Consumer Confidence Report Certification Form

(to be submitted with a copy of the CCR)

(to certify electronic delivery of the CCR, use the certification form on the State Water Board's website at $\underline{ http://www.swrcb.ca.gov/drinking_water/certlic/drinkingwater/CCR.shtml)}$

Water	r System Na	me:	Village Apartm	nents	
Wateı	r System Nu	mber:	5400875		
certifi	es that the i	(da nforma	ate) to customers ation contained in	(and appropriate notices of av	idence Report was distributed on ailability have been given). Further, the system sistent with the compliance monitoring data ion of Drinking Water.
Certi	fied By:	Nam	e:	Erin Vincent	
		Sign	ature:	Crin Vincent	
		Title	:	Water Systems Operator	
		Phon	ie Number:	(559)786-8007	Date: 6/30/2021
	pply and fill-	in whe	ere appropriate:		pecify other direct delivery methods used:
X	methods:		ets were used to i		s. Those efforts included the following
	X Mai	led the	e CCR to postal p	patrons within the service area	(attach zip codes used)
	Adv	ertised	d the availability	of the CCR in news media (atta	ach a copy of press release)
				a local newspaper of general cir g name of the newspaper and d	
	Post	ed the	e CCR in public p	laces (attach a list of locations	
		-		of CCR to single bill addresses esses, and schools	s serving several persons,
	Deli	very t	o community org	anizations (attach a list of orga	nizations)
	Oth	er (att	ach a list of other	r methods used)	
	_		_	000 persons: Posted CCR on a p	publicly-accessible internet site
				rered the CCR to the California	

2020 Consumer Confidence Report

|--|

We test the drinking water quality for many constituents as required by state and federal regulations. This report shows the results of our monitoring for the period of January 1 - December 31, 2020.

Este informe contiene información muy importante sobre su agua potable. Tradúzcalo ó hable con alquien que lo entienda bien.

Type of water source(s) in use: Groundwater well
Your water comes from 1 source(s): WELL 01

Opportunities for public participation in decisions that affect drinking water quality: Regularly-scheduled water board or city/county council meetings currently are not held.

For more information about this report, or any questions relating to your drinking water, please call (559)471-5097 and ask for Julie Doctor.

TERMS USED IN THIS REPORT

Maximum Contaminant Level (MCL): The highest level of contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs (or MCLGs) as is economically feasible. Secondary MCLs are set to protect the odor, taste, and appearance of drinking water.

Maximum Contaminant Level Goal (MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the U.S. Environmental Protection Agency (USEPA).

Public Health Goal (PHG): The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California Environmental Protection Agency.

Maximum Residual Disinfectant Level (MRDL): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Maximum Residual Disinfectant Level Goal (MRDLG): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

Primary Drinking Water Standards (PDWS): MCLs and MRDLs for the contaminants that affect health along with their monitoring and reporting requirements, and water treatment requirements.

Secondary Drinking Water Standards (SDWS): MCLs for the contaminants that affect taste, odor, or appearance of the drinking water. Contaminants with SDWSs do not affect the health at the MCL levels.

Treatment Technique (TT): A required process intended to reduce the level of a contaminant in drinking water.

Regulatory Action Level (AL): The concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow.

Level 1 Assessment: A Level 1 assessment is a study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system.

Level 2 Assessment: A Level 2 assessment is a very detailed study of the water system to identify potential problems and determine (if possible) why an E. coli MCL violation has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions.

mg/L: milligrams per liter or parts per million (ppm)

ug/L: micrograms per liter or parts per billion (ppb)

pCi/L: picocuries per liter (a measure of radiation)

umhos/cm: micro mhos per centimeter

The sources of drinking water: (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include:

- *Microbial contaminants*, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- *Inorganic contaminants*, such as salts and metals, that can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- *Pesticides and herbicides,* that may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses.
- Organic chemical contaminants, including synthetic and volatile organic chemicals, that are by-products if industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, agricultural application, and septic systems.
- Radioactive contaminants, that can be naturally-occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, the USEPA and the State Water Resource Control Board (State Water Board) prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. State Water Board regulations also establish limits for contaminants in bottled water that provide the same protection for public health.

Tables 1, 2, 3, 4, 5, 6 and 7 list all of the drinking water contaminants that were detected during the most recent sampling for the constituent. The presence of these contaminants in the water does not necessarily indicate that the water poses a health risk. The State Water Board allows us to monitor for certain contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of the data, though representative of the water quality, are more than one year old.

Any violation of MCL, AL or MRDL is highlighted. Additional information regarding the violation is provided later in this report.

Table 1 - SAMPLING RESULTS SHOWING THE DETECTION OF COLIFORM BACTERIA									
Microbiological Contaminants (complete if bacteria detected)	Highest No. of Detections	No. of Months in Violation	MCL	MCLG	Typical Sources of Contaminant				
Total Coliform Bacteria	4/mo. (2020)	2	no more than 1 positive monthly sample		Naturally present in the environment.				

Ta	Table 2 - SAMPLING RESULTS SHOWING THE DETECTION OF LEAD AND COPPER										
Lead and Copper (complete if lead or copper detected in last sample set)	Sample Date	No. of Samples	90th percentile level detected	No. Sites Exceeding AL	AL	PHG	Typical Sources of Contaminant				
Lead (ug/L)	(2020)	6	5.3	1	15	0.2	Internal corrosion of household water plumbing systems; discharges from industrial manufacturers, erosion of natural deposits				
Copper (mg/L)	(2020)	6	0.01	1	1.3	.3	Internal corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives				

	Table 3 - SAMPLING RESULTS FOR SODIUM AND HARDNESS									
Chemical or Constituent (and reporting units)	Sample Date	Average Level Detected	Range of Detections	MCL	PHG (MCLG)	Typical Sources of Contaminant				
Sodium (mg/L)	(2016)	23	n/a	none	none	Salt present in the water and is generally naturally occurring				

Hardness (mg/L)	(2016)	189	n/a	none	none	Sum of polyvalent cations present in the water, generally magnesium and calcium, and are usually naturally occurring
-----------------	--------	-----	-----	------	------	--

Table 4 - I	DETECTION	OF CONTA	MINANTS W	ITH A PRI	MARY DRI	NKING WATER STANDARD
Chemical or Constituent (and reporting units)	Sample Date	Average Level Detected	Range of Detections	MCL [MRDL]	PHG (MCLG) [MRDLG]	Typical Sources of Contaminant
Barium (mg/L)	(2016)	0.19	n/a	1	2	Discharge from oil drilling wastes and from metal refineries; erosion of natural deposits
Fluoride (mg/L)	(2016)	0.2	n/a	2	1	Erosion of natural deposits; water additive that promotes strong teeth; discharge from fertilizer and aluminum factories.
Nitrate as N (mg/L)	(2016)	2	n/a	10	10	Runoff and leaching from fertilizer use; leaching from septic tanks and sewage; erosion of natural deposits
Nitrate + Nitrite as N (mg/L)	(2016)	2	n/a	10	10	Runoff and leaching from fertilizer use; leaching from septic tanks and sewage; erosion of natural deposits
Gross Alpha (pCi/L)	(2018)	4.02	n/a	15	(0)	Erosion of natural deposits.

Table 5 - DETECTION OF CONTAMINANTS WITH A <u>SECONDARY</u> DRINKING WATER STANDARD										
Chemical or Constituent (and reporting units)	Sample Date	Average Level Detected	Range of Detections	MCL	PHG (MCLG)	Typical Sources of Contaminant				
Chloride (mg/L)	(2016)	38	n/a	500	n/a	Runoff/leaching from natural deposits; seawater influence				
Specific Conductance (umhos/cm)	(2016)	499	n/a	1600	n/a	Substances that form ions when in water; seawater influence				
Sulfate (mg/L)	(2016)	17.6	n/a	500	n/a	Runoff/leaching from natural deposits; industrial wastes				
Total Dissolved Solids (mg/L)	(2016)	300	n/a	1000	n/a	Runoff/leaching from natural deposits				

	Table 6 - DETECTION OF UNREGULATED CONTAMINANTS										
Chemical or Constituent (and reporting units)	Sample Date	Average Level Detected	Range of Detections	Notification Level	Typical Sources of Contaminant						
Vanadium (mg/L)	(2016)	0.01	n/a	0.05	Vanadium exposures resulted in developmental and reproductive effects in rats.						

	Table 7 - ADDITIONAL DETECTIONS										
Chemical or Constituent (and reporting units)	Sample Date	Average Level Detected	Range of Detections	Notification Level	Typical Sources of Contaminant						
Calcium (mg/L)	(2016)	61	n/a	n/a	n/a						
Magnesium (mg/L)	(2016)	9	n/a	n/a	n/a						
pH (units)	(2016)	7.1	n/a	n/a	n/a						
Alkalinity (mg/L)	(2016)	170	n/a	n/a	n/a						
Aggressiveness Index	(2016)	11.5	n/a	n/a	n/a						
Langelier Index	(2016)	-0.3	n/a	n/a	n/a						

Additional General Information on Drinking Water

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts if some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the USEPA's Safe Drinking Water Hotline (1-800-426-4791).

Some people may be more vulnerable to contaminants in drinking water than the general population. Immunocompromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. USEPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* and other microbial contaminants are available from the Safe Drinking Water Hotline (1-800-426-4791).

Lead Specific Language for Community Water Systems: If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with the service lines and home plumbing. *The Village Apartments* is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/lead.

Summary Information for Violation of a MCL, MRDL, AL, TT, or Monitoring and Reporting Requirement

VIOLATION O	VIOLATION OF A MCL,MRDL,AL,TT, OR MONITORING AND REPORTING REQUIREMENT									
Violation	Explanation	Duration	Actions Taken To Correct the Violation	Health Effects Language						
Total Coliform Bacteria				Coliforms are bacteria that are naturally present in the environment and are used as an indicator that other, potentially harmful, waterborne pathogens may be present or that a potential pathway exists through which contamination may enter the drinking water distribution system. We found coliforms indicating the need to look for potential problems in water treatment or distribution. When this occurs, we are required to conduct assessment(s) to identify problems and to correct any problems that were found during these assessments.						

Lead		Infants and children who drink water containing lead in excess of the action level may experience delays in their physical or mental development. Children may show slight deficits in attention span and learning abilities. Adults who drink this water over many years may develop kidney problems or high blood pressure.
Copper		Copper is an essential nutrient, but some people who use water containing copper in excess of the action level over a relatively short amount of time may experience gastrointesteinal distress. Some people who drink water containing copper in excess of the action level over many years may suffer liver or kidney damage. People with Wilson's Disease should consult their personal doctor.

2020 Consumer Confidence Report

Drinking Water Assessment Information

Assessment Information

A Drinking Water Source Assessment has not been completed for the WELL 01 of the DIXON WATER COMPANY water system.

WELL 01 - state has file

Discussion of Vulnerability

New well and system is in compliance with state. A chlorine pump is currently being added to the system.

Acquiring Information

For more info you may visit https://www.waterboards.ca.gov/drinking_water/certlic/drinkingwater/DWSAP.html or contact the health department in the county to which the water system belongs as indicated on this following link: https://www.waterboards.ca.gov/drinking_water/programs/documents/ddwem/DDWdistrictofficesmap.pdf

The Village Apartments Analytical Results By FGL - 2020

		MICROB	IOLOGIC	AL CONTAN	IINANT	S			
		Units	MCLG	CA-MCL	PHG	Sampled	Result	Avg. Result(a)	Range (b)
Total Coliform Bacteria			0	5%	n/a			2	1 - 78.2
#5 Downstream Hosebib	VI 2043399-4					2020-05-13	<1.0		
#7 Regular Hosebib	VI 2043399-2					2020-05-13	<1.0		
#8 Upstream Hosebib	VI 2043399-3					2020-05-13	<1.0		
Apartment #5	VI 2047991-4					2020-10-14	<1.0		
Apartment #5	VI 2047953-4					2020-10-13	<1.0		
Apartment #7	VI 2049413-1					2020-12-01	Absent		
Apartment #7	VI 2048624-1					2020-11-03	Absent		
Apartment #7	VI 2047991-2					2020-10-14	6.4		
Apartment #7	VI 2047953-2					2020-10-13	<1.0		
Apartment #7	VI 2047793-1					2020-10-07	78.2		
Apartment #7	VI 2046770-1					2020-09-01	Present		
Apartment #7	VI 2045960-1					2020-08-04	Absent		
Apartment #7	VI 2045142-2					2020-07-07	Absent		
Apartment #7	VI 2044217-3					2020-06-04	<1.0		
Apartment #7	VI 2044058-1					2020-06-02	Present		
Apartment #7	VI 2043361-1					2020-05-11	Present		
Apartment #7	VI 2042265-1					2020-04-01	Absent		
Apartment #7	VI 2041472-1					2020-03-02	Absent		
Apartment #7	VI 2040709-1					2020-02-03	<1.0		
Apartment #8	VI 2047991-3					2020-10-14	3.1		
Apartment #8	VI 2047953-3					2020-10-13	<1.0		
Apt #7 Hosebib	VI 2040416-4					2020-01-21	<1.0		
Apt #7 Hosebib	VI 2040254-4					2020-01-15	<1.0		
Apt 2 HB	VI 2040416-1					2020-01-21	<1.0		
Apt 2 HB	VI 2040254-1					2020-01-15	1		
Apt 3 Hosebib	VI 2040416-2					2020-01-21	<1.0		
Apt 4 HB	VI 2040254-2					2020-01-15	<1.0		
Apt 5 - Village Apt's Hosebib	VI 2044217-2					2020-06-04	<1.0		
Apt 5 HB	VI 2040416-3					2020-01-21	<1.0		
Apt 5 HB	VI 2040254-3					2020-01-15	<1.0		
Apt 8 - Village Apt's Hosebib	VI 2044217-4					2020-06-04	<1.0		
Apt 8 HB	VI 2040416-5					2020-01-21	<1.0		
Apt 8 HB	VI 2040254-5					2020-01-15	<1.0		
Hose Bibb	VI 2040087-2					2020-01-07	Absent		
Hose Bibb	VI 2040087-4					2020-01-07	Absent		
Hose Bibb	VI 2040087-5					2020-01-07	Present		
Kitchen Faucet	VI 2040087-1					2020-01-07	Absent		
Kitchen Faucet	VI 2040087-3					2020-01-07	Absent		
Village Apt's Well Tap	VI 2047991-1					2020-10-14	7.5		
Village Apt's Well Tap	VI 2047953-1					2020-10-13	<1.0		
Village Apt's Well Tap	VI 2044217-1					2020-06-04	<1.0		
Well Tap	VI 2043399-1	1				2020-05-13	<1.0		
	.1.20100001	<u> </u>	ļ		<u> </u>	2020 00 10	.2.0		

LEAD AND COPPER RULE												
	Units	MCLG	CA-MCL	PHG	Sampled	Result	90th Percentile	# Samples				
Lead		ug/L	0	15	0.2			5.3	6			
Apt 13 Faucet	VI 2045300-5	ug/L				2020-07-13	ND					
Apt 2 Faucet	VI 2045300-1	ug/L				2020-07-13	ND					
Apt 3 Faucet	VI 2045300-2	ug/L				2020-07-13	ND					
Apt 6 Faucet	VI 2045300-3	ug/L				2020-07-13	1740					
Apt 7 Faucet	VI 2045300-4	ug/L				2020-07-13	ND					

Sink Faucet Apt #6	VI 2046130-1	ug/L			2020-08-11	5.3		
Copper		mg/L	1.3	.3			0.01	6
Apt 13 Faucet	VI 2045300-5	mg/L			2020-07-13	ND		
Apt 2 Faucet	VI 2045300-1	mg/L			2020-07-13	ND		
Apt 3 Faucet	VI 2045300-2	mg/L			2020-07-13	ND		
Apt 6 Faucet	VI 2045300-3	mg/L			2020-07-13	5.87		
Apt 7 Faucet	VI 2045300-4	mg/L			2020-07-13	ND		
Sink Faucet Apt #6	VI 2046130-1	mg/L			2020-08-11	ND		

SAMPLING RESULTS FOR SODIUM AND HARDNESS											
		Units	MCLG	CA-MCL	PHG	Sampled	Result	Avg. Result(a)	Range (b)		
Sodium		mg/L		none	none			23	23 - 23		
RIVER WELL 01	VI 1643824-1	mg/L				2016-09-14	23				
Hardness		mg/L		none	none			189	189 - 189		
RIVER WELL 01	VI 1643824-1	mg/L				2016-09-14	189				

	PRIMA	RY DRIN	KING WA	TER STANI	DARDS ((PDWS)			
		Units	MCLG	CA-MCL	PHG	Sampled	Result	Avg. Result(a)	Range (b)
Barium		mg/L	2	1	2			0.19	0.19 - 0.19
RIVER WELL 01	VI 1643824-1	mg/L				2016-09-14	0.19		
Fluoride		mg/L		2	1			0.2	0.2 - 0.2
RIVER WELL 01	VI 1643824-1	mg/L				2016-09-14	0.2		
Nitrate as N		mg/L		10	10			2.0	2.0 - 2.0
RIVER WELL 01	VI 1643824-1	mg/L				2016-09-14	2.0		
Nitrate + Nitrite as N		mg/L		10	10			2.0	2.0 - 2.0
RIVER WELL 01	VI 1643824-1	mg/L				2016-09-14	2.0		
Gross Alpha		pCi/L		15	(0)			4.02	4.02 - 4.02
RIVER WELL 01	VI 1841524-1	pCi/L				2018-03-31	4.02		

	SECONDARY DRINKING WATER STANDARDS (SDWS)											
		Units	MCLG	CA-MCL	PHG	Sampled	Result	Avg. Result(a)	Range (b)			
Chloride		mg/L		500	n/a			38	38 - 38			
RIVER WELL 01	VI 1643824-1	mg/L				2016-09-14	38					
Specific Conductance		umhos/cm		1600	n/a			499	499 - 499			
RIVER WELL 01	VI 1643824-1	umhos/cm				2016-09-14	499					
Sulfate		mg/L		500	n/a			17.6	17.6 - 17.6			
RIVER WELL 01	VI 1643824-1	mg/L				2016-09-14	17.6					
Total Dissolved Solids		mg/L		1000	n/a			300	300 - 300			
RIVER WELL 01	VI 1643824-1	mg/L				2016-09-14	300					

UNREGULATED CONTAMINANTS											
	Units	MCLG	CA-MCL	PHG	Sampled	Result	Avg. Result(a)	Range (b)			
Vanadium		mg/L		NS	n/a			0.010	0.010 - 0.010		
RIVER WELL 01 VI 1643824-1 mg/L 2016-09-14 0.010						_					

	ADDITIONAL DETECTIONS												
		Units	MCLG	CA-MCL	PHG	Sampled	Result	Avg. Result(a)	Range (b)				
Calcium		mg/L			n/a			61	61 - 61				
RIVER WELL 01	VI 1643824-1	mg/L				2016-09-14	61						
Magnesium		mg/L			n/a			9	9 - 9				
RIVER WELL 01	VI 1643824-1	mg/L				2016-09-14	9						
рН		units			n/a			7.1	7.1 - 7.1				
RIVER WELL 01	VI 1643824-1	units				2016-09-14	7.1						
Alkalinity		mg/L			n/a			170	170 - 170				

RIVER WELL 01	VI 1643824-1	mg/L			2016-09-14	170		
Aggressiveness Index				n/a			11.5	11.5 - 11.5
RIVER WELL 01	VI 1643824-1				2016-09-14	11.5		
Langelier Index				n/a			-0.3	-0.30.3
RIVER WELL 01	VI 1643824-1				2016-09-14	-0.3		

The Village Apartments CCR Login Linkage - 2020

FGL Code	Lab ID	Date_Sampled	Method	Description	Property
#5 Downstream H	VI 2043399-4	2020-05-13	Coliform	#5 Downstream Hosebib	Repeat Bacti's
#7 Regular Hose	VI 2043399-2	2020-05-13	Coliform	#7 Regular Hosebib	Repeat Bacti's
#8 Upstream Hos	VI 2043399-3	2020-05-13	Coliform	#8 Upstream Hosebib	Repeat Bacti's
APART 5	VI 2047953-4	2020-10-13	Coliform	Apartment #5	Repeat
	VI 2047991-4	2020-10-14	Coliform	Apartment #5	Drinking Water Monitoring
APART 7	VI 2040709-1	2020-02-03	Coliform	Apartment #7	Drinking Water Monitoring
	VI 2041472-1	2020-03-02	Coliform	Apartment #7	Drinking Water Monitoring
	VI 2042265-1	2020-04-01	Coliform	Apartment #7	Drinking Water Monitoring
	VI 2043361-1	2020-05-11	Coliform	Apartment #7	Drinking Water Monitoring
	VI 2044058-1	2020-06-02	Coliform	Apartment #7	Drinking Water Monitoring
	VI 2044217-3	2020-06-04	Coliform	Apartment #7	Repeat Bacti's
	VI 2045142-2	2020-07-07	Coliform	Apartment #7	Drinking Water Monitoring
	VI 2045960-1	2020-08-04	Coliform	Apartment #7	Drinking Water Monitoring
	VI 2046770-1	2020-09-01	Coliform	Apartment #7	Drinking Water Monitoring
	VI 2047793-1	2020-10-07	Coliform	Apartment #7	Drinking Water Monitoring
	VI 2047953-2	2020-10-13	Coliform	Apartment #7	Repeat
	VI 2047991-2	2020-10-14	Coliform	Apartment #7	Drinking Water Monitoring
	VI 2048624-1	2020-11-03	Coliform	Apartment #7	Drinking Water Monitoring
	VI 2049413-1	2020-12-01	Coliform	Apartment #7	Drinking Water Monitoring
APART 8	VI 2047953-3	2020-10-13	Coliform	Apartment #8	Repeat
	VI 2047991-3	2020-10-14	Coliform	Apartment #8	Drinking Water Monitoring
АРТ7 НВ	VI 2040254-4	2020-01-15	Coliform	Apt #7 Hosebib	Drinking Water Monitoring
	VI 2040416-4	2020-01-21	Coliform	Apt #7 Hosebib	Drinking Water Monitoring
Apt 13 Faucet	VI 2045300-5	2020-07-13	Metals, Total	Apt 13 Faucet	Lead & Copper Monitoring
Apt 2 Faucet	VI 2045300-1	2020-07-13	Metals, Total	Apt 2 Faucet	Lead & Copper Monitoring
APT2 HB	VI 2040254-1	2020-01-15	Coliform	Apt 2 HB	Drinking Water Monitoring
	VI 2040416-1	2020-01-21	Coliform	Apt 2 HB	Drinking Water Monitoring
Apt 3 Faucet	VI 2045300-2	2020-07-13	Metals, Total	Apt 3 Faucet	Lead & Copper Monitoring
Apt 3 Hosebib	VI 2040416-2	2020-01-21	Coliform	Apt 3 Hosebib	Drinking Water Monitoring
APT4 HB	VI 2040254-2	2020-01-15	Coliform	Apt 4 HB	Drinking Water Monitoring
APT 5 -Village	VI 2044217-2	2020-06-04	Coliform	Apt 5 - Village Apt's Hosebib	Repeat Bacti's
APT5 HB	VI 2040254-3	2020-01-15	Coliform	Apt 5 HB	Drinking Water Monitoring
	VI 2040416-3	2020-01-21	Coliform	Apt 5 HB	Drinking Water Monitoring
Apt 6 Faucet	VI 2045300-3	2020-07-13	Metals, Total	Apt 6 Faucet	Lead & Copper Monitoring
Apt 7 Faucet	VI 2045300-4	2020-07-13	Metals, Total	Apt 7 Faucet	Lead & Copper Monitoring
Apt 8 - Village	VI 2044217-4	2020-06-04	Coliform	Apt 8 - Village Apt's Hosebib	Repeat Bacti's
АРТ8 НВ	VI 2040254-5	2020-01-15	Coliform	Apt 8 HB	Drinking Water Monitoring
	VI 2040416-5	2020-01-21	Coliform	Apt 8 HB	Drinking Water Monitoring
Hose Bib	VI 2040087-2	2020-01-07	Coliform	Hose Bibb	Drinking Water Monitoring
	VI 2040087-4	2020-01-07	Coliform	Hose Bibb	Drinking Water Monitoring
	VI 2040087-5	2020-01-07	Coliform	Hose Bibb	Drinking Water Monitoring
Kitchen Faucet	VI 2040087-1	2020-01-07	Coliform	Kitchen Faucet	Drinking Water Monitoring
144001011144000	VI 2040087-3	2020-01-07	Coliform	Kitchen Faucet	Drinking Water Monitoring
WELL 01	VI 1643824-1	2016-09-14	Metals, Total	RIVER WELL 01	Water Monitoring
WEEE 01	VI 1643824-1	2016-09-14	General Mineral	RIVER WELL 01	Water Monitoring
	VI 1841524-1	2018-03-31	Radio Chemistry	RIVER WELL 01	Radio Monitoring
Sink Faucet Apt	VI 2046130-1	2020-08-11	Metals, Total	Sink Faucet Apt #6	EPA Pb & Cu Monitoring
Village APTS W.	VI 2044217-1	2020-06-11	Coliform	Village Apt's Well Tap	Repeat Bacti's
vinage Ar 15 W.	_		Coliform	Village Apt's Well Tap	
	VI 2047953-1	2020-10-13	Coliform		Repeat Drinking Water Monitoring
Well Ter	VI 2047991-1	2020-10-14		Village Apt's Well Tap	•
Well Tap	VI 2043399-1	2020-05-13	Coliform	Well Tap	Repeat Bacti's