Consumer Confidence Report Certification Form

(to be submitted with a copy of the CCR)

(to certify electronic delivery of the CCR, use the certification form on the State Water Board's website at <u>http://www.waterboards.ca.gov/drinking_water/certlic/drinkingwater/CCR.shtml</u>)

Water System Name: Three Rivers Village Water System Number: 5400838

The water system above hereby certifies that its Consumer Confidence Report was distributed on

(date) to customers (and appropriate notices of availability have been given). Further, the system certifies that the information contained in the report is correct and consistent with the compliance monitoring data previously submitted to the State Water Resources Control Board, Division of Drinking Water.

Certified By:	Name				
	Signature				
	Title				
	Phone Number	()	Date	

To summarize report delivery used and good-faith efforts taken, please complete the form below by checking all items that apply and fill-in where appropriate:

CCR was distributed by mail or other direct delivery methods. Specify other direct delivery methods used:

netl	od faith" efforts were used to reach non-bill paying customers. Those efforts included the following nods:
	Posted the CCR on the internet at http://
	Mailed the CCR to postal patrons within the service area (attach zip codes used)
	Advertised the availability of the CCR in news media (attach a copy of press release)
	Publication of the CCR in a local newspaper of general circulation (attach a copy of the published notice, including name of the newspaper and date published)
	Posted the CCR in public places (attach a list of locations)
	Delivery of multiple copies of CCR to single bill addresses serving several persons, such as apartments, businesses, and schools
	Delivery to community organizations (attach a list of organizations)
	Other (attach a list of other methods used)
or	systems serving at least 100,000 persons: Posted CCR on a publicly-accessible internet site

2019 Consumer Confidence Report

Water System Name: Three Rivers Village

Report Date:

May 2020

We test the drinking water quality for many constituents as required by state and federal regulations. This report shows the results of our monitoring for the period of January 1 - December 31, 2019.

Este informe contiene información muy importante sobre su agua potable. Tradúzcalo ó hable con alquien que lo entienda bien.

Type of water source(s) in use: According to SWRCB records, this Source is Groundwater. This Assessment was done using the Default Groundwater System Method.

Your water comes from 2 source(s): Well 01 and Well 02

Opportunities for public participation in decisions that affect drinking water quality: Regularly-scheduled water board or city/county council meetings currently are not held.

For more information about this report, or any questions relating to your drinking water, please call 559 741-5097 and ask for Julie Doctor.

TERMS USED IN THIS REPORT

Maximum Contaminant Level (MCL): The highest level of contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs (or MCLGs) as is economically feasible. Secondary MCLs are set to protect the odor, taste, and appearance of drinking water.

Maximum Contaminant Level Goal (MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the U.S. Environmental Protection Agency (USEPA).

Public Health Goal (PHG): The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California Environmental Protection Agency.

Maximum Residual Disinfectant Level (MRDL): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Maximum Residual Disinfectant Level Goal (MRDLG): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

Primary Drinking Water Standards (PDWS): MCLs and MRDLs for the contaminants that affect health along with their monitoring and reporting requirements, and water treatment requirements.

Secondary Drinking Water Standards (SDWS): MCLs for the contaminants that affect taste, odor, or appearance of the drinking water. Contaminants with SDWSs do not affect the health at the MCL levels.

Treatment Technique (TT): A required process intended to reduce the level of a contaminant in drinking water.

Regulatory Action Level (AL): The concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow.

Level 1 Assessment: A Level 1 assessment is a study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system.

Level 2 Assessment: A Level 2 assessment is a very detailed study of the water system to identify potential problems and determine (if possible) why an E. coli MCL violation has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions.

 $\boldsymbol{ND:}$ not detectable at testing limit

mg/L: milligrams per liter or parts per million (ppm)

ug/L: micrograms per liter or parts per billion (ppb)

umhos/cm: micro mhos per centimeter

The sources of drinking water: (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include:

- *Microbial contaminants,* such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- *Inorganic contaminants,* such as salts and metals, that can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- *Pesticides and herbicides,* that may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses.
- Organic chemical contaminants, including synthetic and volatile organic chemicals, that are by-products if industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, agricultural application, and septic systems.
- *Radioactive contaminants,* that can be naturally-occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, the USEPA and the State Water Resource Control Board (State Water Board) prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. State Water Board regulations also establish limits for contaminants in bottled water that provide the same protection for public health.

Tables 1, 2, 3, 4 and 5 list all of the drinking water contaminants that were detected during the most recent sampling for the constituent. The presence of these contaminants in the water does not necessarily indicate that the water poses a health risk. The State Water Board allows us to monitor for certain contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of the data, though representative of the water quality, are more than one year old.

Any violation of MCL, AL or MRDL is highlighted. Additional information regarding the violation is provided later in this report.

Table 1	Table 1 - SAMPLING RESULTS SHOWING THE DETECTION OF LEAD AND COPPER									
Lead and Copper (complete if lead or copper detected in last sample set)	Sample Date	90th percentile level detected	No. Sites Exceeding AL	AL	PHG	Typical Sources of Contaminant				
Copper (mg/L)	10 (2019)	0.42	1	1.3	.3	Internal corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives				

	Table 2 - SAMPLING RESULTS FOR SODIUM AND HARDNESS										
Chemical or Constituent (and reporting units)	Sample Date	Average Level Detected	Range of Detections	MCL	PHG (MCLG)	Typical Sources of Contaminant					
Sodium (mg/L)	(2017)	16	15 - 16	none	none	Salt present in the water and is generally naturally occurring					
Hardness (mg/L)	(2017)	198	188 - 208	none	none	Sum of polyvalent cations present in the water, generally magnesium and calcium, and are usually naturally occurring					

Table 3 - 1	DETECTION	OF CONTA	MINANTS W	TH A PRI	MARY DRI	NKING WATER STANDARD
Chemical or Constituent (and reporting units)	Sample Date	Average Level Detected	Range of Detections	MCL [MRDL]	PHG (MCLG) [MRDLG]	Typical Sources of Contaminant
Barium (mg/L)	(2011)	0.16	n/a	1		Discharge from oil drilling wastes and from metal refineries; erosion of natural deposits
Fluoride (mg/L)	(2017)	ND	ND - 0.1	2	1	Erosion of natural deposits; water additive that promotes strong teeth; discharge from fertilizer and aluminum factories.

Nitrate as N (mg/L)	(2018 - 2019)	0.7	ND - 1.5	10	10	Runoff and leaching from fertilizer use; leaching from septic tanks and sewage; erosion of natural deposits
Nitrate + Nitrite as N (mg/L)	(2017)	1.5	ND - 2.9	10	10	Runoff and leaching from fertilizer use; leaching from septic tanks and sewage; erosion of natural deposits

Table 4 - DETE	CTION OF C	ONTAMINA	NTS WITH A <u>SI</u>	ECON	<u>DARY</u> DRI	NKING WATER STANDARD
Chemical or Constituent (and reporting units)	Sample Date	Average Level Detected	Range of Detections	MCL	PHG (MCLG)	Typical Sources of Contaminant
Chloride (mg/L)	(2017)	20	n/a	500	n/a	Runoff/leaching from natural deposits; seawater influence
Iron (ug/L)	(2017)	10700	ND - 21400	300	n/a	Leaching from natural deposits; Industrial wastes
Manganese (ug/L)	(2017)	55	ND - 110	50	n/a	Leaching from natural deposits
Specific Conductance (umhos/cm)	(2017)	476	463 - 488	1600	n/a	Substances that form ions when in water; seawater influence
Sulfate (mg/L)	(2017)	19.9	19.0 - 20.8	500	n/a	Runoff/leaching from natural deposits; industrial wastes
Total Dissolved Solids (mg/L)	(2017)	320	300 - 340	1000	n/a	Runoff/leaching from natural deposits
Zinc (mg/L)	(2017)	3.95	ND - 7.89	5	n/a	Runoff/leaching from natural deposits

	Table 5 - ADDITIONAL DETECTIONS											
Chemical or Constituent (and reporting units)	Sample Date	Average Level Detected	Range of Detections	Notification Level	Typical Sources of Contaminant							
Calcium (mg/L)	(2017)	67	64 - 70	n/a	n/a							
Magnesium (mg/L)	(2017)	8	7 - 8	n/a	n/a							
pH (units)	(2017)	7	6.7 - 7.2	n/a	n/a							
Alkalinity (mg/L)	(2017)	180	170 - 190	n/a	n/a							
Aggressiveness Index	(2017)	11.4	11.2 - 11.6	n/a	n/a							
Langelier Index	(2017)	-0.4	-0.60.2	n/a	n/a							

Additional General Information on Drinking Water

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts if some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the USEPA's Safe Drinking Water Hotline (1-800-426-4791).

Some people may be more vulnerable to contaminants in drinking water than the general population. Immunocompromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. USEPA/ Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* and other microbial contaminants are available from the Safe Drinking Water Hotline (1-800-426-4791).

Lead Specific Language for Community Water Systems: If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with the service lines and home plumbing. *Three Rivers Village* is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/lead.

Summary Information for Violation of a MCL, MRDL, AL, TT, or Monitoring and Reporting Requirement

VIOLATION OI	F A MCL,MRDL,AL,TT, OR N	MONITORING A	AND REPORTING	REQUIREMENT
Violation	Explanation	Duration	Actions Taken To Correct the Violation	Health Effects Language
Copper				Copper is an essential nutrient, but some people who use water containing copper in excess of the action level over a relatively short amount of time may experience gastrointesteinal distress. Some people who drink water containing copper in excess of the action level over many years may suffer liver or kidney damage. People with Wilson's Disease should consult their personal doctor.
Iron				Iron was found at levels that exceed the secondary MCL. The Iron MCL was set to protect you against unpleasant aesthetic affects such as color, taste, odor and the staining of plumbing fixtures (e.g., tubs and sinks), and clothing while washing. Violating this MCL does not pose a risk to public health.
Manganese				Manganese was found at levels that exceed the secondary MCL. The Manganese MCL was set to protect you against unpleasant aesthetic affects such as color, taste, odor and the staining of plumbing fixtures (e.g., tubs and sinks), and clothing while washing. Violating this MCL does not pose a risk to public health.
Zinc				Zinc was found at levels that exceed the secondary MCL. The Zinc MCL was set to protect you against unpleasant aesthetic affects such as color, taste, odor and the staining of plumbing fixtures (e.g., tubs and sinks), and clothing while washing. Violating this MCL does not pose a risk to public health.

2019 Consumer Confidence Report Drinking Water Assessment Information

Assessment Information

A Drinking Water Source Assessment has been completed for the WELL 01 of the THREE RIVERS VILLAGE water system in May, 2002.. A Drinking Water Source Assessment has not been completed for the WELL 02 of the THREE RIVERS VILLAGE water system.

- Well 01 is considered most vulnerable to the following activities not associated with any detected contaminants: Septic systems - high density [>1/acre]
- Well 02 does not have a completed assessment on file.

Discussion of Vulnerability

The activities to which the Three Rivers Village water system is most vulnerable include septic systems. It is important that septic systems be kept in good repair and pumped regularly. It is also necessary to keep the well site clean and free of weeds and debris to prevent contamination. The cement surface seal needs to be checked for cracks and immediately repaired or sealed.

Assessment summaries are not available for some sources. This is because:

The Assessment has not been completed. Contact the local Department of Health Services (DHS) Drinking Water field office or the water system to find out when the Assessment is scheduled to be done.

The source is not active. It may be out of service, or new and not yet in service.

The Assessment was not submitted electronically. The site used to obtain Assessments only provides access to Assessment summaries submitted electronically.

Acquiring Information

A copy of the complete assessment may be viewed at: Environmental Health Services 5957 S Mooney Blvd Visalia, CA 93277

You may request a summary of the assessment be sent to you by contacting: Susan Shaw Environmental Health Specialist 559-733-6441 559-733-6932 (fax) sshaw@tularehhsa.org

For more info you may visit https://www.waterboards.ca.gov/drinking_water/certlic/drinkingwater/DWSAP.html or contact the health department in the county to which the water system belongs as indicated on this following link: https://www.waterboards.ca.gov/drinking_water/programs/documents/ddwem/DDWdistrictofficesmap.pdf

Three Rivers Village Analytical Results By FGL - 2019

	LEAD AND COPPER RULE											
		Units	MCLG	CA-MCL	PHG	Sampled	Result	90th Percentile	# Samples			
Copper		mg/L		1.3	.3			0.42	10			
Casa Mendoza Sink	VI 1946275-4	mg/L				2019-10-23	0.06					
Caza Mendoza	VI 1947005-2	mg/L				2019-11-21	ND					
Pizza Factory	VI 1947005-4	mg/L				2019-11-21	0.06					
Pizza Factory Sink	VI 1946275-3	mg/L				2019-10-23	0.10					
Thingerie Restroom Sink	VI 1946275-5	mg/L				2019-10-23	ND					
Thingeriye	VI 1947005-5	mg/L				2019-11-21	ND					
Three Rivers Pharmacy	VI 1947005-3	mg/L				2019-11-21	ND					
Three Rivers Pharmacy Sink	VI 1946275-2	mg/L				2019-10-23	ND					
Village Mkt	VI 1947005-1	mg/L				2019-11-21	0.42					
Village Mkt Produce Sink	VI 1946275-1	mg/L				2019-10-23	1.41					

	SAMPLING RESULTS FOR SODIUM AND HARDNESS										
		Units	MCLG	CA-MCL	PHG	Sampled	Result	Avg. Result(a)	Range (b)		
Sodium		mg/L		none	none			16	15 - 16		
Well 01	VI 1740814-1	mg/L				2017-03-08	16				
Well 02	VI 1741310-1	mg/L				2017-04-13	15				
Hardness		mg/L		none	none			198	188 - 208		
Well 01	VI 1740814-1	mg/L				2017-03-08	188				
Well 02	VI 1741310-1	mg/L				2017-04-13	208				

	PRIMA	RY DRIN	KING WA	TER STAN	DARDS ((PDWS)			
		Units	MCLG	CA-MCL	PHG	Sampled	Result	Avg. Result(a)	Range (b)
Barium		mg/L	2	1	2			0.16	0.16 - 0.16
Well 01	VI 1142951-1	mg/L				2011-11-29	0.16		
Fluoride		mg/L		2	1			ND	ND - 0.1
Well 01	VI 1740814-1	mg/L				2017-03-08	0.1		
Well 02	VI 1741310-1	mg/L				2017-04-13	ND		
Nitrate as N		mg/L		10	10			0.7	ND - 1.45
Well 01	VI 1940938-1	mg/L				2019-03-05	1.45		
Well 02	VI 1846140-2	mg/L				2018-11-14	ND		
Nitrate + Nitrite as N		mg/L		10	10			1.5	ND - 2.9
Well 01	VI 1740814-1	mg/L				2017-03-08	2.9		
Well 02	VI 1741310-1	mg/L				2017-04-13	ND		

SECONDARY DRINKING WATER STANDARDS (SDWS)										
		Units	MCLG	CA-MCL	PHG	Sampled	Result	Avg. Result(a)	Range (b)	
Chloride		mg/L		500	n/a			20	20 - 20	
Well 01	VI 1740814-1	mg/L				2017-03-08	20			
Well 02	VI 1741310-1	mg/L				2017-04-13	20			
Iron		ug/L		300	n/a			10700	ND - 21400	
Well 01	VI 1740814-1	ug/L				2017-03-08	ND			
Well 02	VI 1741310-1	ug/L				2017-04-13	21400			
Manganese		ug/L		50	n/a			55	ND - 110	
Well 01	VI 1740814-1	ug/L				2017-03-08	ND			
Well 02	VI 1741310-1	ug/L				2017-04-13	110			
Specific Conductance		umhos/cm		1600	n/a			476	463 - 488	
Well 01	VI 1740814-1	umhos/cm				2017-03-08	463			
Well 02	VI 1741310-1	umhos/cm				2017-04-13	488			
Sulfate		mg/L		500	n/a			19.9	19.0 - 20.8	

Well 01	VI 1740814-1	mg/L			2017-03-08	20.8		
Well 02	VI 1741310-1	mg/L			2017-04-13	19.0		
Total Dissolved Solids		mg/L	1000	n/a			320	300 - 340
Well 01	VI 1740814-1	mg/L			2017-03-08	340		
Well 02	VI 1741310-1	mg/L			2017-04-13	300		
Zinc		mg/L	5	n/a			3.95	ND - 7.89
Well 01	VI 1740814-1	mg/L			2017-03-08	ND		
Well 02	VI 1741310-1	mg/L			2017-04-13	7.89		

ADDITIONAL DETECTIONS									
		Units	MCLG	CA-MCL	PHG	Sampled	Result	Avg. Result(a)	Range (b)
Calcium		mg/L			n/a			67	64 - 70
Well 01	VI 1740814-1	mg/L				2017-03-08	64		
Well 02	VI 1741310-1	mg/L				2017-04-13	70		
Magnesium		mg/L			n/a			8	7 - 8
Well 01	VI 1740814-1	mg/L				2017-03-08	7		
Well 02	VI 1741310-1	mg/L				2017-04-13	8		
pH		units			n/a			7.0	6.7 - 7.2
Well 01	VI 1740814-1	units				2017-03-08	7.2		
Well 02	VI 1741310-1	units				2017-04-13	6.7		
Alkalinity		mg/L			n/a			180	170 - 190
Well 01	VI 1740814-1	mg/L				2017-03-08	170		
Well 02	VI 1741310-1	mg/L				2017-04-13	190		
Aggressiveness Index					n/a			11.4	11.2 - 11.6
Well 01	VI 1740814-1					2017-03-08	11.6		
Well 02	VI 1741310-1					2017-04-13	11.2		
Langelier Index					n/a			-0.4	-0.60.2
Well 01	VI 1740814-1					2017-03-08	-0.2		
Well 02	VI 1741310-1					2017-04-13	-0.6		

Three Rivers Village CCR Login Linkage - 2019

FGL Code	Lab ID	Date_Sampled	Method	Description	Property
Casa Mendoza Si	VI 1946275-4	2019-10-23	Metals, Total	Casa Mendoza Sink	Lead & Copper Test
Caza Mendoza	VI 1947005-2	2019-11-21	Metals, Total	Caza Mendoza	Village-PbCu
Pizza Factory	VI 1947005-4	2019-11-21	Metals, Total	Pizza Factory	Village-PbCu
Pizza Factory S	VI 1946275-3	2019-10-23	Metals, Total	Pizza Factory Sink	Lead & Copper Test
Pizza Hand Wash	VI 1940125-1	2019-01-09	Coliform	Pizza Hand Wash Sink	Water Monitoring - 40915 Sierra Dr.
	VI 1940583-1	2019-02-13	Coliform	Pizza Hand Wash Sink	Water Monitoring - 40915 Sierra Dr.
PIZZA HANDWASH	VI 1940928-1	2019-03-05	Coliform	Pizza Hand Wash Sink	Water Monitoring - 40915 Sierra Dr.
Pizza Hand Wash	VI 1941661-1	2019-04-10	Coliform	Pizza Hand Wash Sink	Water Monitoring - 40915 Sierra Dr.
PIZZA HANDWASH	VI 1942253-1	2019-05-17	Coliform	Pizza Hand Wash Sink	Water Monitoring - 40915 Sierra Dr.
Pizza Hand Wash	VI 1942946-1	2019-06-17	Coliform	Pizza Hand Wash Sink	Water Monitoring - 40915 Sierra Dr.
	VI 1943405-1	2019-07-09	Coliform	Pizza Hand Wash Sink	Water Monitoring - 40915 Sierra Dr.
PIZZA HANDWASH	VI 1944649-1	2019-08-23	Coliform	Pizza Hand Wash Sink	Water Monitoring - 40915 Sierra Dr.
	VI 1945353-1	2019-09-17	Coliform	Pizza Hand Wash Sink	Water Monitoring - 40915 Sierra Dr.
Pizza Hand Wash	VI 1946215-1	2019-10-21	Coliform	Pizza Hand Wash Sink	Water Monitoring - 40915 Sierra Dr.
	VI 1946640-1	2019-11-06	Coliform	Pizza Hand Wash Sink	Water Monitoring - 40915 Sierra Dr.
	VI 1947685-1	2019-12-16	Coliform	Pizza Hand Wash Sink	Water Monitoring - 40915 Sierra Dr.
Thingerie Restr	VI 1946275-5	2019-10-23	Metals, Total	Thingerie Restroom Sink	Lead & Copper Test
Thingeriye	VI 1947005-5	2019-11-21	Metals, Total	Thingeriye	Village-PbCu
Three Rivers Ph	VI 1947005-3	2019-11-21	Metals, Total	Three Rivers Pharmacy	Village-PbCu
	VI 1946275-2	2019-10-23	Metals, Total	Three Rivers Pharmacy Sink	Lead & Copper Test
Village Mkt	VI 1947005-1	2019-11-21	Metals, Total	Village Mkt	Village-PbCu
Village Mkt Pro	VI 1946275-1	2019-10-23	Metals, Total	Village Mkt Produce Sink	Lead & Copper Test
Well 01	VI 1142951-1	2011-11-29	Metals, Total	Well 01	40869 Sierra Dr.
	VI 1740814-1	2017-03-08	General Mineral	Well 01	Water Quality Monitoring
	VI 1940938-1	2019-03-05	Wet Chemistry	Well 01	Water Quality Monitoring
Well 02	VI 1741310-1	2017-04-13	General Mineral	Well 02	Well 02
	VI 1846140-2	2018-11-14	Wet Chemistry	Well 02	THREE RIVERS VILLAGE