date:

April 2022

We test the drinking water quality for many constituents as required by state and federal regulations. This report shows the results of our monitoring for the period of January 1 - December 31, 2021.

Este informe contiene información muy importante sobre su agua potable. Tradúzcalo ó hable con alquien que lo entienda bien.

Type of water source(s) in use: Groundwater well

Your water comes from 2 source(s): RIVER WELL 01 and WELL 02

Opportunities for public participation in decisions that affect drinking water quality: Regularly-scheduled water board or city/county council meetings currently are not held.

For more information about this report, or any questions relating to your drinking water, please call (559)786-8007 and ask for Erin Vincent.

TERMS USED IN THIS REPORT					
Maximum Contaminant Level (MCL): The highest level of contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs (or MCLGs) as is economically feasible. Secondary MCLs are set to protect the odor, taste, and appearance of drinking water.	Secondary Drinking Water Standards (SDWS): MCLs for the contaminants that affect taste, odor, or appearance of the drinking water. Contaminants with SDWSs do not affect the health at the MCL levels. Treatment Technique (TT): A required process intended to reduce the level of a contaminant in drinking water.				
Maximum Contaminant Level Goal (MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the U.S. Environmental Protection Agency (USEPA).	Regulatory Action Level (AL): The concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow.				
Public Health Goal (PHG): The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California	Level 1 Assessment: A Level 1 assessment is a study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system.				
Environmental Protection Agency. Maximum Residual Disinfectant Level (MRDL): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial	Level 2 Assessment: A Level 2 assessment is a very detailed study of the water system to identify potential problems and determine (if possible) why an E. coli MCL violation has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions.				
contaminants.	ND: not detectable at testing limit				
Maximum Residual Disinfectant Level Goal	mg/L: milligrams per liter or parts per million (ppm)				
(MRDLG): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of	ug/L: micrograms per liter or parts per billion (ppb)				
disinfectants to control microbial contaminants.	pCi/L: picocuries per liter (a measure of radiation)				
Primary Drinking Water Standards (PDWS): MCLs and MRDLs for the contaminants that affect health along	NTU: Nephelometric Turbidity Units				
with their monitoring and reporting requirements, and water treatment requirements.	umhos/cm: micro mhos per centimeter				

The sources of drinking water: (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include:

- *Microbial contaminants,* such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- *Inorganic contaminants,* such as salts and metals, that can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- *Pesticides and herbicides,* that may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses.
- Organic chemical contaminants, including synthetic and volatile organic chemicals, that are by-products if industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, agricultural application, and septic systems.
- *Radioactive contaminants,* that can be naturally-occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, the USEPA and the State Water Resource Control Board (State Water Board) prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. State Water Board regulations also establish limits for contaminants in bottled water that provide the same protection for public health.

Tables 1, 2, 3, 4, 5, 6 and 7 list all of the drinking water contaminants that were detected during the most recent sampling for the constituent. The presence of these contaminants in the water does not necessarily indicate that the water poses a health risk. The State Water Board allows us to monitor for certain contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of the data, though representative of the water quality, are more than one year old.

Any violation of MCL, AL or MRDL is highlighted. Additional information regarding the violation is provided later in this report.

Table 1 - SAMPLING RESULTS SHOWING THE DETECTION OF COLIFORM BACTERIA								
Microbiological Contaminants (complete if bacteria detected)	Highest No. of Detections	No. of Months in Violation	MCL	MCLG	Typical Sources of Contaminant			
Total Coliform Bacteria	2/year (2021)	1	no more than 1 positive monthly sample		Naturally present in the environment.			

Table 2 - SAMPLING RESULTS SHOWING THE DETECTION OF LEAD AND COPPER							
Lead and Copper (complete if lead or copper detected in last sample set)	Sample Date	No. of Samples	90th percentile level detected	No. Sites Exceeding AL	AL	PHG	Typical Sources of Contaminant
Lead (ug/L)	(2021)	5	23	1	15	0.2	Internal corrosion of household water plumbing systems; discharges from industrial manufacturers, erosion of natural deposits
Copper (mg/L)	(2021)	5	0.14	0	1.3		Internal corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives

	Table 3 - SAMPLING RESULTS FOR SODIUM AND HARDNESS									
Chemical or Constituent (and reporting units)	Sample Date	Average Level Detected	Range of Detections	MCL	PHG (MCLG)	Typical Sources of Contaminant				
Sodium (mg/L)	(2016 - 2021)	251	23 - 478	none	none	Salt present in the water and is generally naturally occurring				

						Sum of polyvalent cations present in the
Hardness (mg/L)	(2016 - 2021)	245	189 - 300	none	none	water, generally magnesium and
Indianess (mg/L)	(2010 - 2021)	245	109 - 300	none	none	calcium, and are usually naturally
						occurring

Table 4 - I	DETECTION	OF CONTA	MINANTS WI	TH A <u>PRI</u>	MARY DRIN	KING WATER STANDARD
Chemical or Constituent (and reporting units)	Sample Date	Average Level Detected	Range of Detections	MCL [MRDL]	PHG (MCLG) [MRDLG]	Typical Sources of Contaminant
Barium (mg/L)	(2016 - 2021)	ND	ND - 0.19	1	2	Discharge from oil drilling wastes and from metal refineries; erosion of natural deposits
Fluoride (mg/L)	(2016 - 2021)	0.3	0.2 - 0.3	2	1	Erosion of natural deposits; water additive that promotes strong teeth; discharge from fertilizer and aluminum factories.
Nitrate as N (mg/L)	(2016 - 2021)	1	ND - 2.0	10	10	Runoff and leaching from fertilizer use; leaching from septic tanks and sewage; erosion of natural deposits
Nitrate + Nitrite as N (mg/L)	(2016 - 2021)	1	ND - 2.0	10	10	Runoff and leaching from fertilizer use; leaching from septic tanks and sewage; erosion of natural deposits
Gross Alpha (pCi/L)	(2018 - 2021)	1.718	ND - 4.02	15	(0)	Erosion of natural deposits.

Table 5 - DETE	CTION OF C	ONTAMINA	NTS WITH A S	SECO	NDARY DF	RINKING WATER STANDARD
Chemical or Constituent (and reporting units)	Sample Date	Average Level Detected	Range of Detections	MCL	PHG (MCLG)	Typical Sources of Contaminant
Chloride (mg/L)	(2016 - 2021)	443	38 - 847	500	n/a	Runoff/leaching from natural deposits; seawater influence
Color (Units)	(2016 - 2021)	4	ND - 7	15	n/a	Naturally-occurring organic materials
Iron (ug/L)	(2016 - 2021)	165	ND - 330	300	n/a	Leaching from natural deposits; Industrial wastes
Manganese (ug/L)	(2016 - 2021)	ND	ND - 20	50	n/a	Leaching from natural deposits
Odor Threshold at 60 °C (TON)	(2016 - 2021)	256	ND - 512	3	n/a	Naturally-occurring organic materials.
Specific Conductance (umhos/cm)	(2016 - 2021)	1785	499 - 3070	1600	n/a	Substances that form ions when in water; seawater influence
Sulfate (mg/L)	(2016 - 2021)	10.6	3.5 - 17.6	500	n/a	Runoff/leaching from natural deposits; industrial wastes
Total Dissolved Solids (mg/L)	(2016 - 2021)	990	300 - 1680	1000	n/a	Runoff/leaching from natural deposits
Turbidity (NTU)	(2016 - 2021)	0.9	ND - 1.8	5	n/a	Soil runoff

	Table 6 - DETECTION OF UNREGULATED CONTAMINANTS									
Chemical or Constituent (and reporting units)	Sample Date	Average Level Detected	Range of Detections	Notification Level	Typical Sources of Contaminant					
Boron (mg/L)	(2016 - 2021)	1.1	ND - 2.1	1	Boron exposures resulted in decreased fetal weight (developmental effects) in newborn rats.					

Table 7 - ADDITIONAL DETECTIONS										
Chemical or Constituent (and reporting units)	Sample Date	Average Level Detected	Range of Detections	Notification Level	Typical Sources of Contaminant					
Calcium (mg/L)	(2016 - 2021)	89	61 - 117	n/a	n/a					
Magnesium (mg/L)	(2016 - 2021)	6	2 - 9	n/a	n/a					

pH (units)	(2016 - 2021)	7.2	7.1 - 7.2	n/a	n/a
Alkalinity (mg/L)	(2016 - 2021)	145	120 - 170	n/a	n/a
Aggressiveness Index	(2016 - 2021)	11.6	11.5 - 11.7	n/a	n/a
Langelier Index	(2016 - 2021)	-0.3	-0.30.2	n/a	n/a

Additional General Information on Drinking Water

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts if some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the USEPA's Safe Drinking Water Hotline (1-800-426-4791).

Some people may be more vulnerable to contaminants in drinking water than the general population. Immunocompromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. USEPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* and other microbial contaminants are available from the Safe Drinking Water Hotline (1-800-426-4791).

Lead Specific Language for Community Water Systems: If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with the service lines and home plumbing. *The Village Apartments* is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/lead.

Summary Information for Violation of a MCL, MRDL, AL, TT, or Monitoring and Reporting Requirement

VIOLATION 0	OF A MCL,MRDL,AL,TT, OR N	MONITORING A	AND REPORTING	REQUIREMENT
Violation	Explanation	Duration	Actions Taken To Correct the Violation	Health Effects Language
Total Coliform Bacteria				Coliforms are bacteria that are naturally present in the environment and are used as an indicator that other, potentially harmful, waterborne pathogens may be present or that a potential pathway exists through which contamination may enter the drinking water distribution system. We found coliforms indicating the need to look for potential problems in water treatment or distribution. When this occurs, we are required to conduct assessment(s) to identify problems and to correct any problems that were found during these assessments.

Lead		Infants and children who drink water containing lead in excess of the action level may experience delays in their physical or mental development. Children may show slight deficits in attention span and learning abilities. Adults who drink this water over many years may develop kidney problems or high blood pressure.
Chloride		n/a
Iron		Iron was found at levels that exceed the secondary MCL. The Iron MCL was set to protect you against unpleasant aesthetic affects such as color, taste, odor and the staining of plumbing fixtures (e.g., tubs and sinks), and clothing while washing. Violating this MCL does not pose a risk to public health.

About your Lead: For Systems with Lead (Pb) above 15 ppb (the regulatory AL) in more than 5%, and up to and including 10%, of sites sampled: Infants and young children are typically more vulnerable to lead in drinking water than the general population. It is possible that lead levels at your home may be higher than at other homes in the community as a result of materials used in your home's plumbing. If you are concerned about elevated lead levels in your home's water, you may wish to have your water tested and flush your tap for 30 seconds to 2 minutes before using tap water. Additional information is available from the Safe Drinking Water Hotline (800-426-4791). Infants and young children are typically more vulnerable to lead in drinking water than the general population. It is possible that lead levels at your home may be higher than at other homes in the community as a result of materials used in your water tested and flush your tap for 30 seconds to 2 minutes before using tap water. Additional information is available from the Safe Drinking Water Hotline (800-426-4791). Infants and young children are typically more vulnerable to lead in drinking water than the general population. It is possible that lead levels at your home may be higher than at other homes in the community as a result of materials used in your home's plumbing. If you are concerned about elevated lead levels in your home's water, you may wish to have your water tested and flush your tap for 30 seconds to 2 minutes before using tap water. Additional information is available from the Safe Drinking Water Hotline (800-426-4791).

2021 Consumer Confidence Report Drinking Water Assessment Information

Assessment Information

A Drinking Water Source Assessment has not been completed for the WELL 01 and WELL 02 of the VILLAGE APARTMENTS water system.

Discussion of Vulnerability

New well and system is in compliance with state. A chlorine pump is currently being added to the system.

Acquiring Information

For more info you may visit https://www.waterboards.ca.gov/drinking_water/certlic/drinkingwater/DWSAP.html or contact the health department in the county to which the water system belongs as indicated on this following link: https://www.waterboards.ca.gov/drinking_water/programs/documents/ddwem/DDWdistrictofficesmap.pdf

The Village Apartments Analytical Results By FGL - 2021

		MICROB	IOLOGIC	AL CONTAN	MICROBIOLOGICAL CONTAMINANTS											
		Units	MCLG	CA-MCL	PHG	Sampled	Result	Avg. Result(a)	Range (b)							
Total Coliform Bacteria			0	5%	n/a			1	45.3 - 45.3							
Apartment #7	VI 2160086-1					2021-12-27	<1.0									
Apartment #7	VI 2149533-1					2021-12-08	Present									
Apartment #7	VI 2149101-1					2021-11-17	Absent									
Apartment #7	VI 2147791-1					2021-10-04	Absent									
Apartment #7	VI 2146990-1					2021-09-03	Absent									
Apartment #7	VI 2145955-1					2021-08-02	Absent									
Apartment #7	VI 2145117-1					2021-07-07	Absent									
Apartment #7	VI 2144077-1					2021-06-02	Absent									
Apartment #7	VI 2143312-1					2021-05-03	Absent									
Apartment #7	VI 2142392-1					2021-04-01	Absent									
Apartment #7	VI 2141476-1					2021-03-01	Absent									
Apartment #7	VI 2140775-1					2021-02-02	Absent									
Apartment #7	VI 2140130-1					2021-01-07	Absent									
Apartment #8	VI 2160086-3					2021-12-27	<1.0									
Apt #2 HB	VI 2160086-4					2021-12-27	<1.0									
Apt #2 HB	VI 2149646-4					2021-12-13	<1.0		ľ							
Apt #8 HB	VI 2149646-3					2021-12-13	<1.0		ľ							
Apt#7 HB	VI 2149646-1					2021-12-13	<1.0		1							
Well #2 HB	VI 2149646-2					2021-12-13	45.3									

		LE	AD AND (OPPER RU	LE				
		Units	MCLG	CA-MCL	PHG	Sampled	Result	90th Percentile	# Samples
Lead		ug/L	0	15	0.2			23.45	5
#1 Faucet	VI 2147758-5	ug/L				2021-09-29	46.9		
#13 Faucet	VI 2147758-3	ug/L				2021-09-29	ND		
#2 Faucet	VI 2147758-4	ug/L				2021-09-29	ND		
#5 Faucet	VI 2147758-2	ug/L				2021-09-29	ND		
#8 Faucet	VI 2147758-1	ug/L				2021-09-28	ND		
Copper		mg/L		1.3	.3			0.135	5
#1 Faucet	VI 2147758-5	mg/L				2021-09-29	0.21		
#13 Faucet	VI 2147758-3	mg/L				2021-09-29	ND		
#2 Faucet	VI 2147758-4	mg/L				2021-09-29	ND		
#5 Faucet	VI 2147758-2	mg/L				2021-09-29	0.06		
#8 Faucet	VI 2147758-1	mg/L				2021-09-28	ND		

	SAMPLING RESULTS FOR SODIUM AND HARDNESS											
		Units	MCLG	CA-MCL	PHG	Sampled	Result	Avg. Result(a)	Range (b)			
Sodium		mg/L		none	none			251	23 - 478			
RIVER WELL 01	VI 1643824-1	mg/L				2016-09-14	23					
WELL 02	VI 2141300-1	mg/L				2021-02-22	478					
Hardness		mg/L		none	none			245	189 - 300			
RIVER WELL 01	VI 1643824-1	mg/L				2016-09-14	189					
WELL 02	VI 2141300-1	mg/L				2021-02-22	300					

PRIMARY DRINKING WATER STANDARDS (PDWS)										
		Units	MCLG	CA-MCL	PHG	Sampled	Result	Avg. Result(a)	Range (b)	
Barium		mg/L	2	1	2			ND	ND - 0.19	
RIVER WELL 01	VI 1643824-1	mg/L				2016-09-14	0.19			
WELL 02	VI 2141300-1	mg/L				2021-02-22	ND			

Fluoride		mg/L	2	1			0.3	0.2 - 0.3
RIVER WELL 01	VI 1643824-1	mg/L			2016-09-14	0.2		
WELL 02	VI 2141300-1	mg/L			2021-02-22	0.3		
Nitrate as N	-	mg/L	10	10			1.0	ND - 2.0
RIVER WELL 01	VI 1643824-1	mg/L			2016-09-14	2.0		
WELL 02	VI 2141300-1	mg/L			2021-02-22	ND		
Nitrate + Nitrite as N		mg/L	10	10			1.0	ND - 2.0
RIVER WELL 01	VI 1643824-1	mg/L			2016-09-14	2.0		
WELL 02	VI 2141300-1	mg/L			2021-02-22	ND		
Gross Alpha		pCi/L	15	(0)			1.718	ND - 4.02
RIVER WELL 01	VI 1841524-1	pCi/L			2018-03-31	4.02		
WELL 02	VI 2149724-1	pCi/L			2021-12-15	1.68		
WELL 02	VI 2143445-1	pCi/L			2021-05-06	1.17		
WELL 02	VI 2141300-1	pCi/L			2021-02-22	ND		

SECONDARY DRINKING WATER STANDARDS (SDWS)										
		Units	MCLG	CA-MCL	PHG	Sampled	Result	Avg. Result(a)	Range (b)	
Chloride		mg/L		500	n/a			443	38 - 847	
RIVER WELL 01	VI 1643824-1	mg/L				2016-09-14	38			
WELL 02	VI 2141300-1	mg/L				2021-02-22	847			
Color		Units		15	n/a			4	ND - 7	
RIVER WELL 01	VI 1643824-1	Units				2016-09-14	ND			
WELL 02	VI 2141300-1	Units				2021-02-22	7			
Iron		ug/L		300	n/a			165	ND - 330	
RIVER WELL 01	VI 1643824-1	ug/L				2016-09-14	ND			
WELL 02	VI 2141300-1	ug/L				2021-02-22	330			
Manganese		ug/L		50	n/a			ND	ND - 20	
RIVER WELL 01	VI 1643824-1	ug/L				2016-09-14	ND			
WELL 02	VI 2141300-1	ug/L				2021-02-22	20			
Odor Threshold at 60 °C		TON		3	n/a			256	ND - 512	
RIVER WELL 01	VI 1643824-1	TON				2016-09-14	ND			
WELL 02	VI 2141300-1	TON				2021-02-22	512			
Specific Conductance		umhos/cm		1600	n/a			1785	499 - 3070	
RIVER WELL 01	VI 1643824-1	umhos/cm				2016-09-14	499			
WELL 02	VI 2141300-1	umhos/cm				2021-02-22	3070			
Sulfate		mg/L		500	n/a			10.6	3.5 - 17.6	
RIVER WELL 01	VI 1643824-1	mg/L				2016-09-14	17.6			
WELL 02	VI 2141300-1	mg/L				2021-02-22	3.5			
Total Dissolved Solids		mg/L		1000	n/a			990	300 - 1680	
RIVER WELL 01	VI 1643824-1	mg/L				2016-09-14	300			
WELL 02	VI 2141300-1	mg/L				2021-02-22	1680			
Turbidity		NTU		5	n/a			0.9	ND - 1.8	
RIVER WELL 01	VI 1643824-1	NTU				2016-09-14	ND			
WELL 02	VI 2141300-1	NTU				2021-02-22	1.8			

UNREGULATED CONTAMINANTS										
		Units	MCLG	CA-MCL	PHG	Sampled	Result	Avg. Result(a)	Range (b)	
Boron		mg/L		NS	n/a			1.1	ND - 2.1	
RIVER WELL 01	VI 1643824-1	mg/L				2016-09-14	ND			
WELL 02	VI 2141300-1	mg/L				2021-02-22	2.1			

ADDITIONAL DETECTIONS										
		Units	MCLG	CA-MCL	PHG	Sampled	Result	Avg. Result(a)	Range (b)	
Calcium		mg/L			n/a			89	61 - 117	
RIVER WELL 01	VI 1643824-1	mg/L				2016-09-14	61			
WELL 02	VI 2141300-1	mg/L				2021-02-22	117			

Magnesium	_	mg/L	n/a			6	2 - 9
RIVER WELL 01	VI 1643824-1	mg/L		2016-09-14	9		
WELL 02	VI 2141300-1	mg/L		2021-02-22	2		
рН	-	units	n/a			7.2	7.1 - 7.2
RIVER WELL 01	VI 1643824-1	units		2016-09-14	7.1		
WELL 02	VI 2141300-1	units		2021-02-22	7.2		
Alkalinity	-	mg/L	n/a			145	120 - 170
RIVER WELL 01	VI 1643824-1	mg/L		2016-09-14	170		
WELL 02	VI 2141300-1	mg/L		2021-02-22	120		
Aggressiveness Index			n/a			11.6	11.5 - 11.7
RIVER WELL 01	VI 1643824-1			2016-09-14	11.5		
WELL 02	VI 2141300-1			2021-02-22	11.7		
Langelier Index			n/a			-0.3	-0.30.2
RIVER WELL 01	VI 1643824-1			2016-09-14	-0.3		
WELL 02	VI 2141300-1			2021-02-22	-0.2		

The Village Apartments CCR Login Linkage - 2021

FGL Code	Lab ID	Date_Sampled	Method	Description	Property
#1 Faucet	VI 2147758-5	2021-09-29	Metals, Total	#1 Faucet	Lead & Copper Monitoring
#13 Faucet	VI 2147758-3	2021-09-29	Metals, Total	#13 Faucet	Lead & Copper Monitoring
#2 Faucet	VI 2147758-4	2021-09-29	Metals, Total	#2 Faucet	Lead & Copper Monitoring
#5 Faucet	VI 2147758-2	2021-09-29	Metals, Total	#5 Faucet	Lead & Copper Monitoring
#8 Faucet	VI 2147758-1	2021-09-28	Metals, Total	#8 Faucet	Lead & Copper Monitoring
APART 7	VI 2140130-1	2021-01-07	Coliform	Apartment #7	Drinking Water Monitoring
	VI 2140775-1	2021-02-02	Coliform	Apartment #7	Drinking Water Monitoring
	VI 2141476-1	2021-03-01	Coliform	Apartment #7	Drinking Water Monitoring
	VI 2142392-1	2021-04-01	Coliform	Apartment #7	Drinking Water Monitoring
	VI 2143312-1	2021-05-03	Coliform	Apartment #7	Drinking Water Monitoring
	VI 2144077-1	2021-06-02	Coliform	Apartment #7	Drinking Water Monitoring
	VI 2145117-1	2021-07-07	Coliform	Apartment #7	Drinking Water Monitoring
	VI 2145955-1	2021-08-02	Coliform	Apartment #7	Drinking Water Monitoring
	VI 2146990-1	2021-09-03	Coliform	Apartment #7	Drinking Water Monitoring
	VI 2147791-1	2021-10-04	Coliform	Apartment #7	Drinking Water Monitoring
	VI 2149101-1	2021-11-17	Coliform	Apartment #7	Drinking Water Monitoring
	VI 2149533-1	2021-12-08	Coliform	Apartment #7	Drinking Water Monitoring
	VI 2160086-1	2021-12-27	Coliform	Apartment #7	Water Monitoring
APART 8	VI 2160086-3	2021-12-27	Coliform	Apartment #8	Water Monitoring
Apt #2 HB	VI 2149646-4	2021-12-13	Coliform	Apt #2 HB	Water Monitoring
	VI 2160086-4	2021-12-27	Coliform	Apt #2 HB	Water Monitoring
Apt #8 HB	VI 2149646-3	2021-12-13	Coliform	Apt #8 HB	Water Monitoring
Apt#7 HB	VI 2149646-1	2021-12-13	Coliform	Apt#7 HB	Water Monitoring
WELL 01	VI 1643824-1	2016-09-14	General Mineral	RIVER WELL 01	Water Monitoring
	VI 1643824-1	2016-09-14	Wet Chemistry	RIVER WELL 01	Water Monitoring
	VI 1643824-1	2016-09-14	Metals, Total	RIVER WELL 01	Water Monitoring
	VI 1841524-1	2018-03-31	Radio Chemistry	RIVER WELL 01	Radio Monitoring
Well #2 HB	VI 2149646-2	2021-12-13	Coliform	Well #2 HB	Water Monitoring
5400875-002	VI 2141300-1	2021-02-22	Metals, Total	WELL 02	Well 02 - Water Quality
	VI 2141300-1	2021-02-22	Wet Chemistry	WELL 02	Well 02 - Water Quality
	VI 2141300-1	2021-02-22	Radio Chemistry	WELL 02	Well 02 - Water Quality
	VI 2141300-1	2021-02-22	General Mineral	WELL 02	Well 02 - Water Quality
	VI 2143445-1	2021-05-06	Radio Chemistry	WELL 02	Well 02 - Water Quality
	VI 2149724-1	2021-12-15	Radio Chemistry	WELL 02	Well 02 - Water Quality