Consumer Confidence Report Certification Form (to be submitted with a copy of the CCR) $(to\ certify\ electronic\ delivery\ of\ the\ CCR,\ use\ the\ certification\ form\ on\ the\ State\ Water\ Board's\ website\ at \\ \underline{http://www.swrcb.ca.gov/drinking_water/certlic/drinkingwater/CCR.shtml)}$ | Water | r Syste | m Name: | SULTANA CO | MMUNITY | SERVICES DIST | RICT | | | | | |---|----------------------|--|--------------------------------|-------------------------------|---|------------------------------|--|------------------|--|--| | Water | r Syste | m Number: | CA5400824 | | | | | | | | | <u>JUN</u>
certifi | E 7, 2025
es that | the informa | te) to customeration contained | rs (and appro
in the repor | opriate notices of a
t is correct and co | availability hansistent with | ave been given). Fur
the compliance mor | ther, the system | | | | Certi | fied By | er system named above hereby certifies that its Consumer Confidence Report was distributed on (2025 | | | | | | | | | | | Signature: | | (DAT | (I) Ato (A) | | | | | | | | | | Title | | GENERA | L MANAGER/SECI | RETARY | | | | | | Water System Number: CA540082 The water system named above her JUNE 7, 2025 (date) to custo certifies that the information contains previously submitted to the State Williams of | e Number: | (559) | 730-8035 | | Date: 06-27-2025 | . , , | • | | | delivery methods. | Specify other | direct delivery met | hods used: | | | | X | | ods: | | | | ers. Those ef | forts included the fol | lowing | | | | | | Mailed the | CCR to postal | patrons with | nin the service are | a (attach zip | codes used) | | | | | | | Advertised | the availabilit | y of the CCR | in news media (at | tach a copy o | of press release) | | | | | | Ш | | | | | | = - | | | | | | X | Posted the | CCR in public | places (attac | ch a list of location | ns) SULTANA | A POST OFFICE | | | | | | | • | | | | | | | | | | | | Delivery to | community or | ganizations | (attach a list of org | ganizations) | | | | | | | | Other (att | ach a list of oth | er methods | used) | | | | | | | | For sy | ystems servi | ng at least 100 | ,000 persons | s: Posted CCR on a | a publicly-acc | essible internet site | | | | | _ | at the | following a | ddress: http://_ | | | | | | | | | | For in | vestor-own | ed utilities: Del | ivered the C | CR to the Californi | ia Public Util | ities Commission | | | | ### **2024 Consumer Confidence Report** Water System Name: SULTANA COMMUNITY SERVICES DISTRICT Report Date: May 2025 We test the drinking water quality for many constituents as required by state and federal regulations. This report shows the results of our monitoring for the period of January 1 - December 31, 2024. Este informe contiene información muy importante sobre su agua potable. Tradúzcalo ó hable con alquien que lo entienda bien. **Type of water source(s) in use:** According to SWRCB records, this Source is Groundwater. This Assessment was done using the Default Groundwater System Method. Your water comes from 3 source(s): WELL 02 - SOUTH STBY, Well 03 - Main and WELL 03 - MAIN RAW **Opportunities for public participation in decisions that affect drinking water quality:** Regularly-scheduled water board meetings are held at Monson-School District 10643 Ave. 416 Sultana, Ca. 93666, every first Thursday of each month. For more information about this report, or any questions relating to your drinking water, please call (559) 458 - 6144 and ask for Jose Padilla or email sultanacsd@gmail.com. #### TERMS USED IN THIS REPORT Maximum Contaminant Level (MCL): The highest level of contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs (or MCLGs) as is economically feasible. Secondary MCLs are set to protect the odor, taste, and appearance of drinking water. Maximum Contaminant Level Goal (MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the U.S. Environmental Protection Agency (USEPA). **Public Health Goal (PHG):** The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California Environmental Protection Agency. Maximum Residual Disinfectant Level (MRDL): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants. Maximum Residual Disinfectant Level Goal (MRDLG): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants. **Primary Drinking Water Standards (PDWS):** MCLs and MRDLs for the contaminants that affect health along with their monitoring and reporting requirements, and water treatment requirements. **Secondary Drinking Water Standards (SDWS):** MCLs for the contaminants that affect taste, odor, or appearance of the drinking water. Contaminants with SDWSs do not affect the health at the MCL levels. **Treatment Technique (TT):** A required process intended to reduce the level of a contaminant in drinking water. **Regulatory Action Level (AL):** The concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow. **Level 1 Assessment:** A Level 1 assessment is a study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system. **Level 2 Assessment:** A Level 2 assessment is a very detailed study of the water system to identify potential problems and determine (if possible) why an E. coli MCL violation has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions. **ND:** not detectable at testing limit mg/L: milligrams per liter or parts per million (ppm) ug/L: micrograms per liter or parts per billion (ppb) **pCi/L:** picocuries per liter (a measure of radiation) NTU: Nephelometric Turbidity Units umhos/cm: micro mhos per centimeter The sources of drinking water: (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity. #### Contaminants that may be present in source water include: - *Microbial contaminants*, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife. - *Inorganic contaminants*, such as salts and metals, that can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming. - *Pesticides and herbicides,* that may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses. - *Organic chemical contaminants*, including synthetic and volatile organic chemicals, that are by-products if industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, agricultural application, and septic systems. - Radioactive contaminants, that can be naturally-occurring or be the result of oil and gas production and mining activities. In order to ensure that tap water is safe to drink, the USEPA and the State Water Resource Control Board (State Water Board) prescribe regulations that limit the amount of certain
contaminants in water provided by public water systems. State Water Board regulations also establish limits for contaminants in bottled water that provide the same protection for public health. **Table(s) 1, 2, 3, 4, 5, 6 and 7 list all of the drinking water contaminants that were detected during the most recent sampling for the constituent.** The presence of these contaminants in the water does not necessarily indicate that the water poses a health risk. The State Water Board allows us to monitor for certain contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of the data, though representative of the water quality, are more than one year old. Any violation of MCL, AL or MRDL is highlighted. Additional information regarding the violation is provided later in this report. | Table 1 - SAM | PLING RESULTS SHOW | ING THE DET | ECTION OF CO | LIFOE | RM BACTERIA | |--|---------------------------|-------------------------------|--|-------|---------------------------------------| | Microbiological Contaminants (complete if bacteria detected) | Highest No. of Detections | No. of Months
in Violation | MCL | MCLG | Typical Sources of
Contaminant | | Total Coliform Bacteria | 0
(2024) | ND | no more than 1
positive monthly
sample | | Naturally present in the environment. | | Fecal coliform and E. coli | 0
(2024) | ND | | | Human and animal fecal waste. | | Ta | Table 2 - SAMPLING RESULTS SHOWING THE DETECTION OF LEAD AND COPPER | | | | | | | | | | | | |--|---|-------------------|--------------------------------------|---------------------------|-----|-----|---|--|--|--|--|--| | Lead and
Copper
(complete if lead or
copper detected in
last sample set) | Sample Date | No. of
Samples | 90th
percentile
level detected | No. Sites
Exceeding AL | AL | PHG | Typical Sources of Contaminant | | | | | | | Lead (ug/L) | (2023) | 10 | 0 | 0 | 15 | 0.2 | Internal corrosion of household water plumbing systems; discharges from industrial manufacturers, erosion of natural deposits | | | | | | | Copper (mg/L) | (2023) | 10 | 0.05 | 0 | 1.3 | .3 | Internal corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives | | | | | | | | Table 3 - SAMPLING RESULTS FOR SODIUM AND HARDNESS | | | | | | | | | | | |---|--|------------------------------|------------------------|------|---------------|--|--|--|--|--|--| | Chemical or
Constituent
(and reporting units) | Sample Date | Average
Level
Detected | Range of
Detections | MCL | PHG
(MCLG) | Typical Sources of Contaminant | | | | | | | Sodium (mg/L) | (2021 - 2022) | 33 | 27 - 38 | none | | Salt present in the water and is generally naturally occurring | | | | | | | Hardness (mg/L) (2021 | 21 - 2022) | 203 | 199 - 206 | none | none | Sum of polyvalent cations present in the water, generally magnesium and calcium, and are usually naturally occurring | |-----------------------|------------|-----|-----------|------|------|--| |-----------------------|------------|-----|-----------|------|------|--| | Table 4 - DETEC | TION OF CO | NTAMINA | NTS WITH A | PRIMAR | Y DRINKI | NG WATER STANDARD | |---|---------------|-----------------------------|------------|---------------|--------------------------|--| | Chemical or Constituent (and reporting units) | Sample Date | e Level Range of Detections | | MCL
[MRDL] | PHG
(MCLG)
[MRDLG] | Typical Sources of Contaminant | | Arsenic (ug/L) | (2021 - 2022) | ND | ND - 2 | 10 | 0.004 | Erosion of natural deposits; runoff
from orchards, glass and
electronics production wastes | | Fluoride (mg/L) | (2021 - 2022) | 0.1 | n/a | 2 | 1 | Erosion of natural deposits; water additive that promotes strong teeth; discharge from fertilizer and aluminum factories. | | Nitrate as N (mg/L) | (2024) | 5.1 | 4.5 - 6.0 | 10 | 10 | Runoff and leaching from fertilizer use; leaching from septic tanks and sewage; erosion of natural deposits | | Nitrate + Nitrite as N
(mg/L) | (2021 - 2022) | 8.1 | 6.4 - 9.8 | 10 | 10 | Runoff and leaching from fertilizer use; leaching from septic tanks and sewage; erosion of natural deposits | | Gross Alpha (pCi/L) | (2023) | ND | ND - 1.20 | 15 | (0) | Erosion of natural deposits. | | Dibromochloropropane
(DBCP) (ng/L) | (2023 - 2024) | 25 | ND - 50 | 200 | 1.7 | Banned nematocide that may still
be present in soils due to
runoff/leaching from former use on
soybeans, cotton, vineyards,
tomatoes, and tree fruit | | Table 5 - DETE | CTION OF C | ONTAMINA | NTS WITH A S | ECON | <u>IDARY</u> DR | INKING WATER STANDARD | |---|---------------|-----------------------------|--------------|------|-----------------|---| | Chemical or
Constituent
(and reporting units) | Sample Date | Average Range of Detections | | MCL | PHG
(MCLG) | Typical Sources of Contaminant | | Chloride (mg/L) | (2021 - 2022) | 26 | 16 - 35 | 500 | n/a | Runoff/leaching from natural deposits; seawater influence | | Color (Units) | (2021 - 2022) | 3 | ND - 6 | 15 | n/a | Naturally-occurring organic materials | | Odor Threshold at 60 °C (TON) | (2021 - 2022) | 1 | ND - 2 | 3 | n/a | Naturally-occurring organic materials. | | Specific Conductance
(umhos/cm) | (2021 - 2022) | 538 | 530 - 545 | 1600 | n/a | Substances that form ions when in water; seawater influence | | Sulfate (mg/L) | (2021 - 2022) | 27.6 | 24.0 - 31.2 | 500 | n/a | Runoff/leaching from natural deposits; industrial wastes | | Total Dissolved Solids (mg/L) | (2021 - 2022) | 355 | 330 - 380 | 1000 | n/a | Runoff/leaching from natural deposits | | Turbidity (NTU) | (2021 - 2022) | 0.2 | ND - 0.3 | 5 | n/a | Soil runoff | | | Table 6 - DETECTION OF UNREGULATED CONTAMINANTS | | | | | | | | | | | |---|---|----|---------|-----------------------|--|--|--|--|--|--|--| | Chemical or
Constituent
(and reporting units) | Sample Date Average Level Range of Detections | | | Notification
Level | Health Effects | | | | | | | | Vanadium (ug/L) | (2021 - 2022) | 35 | 27 - 42 | | Vanadium exposures resulted in developmental and reproductive effects in rats. | | | | | | | | Table 7 - ADDITIONAL DETECTIONS | | | | | | | | | | | | |---|---------------|---------------------------|---------------------|--------------------|-----------------------------------|--|--|--|--|--|--| | Chemical or Constituent (and reporting units) Sample Date | | Average Level
Detected | Range of Detections | Notification Level | Typical Sources of
Contaminant | | | | | | | | Calcium (mg/L) | (2021 - 2022) | 54 | 53 - 55 | n/a | n/a | | | | | | | | Magnesium (mg/L) | (2021 - 2022) | n/a | n/a | | | | | | | | | | pH (units) | (2021 - 2022) | 7.26 | 7.2 - 7.31 | n/a | n/a | |----------------------|---------------|------|-------------|-----|-----| | Alkalinity (mg/L) | (2021 - 2022) | 175 | 160 - 190 | n/a | n/a | | Aggressiveness Index | (2021 - 2022) | 11.7 | 11.6 - 11.7 | n/a | n/a | | Langelier Index | (2021 - 2022) | -0.3 | -0.30.2 | n/a | n/a | | Ta | ble 8 - DETE | ECTION OF I | DISINFECTANT | Γ/DISINFE | CTANT BY | PRODUC | CT RULE | |---|---------------|------------------------------|------------------------|---------------|---------------|-----------|--| | Chemical or
Constituent
(and reporting units) | Sample Date | Average
Level
Detected | Range of
Detections | MCL
(MRDL) | PHG
(MCLG) | Violation | Typical Sources of
Contaminant | | Chlorine, Total
(mg/L) | (2015 - 2021) | 0.48 | 0.03 - 0.57 | 4.0 | 4.0 | No | Drinking water disinfectant added for treatment. | | Chlorine, Free
(mg/L) | (2024) | 0.71 | 0.29 - 1.34 | 4.0 | 4.0 | No | Drinking water
disinfectant added for
treatment. | ## **Additional General Information on Drinking Water** Drinking water, including bottled water, may reasonably be expected to contain at least small amounts if some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the USEPA's Safe Drinking Water Hotline (1-800-426-4791). Some people may be more vulnerable to contaminants in drinking water than the general population. Immunocompromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health
care providers. USEPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* and other microbial contaminants are available from the Safe Drinking Water Hotline (1-800-426-4791). Lead Specific Language for Community Water Systems: If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with the service lines and home plumbing. *Sultana Community Serv. Dist* is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/lead. # Summary Information for Violation of a MCL, MRDL, AL, TT, or Monitoring and Reporting Requirement **About your Nitrate as N:** Nitrate above 5 mg/L as nitrogen (50 percent of the MCL), but below 10 mg/L as nitrogen (the MCL); Nitrate in drinking water at levels above 10 mg/L is a health risk for infants of less than six months of age. Such nitrate levels in drinking water can interfere with the capacity of the infant's blood to carry oxygen, resulting in a serious illness; symptoms include shortness of breath and blueness of the skin. Nitrate levels above 10 mg/L may also affect the ability of the blood to carry oxygen in other individuals, such as pregnant women and those with certain specific enzyme deficiencies. If you are caring for an infant, or you are pregnant, you should ask advice from your health care provider. #### **Drinking Water Assessment Information** #### **Assessment Information** A source water assessment was conducted for the WELL 03 MAIN of the SULTANA C S D water system in October, 2002. WELL 02 - SOUTH STBY - does not have a completed assessment on file. This well is only used for backup and was used briefly last year to provide water. Well 03 - Main - is considered most vulnerable to the following activities associated with contaminants detected in the water supply: Automobile - Gas stations Underground storage tanks - Confirmed leaking tanks Fertilizer/Pesticide/Herbicide Application is considered most vulnerable to the following activities not associated with any detected contaminants: Chemical/petroleum processing/storage Historic gas stations **Known Contaminant Plumes** WELL 03 - MAIN RAW - is considered most vulnerable to the following activities associated with contaminants detected in the water supply: Automobile - Gas stations Underground storage tanks - Confirmed leaking tanks Fertilizer/Pesticide/Herbicide Application is considered most vulnerable to the following activities not associated with any detected contaminants: Chemical/petroleum processing/storage Historic gas stations Known Contaminant Plumes #### **Discussion of Vulnerability** The activities to which Well 03 - Main of the Sultana CSD water system is most vulnerable include historic leaking underground petroleum tanks, known contamination plumes, agricultural activity and drainage and sewer lines. The system is in an area with contamination plumes for Nitrates and DBCP (Di Bromo Chloro Propane). Well sites are within the pesticide management zone for Diuron and there are zones for Prometon and Simazine west of Road 104 and North of Avenue 416. The area has contamination of DBCP (Di Bromo Chloro Propane) a fumigant which had been used for nematodes in orchards and vineyards but was banned in 1977. This system has at times had the presence of DBCP below the MCL of 0.2 ppb in some sample results. The most recent results for DBCP were 0.45 ppb for Well 02 - South Back-Up and zero DBCP contaminants were detected in Well 03 Main. Well 03 is the main source of water used for consumption while Well 02 is the back-up well and is only used in the case of an emergency. Well 02 Back-up was used briefly to provide water. It is important to keep the well site clean and free of weeds and debris to prevent contamination. The cement surface seal needs to be checked for cracks and immediately repaired or sealed. #### **Acquiring Information** A copy of the complete assessment may be viewed at: Environmental Health Services 5957 S Mooney Blvd Visalia, CA 93277 # Sultana Community Serv. Dist Analytical Results By FGL - 2024 | | | MICROB | IOLOGICA | AL CONTAM | IINANT | S | | | | |----------------------------|--------------|--------|----------|-----------|--------|------------|--------|-------------------|-----------| | | | Units | MCLG | CA-MCL | PHG | Sampled | Result | Avg.
Result(a) | Range (b) | | Total Coliform Bacteria | | | 0 | 5% | n/a | | | ND | - | | 10427 Ave 416 | VI 2460196-1 | | | | | 2024-12-26 | Absent | | | | 10427 Ave 416 | VI 2449056-1 | | | | | 2024-11-11 | Absent | | | | 10427 Ave 416 | VI 2448641-1 | | | | | 2024-10-24 | Absent | | | | 10427 Ave 416 | VI 2447761-1 | | | | | 2024-09-23 | Absent | | | | 10427 Ave 416 | VI 2446854-1 | | | | | 2024-08-22 | Absent | | | | 10427 Ave 416 | VI 2445572-1 | | | | | 2024-07-11 | Absent | | | | 10427 Ave 416 | VI 2444941-1 | | | | | 2024-06-20 | Absent | | | | 10427 Ave 416 | VI 2443586-1 | | | | | 2024-05-06 | Absent | | | | 10427 Ave 416 | VI 2443013-1 | | | | | 2024-04-16 | Absent | | | | 10427 Ave 416 | VI 2441775-1 | | | | | 2024-03-07 | Absent | | | | 10427 Ave 416 | VI 2441074-1 | | | | | 2024-02-12 | Absent | | | | 10427 Ave 416 | VI 2440149-1 | | | | | 2024-01-04 | Absent | | | | Fecal coliform and E. coli | | | | 0 | n/a | | | ND | - | | 10427 Ave 416 | VI 2460196-1 | | | | | 2024-12-26 | Absent | | | | 10427 Ave 416 | VI 2449056-1 | | | | | 2024-11-11 | Absent | | | | 10427 Ave 416 | VI 2448641-1 | | | | | 2024-10-24 | Absent | | | | 10427 Ave 416 | VI 2447761-1 | | | | | 2024-09-23 | Absent | | | | 10427 Ave 416 | VI 2446854-1 | | | | | 2024-08-22 | Absent | | | | 10427 Ave 416 | VI 2445572-1 | | | | | 2024-07-11 | Absent | | | | 10427 Ave 416 | VI 2444941-1 | | | | | 2024-06-20 | Absent | | | | 10427 Ave 416 | VI 2443586-1 | | | | | 2024-05-06 | Absent | | | | 10427 Ave 416 | VI 2443013-1 | | | _ | | 2024-04-16 | Absent | | | | 10427 Ave 416 | VI 2441775-1 | | | | | 2024-03-07 | Absent | | | | 10427 Ave 416 | VI 2441074-1 | | | | | 2024-02-12 | Absent | | | | 10427 Ave 416 | VI 2440149-1 | | | | | 2024-01-04 | Absent | | | | LEAD AND COPPER RULE | | | | | | | | | | | |--------------------------|---------------|-------|------|--------|-----|------------|--------|--------------------|-----------|--| | | | Units | MCLG | CA-MCL | PHG | Sampled | Result | 90th
Percentile | # Samples | | | Lead | | ug/L | 0 | 15 | 0.2 | | | | 10 | | | 10477 Ave 416 Sultana | VI 2343667-10 | ug/L | | | | 2023-06-09 | ND | | | | | 10477 Hopson Ave Sultana | VI 2343667-8 | ug/L | | | | 2023-06-09 | ND | | | | | 10565 Ave 416 Sultana | VI 2343667-5 | ug/L | | | | 2023-06-09 | ND | | | | | 10699 Boone Dr. Sultana | VI 2343667-2 | ug/L | | | | 2023-06-09 | ND | | | | | 10797 Boone Dr Sultana | VI 2343667-3 | ug/L | | | | 2023-06-09 | ND | | | | | 41581 Rd 106 Sultana | VI 2343667-1 | ug/L | | | | 2023-06-09 | ND | | | | | 41728 Rd 108 Sultana | VI 2343667-4 | ug/L | | | | 2023-06-09 | ND | | | | | 41793 Rd 105 Sultana | VI 2343667-7 | ug/L | | | | 2023-06-09 | ND | | | | | 41793 Rd 105 Sultana | VI 2343667-6 | ug/L | | | | 2023-06-09 | ND | | | | | 41793 Sultana Rd Sultana | VI 2343667-9 | ug/L | | | | 2023-06-09 | ND | | | | | Copper | | mg/L | | 1.3 | .3 | | | 0.05 | 10 | | | 10477 Ave 416 Sultana | VI 2343667-10 | mg/L | | | | 2023-06-09 | 0.07 | | | | | 10477 Hopson Ave Sultana | VI 2343667-8 | mg/L | | | | 2023-06-09 | ND | | | | | 10565 Ave 416 Sultana | VI 2343667-5 | mg/L | | | | 2023-06-09 | ND | | | | | 10699 Boone Dr. Sultana | VI 2343667-2 | mg/L | | | | 2023-06-09 | 0.05 | | | | | 10797 Boone Dr Sultana | VI 2343667-3 | mg/L | | | | 2023-06-09 | ND | | | | | 41581 Rd 106 Sultana | VI 2343667-1 | mg/L | | | | 2023-06-09 | ND | | | | | 41728 Rd 108 Sultana | VI 2343667-4 | mg/L | | | | 2023-06-09 | ND | | | | | 41793 Rd 105 Sultana | VI 2343667-7 | mg/L | | | | 2023-06-09 | ND | | | | | 41793 Rd 105 Sultana | VI 2343667-6 | mg/L | | | | 2023-06-09 | ND | | | | | 41793 Sultana Rd Sultana | VI 2343667-9 | mg/L | | | | 2023-06-09 | ND | | | | | | | Units | MCLG | CA-MCL | PHG | Sampled | Result | Avg.
Result(a) | Range (b) | |----------------------|--------------|-------|------|--------|------|------------|--------|-------------------|-----------| | Sodium | | mg/L | | none | none | | | 33 | 27 - 38 | | WELL 02 - SOUTH STBY | VI 2141248-1 | mg/L | | | | 2021-02-18 | 27 | | | | WELL 03 - MAIN RAW | VI 2241498-1 | mg/L | | | | 2022-03-07 | 38 | | | | Hardness | | mg/L | | none | none | | | 203 | 199 - 206 | | WELL 02 - SOUTH STBY | VI 2141248-1 | mg/L | | | | 2021-02-18 | 206 | | | | WELL 03 - MAIN RAW | VI 2241498-1 | mg/L | | | | 2022-03-07 | 199 | | | | | PRIMARY DRINKING WATER STANDARDS (PDWS) | | | | | | | | | | |-----------------------------|---|-------|------|--------|-------|------------|--------|-------------------|-----------|--| | | | Units | MCLG | CA-MCL | PHG | Sampled | Result | Avg.
Result(a) | Range (b) | | | Arsenic | Arsenic | | | 10 | 0.004 | | | ND | ND - 2 | | | WELL 02 - SOUTH STBY | VI 2141248-1 | ug/L | | | | 2021-02-18 | ND | | | | | WELL 03 - MAIN RAW | VI 2241498-1 | ug/L | | | | 2022-03-07 | 2 | | | | | Fluoride | | mg/L | | 2 | 1 | | | 0.1 | 0.1 - 0.1 | | | WELL 02 - SOUTH STBY | VI 2141248-1 | mg/L | | | | 2021-02-18 | 0.1
 | | | | WELL 03 - MAIN RAW | VI 2241498-1 | mg/L | | | | 2022-03-07 | 0.1 | | | | | Nitrate as N | | mg/L | | 10 | 10 | | | 5.1 | 4.5 - 6.0 | | | WELL 02 - SOUTH STBY | VI 2441076-1 | mg/L | | | | 2024-02-12 | 4.5 | | | | | Well 03 - Main | VI 2441776-1 | mg/L | | | | 2024-03-07 | 4.8 | | | | | WELL 03 - MAIN RAW | VI 2449055-1 | mg/L | | | | 2024-11-11 | 6.0 | | | | | Nitrate + Nitrite as N | - | mg/L | | 10 | 10 | | | 8.1 | 6.4 - 9.8 | | | WELL 02 - SOUTH STBY | VI 2141248-1 | mg/L | | | | 2021-02-18 | 9.8 | | | | | WELL 03 - MAIN RAW | VI 2241498-1 | mg/L | | | | 2022-03-07 | 6.4 | | | | | Gross Alpha | | pCi/L | | 15 | (0) | | | ND | ND - 1.20 | | | WELL 02 - SOUTH STBY | VI 2341038-1 | pCi/L | | | | 2023-02-17 | ND | | | | | WELL 03 - MAIN RAW | VI 2340936-1 | pCi/L | | | | 2023-02-13 | 1.20 | | | | | Dibromochloropropane (DBCP) | | ng/L | | 200 | 1.7 | | | 25.00 | ND - 50 | | | WELL 02 - SOUTH STBY | VI 2341039-1 | ng/L | | | | 2023-02-17 | ND | | | | | WELL 03 - MAIN RAW | VI 2449055-1 | ng/L | | | | 2024-11-11 | 50 | | | | | | SECON | DARY DRINE | CING WA | TER STANI | DARDS | (SDWS) | | | | |-------------------------|--------------|------------|---------|-----------|-------|------------|--------|-------------------|-------------| | | | | | CA-MCL | PHG | Sampled | Result | Avg.
Result(a) | Range (b) | | Chloride | Chloride | | | 500 | n/a | | | 26 | 16 - 35 | | WELL 02 - SOUTH STBY | VI 2141248-1 | mg/L | | | | 2021-02-18 | 16 | | | | WELL 03 - MAIN RAW | VI 2241498-1 | mg/L | | | | 2022-03-07 | 35 | | | | Color | | Units | | 15 | n/a | | | 3 | ND - 6 | | WELL 02 - SOUTH STBY | VI 2141248-1 | Units | | | | 2021-02-18 | 6 | | | | WELL 03 - MAIN RAW | VI 2241498-1 | Units | | | | 2022-03-07 | ND | | | | Odor Threshold at 60 °C | - | TON | | 3 | n/a | | | 1 | ND - 2 | | WELL 02 - SOUTH STBY | VI 2141248-1 | TON | | | | 2021-02-18 | ND | | | | WELL 03 - MAIN RAW | VI 2241498-1 | TON | | | | 2022-03-07 | 2 | | | | Specific Conductance | - | umhos/cm | | 1600 | n/a | | | 538 | 530 - 545 | | WELL 02 - SOUTH STBY | VI 2141248-1 | umhos/cm | | | | 2021-02-18 | 545 | | | | WELL 03 - MAIN RAW | VI 2241498-1 | umhos/cm | | | | 2022-03-07 | 530 | | | | Sulfate | = | mg/L | | 500 | n/a | | | 27.6 | 24.0 - 31.2 | | WELL 02 - SOUTH STBY | VI 2141248-1 | mg/L | | | | 2021-02-18 | 31.2 | | | | WELL 03 - MAIN RAW | VI 2241498-1 | mg/L | | | | 2022-03-07 | 24.0 | | | | Total Dissolved Solids | - | mg/L | | 1000 | n/a | | | 355 | 330 - 380 | | WELL 02 - SOUTH STBY | VI 2141248-1 | mg/L | | | | 2021-02-18 | 380 | | | | WELL 03 - MAIN RAW | VI 2241498-1 | mg/L | | | | 2022-03-07 | 330 | | | | Turbidity | | NTU | | 5 | n/a | | | 0.2 | ND - 0.3 | | WELL 02 - SOUTH STBY | VI 2141248-1 | NTU | | | | 2021-02-18 | 0.3 | | | | WELL 03 - MAIN RAW | VI 2241498-1 | NTU | | | | 2022-03-07 | ND | | | | UNREGULATED CONTAMINANTS | | | | | | | | | | |--------------------------|-------|------|--------|-----|---------|--------|-------------------|-----------|--| | | Units | MCLG | CA-MCL | PHG | Sampled | Result | Avg.
Result(a) | Range (b) | | | Vanadium | | ug/L | NS | n/a | | | 35 | 27 - 42 | |----------------------|--------------|------|----|-----|------------|----|----|---------| | WELL 02 - SOUTH STBY | VI 2141248-1 | ug/L | | | 2021-02-18 | 27 | | | | WELL 03 - MAIN RAW | VI 2241498-1 | ug/L | | | 2022-03-07 | 42 | | | | ADDITIONAL DETECTIONS | | | | | | | | | | |-----------------------|--------------|-------|--------|-----|---------|------------|-------------------|-----------|-------------| | | Units | MCLG | CA-MCL | PHG | Sampled | Result | Avg.
Result(a) | Range (b) | | | Calcium | | mg/L | | | n/a | | | 54 | 53 - 55 | | WELL 02 - SOUTH STBY | VI 2141248-1 | mg/L | | | | 2021-02-18 | 53 | | | | WELL 03 - MAIN RAW | VI 2241498-1 | mg/L | | | | 2022-03-07 | 55 | | | | Magnesium | = | mg/L | | | n/a | | | 17 | 15 - 18 | | WELL 02 - SOUTH STBY | VI 2141248-1 | mg/L | | | | 2021-02-18 | 18 | | | | WELL 03 - MAIN RAW | VI 2241498-1 | mg/L | | | | 2022-03-07 | 15 | | | | рН | | units | | | n/a | | | 7.26 | 7.2 - 7.31 | | WELL 02 - SOUTH STBY | VI 2141248-1 | units | | | | 2021-02-18 | 7.2 | | | | WELL 03 - MAIN RAW | VI 2241498-1 | units | | | | 2022-03-07 | 7.31 | | | | Alkalinity | | mg/L | | | n/a | | | 175 | 160 - 190 | | WELL 02 - SOUTH STBY | VI 2141248-1 | mg/L | | | | 2021-02-18 | 190 | | | | WELL 03 - MAIN RAW | VI 2241498-1 | mg/L | | | | 2022-03-07 | 160 | | | | Aggressiveness Index | | | | | n/a | | | 11.7 | 11.6 - 11.7 | | WELL 02 - SOUTH STBY | VI 2141248-1 | | | | | 2021-02-18 | 11.6 | | | | WELL 03 - MAIN RAW | VI 2241498-1 | | | | | 2022-03-07 | 11.7 | | | | Langelier Index | | | | | n/a | | | -0.3 | -0.30.2 | | WELL 02 - SOUTH STBY | VI 2141248-1 | | | | | 2021-02-18 | -0.3 | | | | WELL 03 - MAIN RAW | VI 2241498-1 | | | | | 2022-03-07 | -0.2 | | | | | DETECTION O | DISINE | ECTANT/I | DISINFECT | ANT BY | PRODUCT RU | LE | | | |---------------|--------------|--------|----------|-----------|--------|------------|--------|-------------------|-------------| | | | Units | MCLG | CA-MCL | PHG | Sampled | Result | Avg.
Result(a) | Range (b) | | Chlorine | | mg/L | | 4.0 | 4.0 | | | 0.48 | 0.03 - 0.57 | | 10427 Ave 416 | VI 2142830-1 | mg/L | | | | 2021-04-15 | .45 | | | | 10427 Ave 416 | VI 2141970-1 | mg/L | | | | 2021-03-15 | 0.23 | | | | 10427 Ave 416 | VI 2141247-1 | mg/L | | | | 2021-02-18 | .38 | | | | 10427 Ave 416 | VI 2140421-1 | mg/L | | | | 2021-01-19 | 0.31 | | | | 10427 Ave 416 | VI 2049982-1 | mg/L | | | | 2020-12-21 | 0.21 | | | | 10427 Ave 416 | VI 2048638-1 | mg/L | | | | 2020-11-03 | 0.35 | | | | 10427 Ave 416 | VI 2048326-1 | mg/L | | | | 2020-10-26 | 0.33 | | | | 10427 Ave 416 | VI 2047078-1 | mg/L | | | | 2020-09-10 | 0.21 | | | | 10427 Ave 416 | VI 2046245-1 | mg/L | | | | 2020-08-13 | 0.21 | | | | 10427 Ave 416 | VI 2045423-1 | mg/L | | | | 2020-07-15 | 0.20 | | | | 10427 Ave 416 | VI 2044625-1 | mg/L | | | | 2020-06-16 | 0.29 | | | | 10427 Ave 416 | VI 2043522-1 | mg/L | | | | 2020-05-14 | 0.36 | | | | 10427 Ave 416 | VI 2042752-1 | mg/L | | | | 2020-04-22 | 0.37 | | | | 10427 Ave 416 | VI 2041697-1 | mg/L | | | | 2020-03-06 | 0.38 | | | | 10427 Ave 416 | VI 2041071-1 | mg/L | | | | 2020-02-14 | .31 | | | | 10427 Ave 416 | VI 2040193-1 | mg/L | | | | 2020-01-13 | 0.20 | | | | 10427 Ave 416 | VI 1947739-1 | mg/L | | | | 2019-12-17 | 0.21 | | | | 10427 Ave 416 | VI 1946541-1 | mg/L | | | | 2019-11-04 | .30 | | | | 10427 Ave 416 | VI 1946297-1 | mg/L | | | | 2019-10-23 | 0.27 | | | | 10427 Ave 416 | VI 1945092-1 | mg/L | | | | 2019-09-06 | .29 | | | | 10427 Ave 416 | VI 1944319-1 | mg/L | | | | 2019-08-13 | 0.20 | | | | 10427 Ave 416 | VI 1943906-1 | mg/L | | | | 2019-07-26 | 0.25 | | | | 10427 Ave 416 | VI 1943105-1 | mg/L | | | | 2019-06-24 | 0.28 | | | | 10427 Ave 416 | VI 1943066-1 | mg/L | | | | 2019-06-20 | 0.11 | | | | 10427 Ave 416 | VI 1942292-1 | mg/L | | | | 2019-05-21 | 0.34 | | | | 10427 Ave 416 | VI 1941523-1 | mg/L | | | | 2019-04-09 | 0.57 | | | | 10427 Ave 416 | VI 1941113-1 | mg/L | | | | 2019-03-15 | 0.40 | | | | 10427 Ave 416 | VI 1940740-1 | mg/L | | | | 2019-02-22 | 0.22 | | | | 10427 Ave 416 | VI 1940039-1 | mg/L | | | | 2019-01-03 | 0.45 | | | | 10427 Ave 416 | VI 1846726-1 | mg/L | | | | 2018-12-13 | 0.39 | | | | Л | | | <u> </u> | | T | | | 1 | |------------------------|------------------------------|--------------|----------|-----|------------|------|------|-------------| | 10427 Ave 416 | VI 1845930-1 | mg/L | | | 2018-11-05 | 0.36 | | | | 10427 Ave 416 | VI 1845524-1 | mg/L | | | 2018-10-11 | 0.20 | | | | 10427 Ave 416 | VI 1845041-2 | mg/L | | | 2018-09-20 | | | | | 10427 Ave 416 | VI 1844990-1 | mg/L | | | 2018-09-19 | 0.28 | | | | 10427 Ave 416 | VI 1844032-1 | mg/L | | | 2018-08-09 | 0.21 | | | | 10427 Ave 416 | VI 1843608-1 | mg/L | | | 2018-07-20 | 0.24 | | | | 10427 Ave 416 | VI 1842874-1 | mg/L | | | 2018-06-14 | 0.15 | | | | 10427 Ave 416 | VI 1842078-1 | mg/L | | | 2018-05-07 | 0.32 | | | | 10427 Ave 416 | VI 1841798-1 | mg/L | | | 2018-04-18 | 0.42 | | | | 10427 Ave 416 | VI 1841027-1 | mg/L | | | 2018-03-09 | 0.43 | | | | 10427 Ave 416 | VI 1840513-1 | mg/L | | | 2018-02-05 | 0.41 | | | | 10427 Ave 416 | VI 1840202-1 | mg/L | | | 2018-01-15 | 0.43 | | | | 10427 Ave 416 | VI 1746441-1 | mg/L | | | 2017-12-20 | 0.50 | | | | 10427 Ave 416 | VI 1745789-1 | mg/L | | | 2017-11-09 | 0.44 | | | | 10427 Ave 416 | VI 1745448-1 | mg/L | | | 2017-10-23 | 0.34 | | | | 10427 Ave 416 | VI 1744650-1 | mg/L | | | 2017-09-07 | 0.06 | | | | 10427 Ave 416 | VI 1744192-1 | mg/L | | | 2017-08-16 | 0.27 | | | | 10427 Ave 416 | VI 1743558-1 | mg/L | | | 2017-07-24 | 0.20 | | | | 10427 Ave 416 | VI 1742634-1 | mg/L | | | 2017-06-14 | 0.27 | | | | 10427 Ave 416 | VI 1741975-1 | mg/L | | | 2017-05-18 | 0.52 | | | | 10427 Ave 416 | VI 1741210-1 | mg/L | | 1 | 2017-04-07 | 0.38 | | | | 10427 Ave 416 | VI 1740832-1 | mg/L | | | 2017-03-09 | 0.30 | | | | 10427 Ave 416 | VI 1740385-1 | mg/L | | | 2017-02-02 | 0.49 | | | | 10427 Ave 416 | VI 1740054-1 | mg/L | | | 2017-01-06 | .14 | | | | Average 10427 Ave 416 | | J. | | | | | 0.3 | | | 10427 Ave. 416 | VI 1644936-1 | mg/L | | | 2016-12-05 | .21 | | | | 10427 Ave. 416 | VI 1644697-1 | mg/L | | | 2016-11-14 | .17 | | | | 10427 Ave. 416 | VI 1644319-1 | mg/L | | | 2016-10-17 | .06 | | | | 10427 Ave. 416 | VI 1643192-1 | mg/L | | | 2016-08-08 | 0.19 | | | | 10427 Ave. 416 | VI 1642926-1 | mg/L | | _ | 2016-07-22 | 0.18 | | | | Average 10427 Ave. 416 | V1 1012320 1 | mg/L | | | 2010 07 22 | 0.10 | 0.16 | | | 10457 Ave. 416 | VI 1642161-1 | mg/L | | | 2016-06-24 | 0.29 | 0.10 | | | 10457 Ave. 416 | VI 1642101-1
VI 1641341-1 | mg/L | | + | 2016-05-02 | 0.23 | | | | 10457 Ave. 416 | VI 1641009-1 | mg/L | | + | 2016-04-04 | 0.43 | | | | 10457 Ave. 416 | VI 1640782-1 | mg/L | | | 2016-04-04 | 0.48 | | | | 10457 Ave. 416 | VI 1640762-1
VI 1640365-1 | mg/L | | | | 0.47 | | | | 10457 Ave. 416 | | | | | 2016-02-08 | | | - | | | VI
1640130-1 | mg/L | | - | 2016-01-14 | 0.48 | | | | 10457 Ave. 416 | VI 1544823-1 | mg/L | | + | 2015-12-10 | .44 | | | | 10457 Ave. 416 | VI 1544539-1 | mg/L | | | 2015-11-17 | 0.31 | | | | 10457 Ave. 416 | VI 1544017-1 | mg/L | | | 2015-10-09 | 0.29 | | | | 10457 Ave. 416 | VI 1543681-1 | mg/L | | _ | 2015-09-16 | 0.31 | | | | 10457 Ave. 416 | VI 1543315-1 | mg/L | | - | 2015-08-17 | 0.26 | | | | 10457 Ave. 416 | VI 1543016-1 | mg/L | | | 2015-07-27 | 0.31 | | | | 10457 Ave. 416 | VI 1542123-1 | mg/L | | | 2015-06-08 | 0.32 | | | | 10457 Ave. 416 | VI 1541539-1 | mg/L | | | 2015-05-11 | 0.28 | | | | 10457 Ave. 416 | VI 1541330-1 | mg/L | | | 2015-04-26 | 0.43 | | | | 10457 Ave. 416 | VI 1540752-1 | mg/L | | 1 | 2015-03-10 | 0.37 | | 1 | | 10457 Ave. 416 | VI 1540457-1 | mg/L | | 1 | 2015-02-12 | 0.53 | | | | 10457 Ave. 416 | VI 1540092-1 | mg/L | | 1 | 2015-01-09 | 0.45 | | | | Average 10457 Ave. 416 | | | | 1 | | | 0.36 | | | 10797 Boone Dr | VI 1943105-2 | mg/L | | | 2019-06-24 | 0.48 | | | | Average 10797 Boone Dr | | | | 1 | | | 0.48 | | | 11427 Ave. 416 | VI 1643763-1 | mg/L | | | 2016-09-12 | 0.13 | | | | Average 11427 Ave. 416 | | | | | | | 0.13 | | | 41793 Rd 105 | VI 1943105-3 | mg/L | | | 2019-06-24 | 0.46 | | | | Average 41793 Rd 105 | | | | | | | 0.46 | | | Chlorine | | mg/L | 4.0 | 4.0 | | | 0.71 | 0.29 - 1.34 | | 10427 Ave 416 | | | | 1 | 20244222 | 1.04 | | | | 1042 / Ave 410 | VI 2460196-1 | mg/L | | | 2024-12-26 | 1.34 | | | | 10427 Ave 416 | VI 2460196-1
VI 2449056-1 | mg/L
mg/L | | | 2024-12-26 | 0.57 | | | | | | | | | | | | | | 10427 Ave 416 | VI 2446854-1 | mg/L | | 2024-08-22 | 0.65 | | | |-----------------------|--------------|------|--|------------|------|------|--| | 10427 Ave 416 | VI 2445572-1 | mg/L | | 2024-07-11 | 0.56 | | | | 10427 Ave 416 | VI 2444941-1 | mg/L | | 2024-06-20 | 0.51 | | | | 10427 Ave 416 | VI 2443586-1 | mg/L | | 2024-05-06 | 0.88 | | | | 10427 Ave 416 | VI 2443013-1 | mg/L | | 2024-04-16 | 0.57 | | | | 10427 Ave 416 | VI 2441775-1 | mg/L | | 2024-03-07 | 0.67 | | | | 10427 Ave 416 | VI 2441074-1 | mg/L | | 2024-02-12 | 0.80 | | | | 10427 Ave 416 | VI 2440149-1 | mg/L | | 2024-01-04 | 0.89 | | | | Average 10427 Ave 416 | | | | | | 0.71 | | # Sultana Community Serv. Dist CCR Login Linkage - 2024 | FGL Code | Lab ID | Date_Sampled | Method | Description | Property | |-------------|------------------------------|--------------------------|------------|--------------------------------|-------------------------| | 10427AVE416 | VI 1740054-1 | 2017-01-06 | Field Test | 10427 Ave 416 | Routine Bacteriological | | | VI 1740385-1 | 2017-02-02 | Field Test | 10427 Ave 416 | Routine Bacteriological | | | VI 1740832-1 | 2017-03-09 | Field Test | 10427 Ave 416 | Routine Bacteriological | | | VI 1741210-1 | 2017-04-07 | Field Test | 10427 Ave 416 | Routine Bacteriological | | | VI 1741975-1 | 2017-05-18 | Field Test | 10427 Ave 416 | Routine Bacteriological | | | VI 1742634-1 | 2017-06-14 | Field Test | 10427 Ave 416 | Routine Bacteriological | | | VI 1743558-1 | 2017-07-24 | Field Test | 10427 Ave 416 | Routine Bacteriological | | | VI 1744192-1 | 2017-08-16 | Field Test | 10427 Ave 416 | Routine Bacteriological | | | VI 1744650-1 | 2017-09-07 | Field Test | 10427 Ave 416 | Routine Bacteriological | | | VI 1745448-1 | 2017-10-23 | Field Test | 10427 Ave 416 | Routine Bacteriological | | | VI 1745789-1 | 2017-11-09 | Field Test | 10427 Ave 416 | Routine Bacteriological | | | VI 1746441-1 | 2017-12-20 | Field Test | 10427 Ave 416 | Water Monitoring | | | VI 1840202-1 | 2018-01-15 | Field Test | 10427 Ave 416 | Routine Bacteriological | | | VI 1840513-1 | 2018-02-05 | Field Test | 10427 Ave 416 | Routine Bacteriological | | | VI 1841027-1 | 2018-03-09 | Field Test | 10427 Ave 416 | Routine Bacteriological | | | VI 1841798-1 | 2018-04-18 | Field Test | 10427 Ave 416 | Routine Bacteriological | | | VI 1842078-1 | 2018-05-07 | Field Test | 10427 Ave 416 | Routine Bacteriological | | | VI 1842874-1 | 2018-06-14 | Field Test | 10427 Ave 416 | Routine Bacteriological | | | VI 1843608-1 | 2018-07-20 | Field Test | 10427 Ave 416 | Routine Bacteriological | | | VI 1844032-1 | 2018-08-09 | Field Test | 10427 Ave 416 | Routine Bacteriological | | | VI 1844990-1 | 2018-09-19 | Field Test | 10427 Ave 416 | Routine Bacteriological | | | VI 1845941-2 | 2018-09-19 | Field Test | 10427 Ave 416 | Routine Bacteriological | | | VI 1845524-1 | 2018-10-11 | Field Test | 10427 Ave 416 | Routine Bacteriological | | - | VI 1845930-1 | 2018-11-05 | Field Test | 10427 Ave 416 | Routine Bacteriological | | 1 | | | Field Test | | - | | | VI 1846726-1
VI 1940039-1 | 2018-12-13
2019-01-03 | Field Test | 10427 Ave 416
10427 Ave 416 | Routine Bacteriological | | | | | | | Routine Bacteriological | | | VI 1940740-1 | 2019-02-22 | Field Test | 10427 Ave 416 | Routine Bacteriological | | | VI 1941113-1 | 2019-03-15 | Field Test | 10427 Ave 416 | Routine Bacteriological | | | VI 1941523-1 | 2019-04-09 | Field Test | 10427 Ave 416 | Routine Bacteriological | | | VI 1942292-1 | 2019-05-21 | Field Test | 10427 Ave 416 | Routine Bacteriological | | | VI 1943066-1 | 2019-06-20 | Field Test | 10427 Ave 416 | Routine Bacteriological | | | VI 1943105-1 | 2019-06-24 | Field Test | 10427 Ave 416 | Water Monitoring | | | VI 1943906-1 | 2019-07-26 | Field Test | 10427 Ave 416 | Routine Bacteriological | | | VI 1944319-1 | 2019-08-13 | Field Test | 10427 Ave 416 | Routine Bacteriological | | | VI 1945092-1 | 2019-09-06 | Field Test | 10427 Ave 416 | Routine Bacteriological | | | VI 1946297-1 | 2019-10-23 | Field Test | 10427 Ave 416 | Routine Bacteriological | | | VI 1946541-1 | 2019-11-04 | Field Test | 10427 Ave 416 | Routine Bacteriological | | | VI 1947739-1 | 2019-12-17 | Field Test | 10427 Ave 416 | Routine Bacteriological | | | VI 2040193-1 | 2020-01-13 | Field Test | 10427 Ave 416 | Routine Bacteriological | | | VI 2041071-1 | 2020-02-14 | Field Test | 10427 Ave 416 | Routine Bacteriological | | | VI 2041697-1 | 2020-03-06 | Field Test | 10427 Ave 416 | Routine Bacteriological | | | VI 2042752-1 | 2020-04-22 | Field Test | 10427 Ave 416 | Routine Bacteriological | | | VI 2043522-1 | 2020-05-14 | Field Test | 10427 Ave 416 | Routine Bacteriological | | | VI 2044625-1 | 2020-06-16 | Field Test | 10427 Ave 416 | Routine Bacteriological | | | VI 2045423-1 | 2020-07-15 | Field Test | 10427 Ave 416 | Routine Bacteriological | | | VI 2046245-1 | 2020-08-13 | Field Test | 10427 Ave 416 | Routine Bacteriological | | | VI 2047078-1 | 2020-09-10 | Field Test | 10427 Ave 416 | Routine Bacteriological | | | VI 2048326-1 | 2020-10-26 | Field Test | 10427 Ave 416 | Routine Bacteriological | | | VI 2048638-1 | 2020-11-03 | Field Test | 10427 Ave 416 | Routine Bacteriological | | | VI 2049982-1 | 2020-12-21 | Coliform | 10427 Ave 416 | Routine Bacteriological | | | VI 2049982-1 | 2020-12-21 | Sampling | 10427 Ave 416 | Routine Bacteriological | | | VI 2049982-1 | 2020-12-21 | Field Test | 10427 Ave 416 | Routine Bacteriological | | | VI 2140421-1 | 2021-01-19 | Field Test | 10427 Ave 416 | Routine Bacteriological | | | VI 2141247-1 | 2021-02-18 | Field Test | 10427 Ave 416 | Routine Bacteriological | | | VI 2141970-1 | 2021-03-15 | Field Test | 10427 Ave 416 | Routine Bacteriological | | | VI 2142830-1 | 2021-04-15 | Field Test | 10427 Ave 416 | Routine Bacteriological | | 1 | VI 2440149-1 | 2024-01-04 | Coliform | 10427 Ave 416 | Doubing Destarials sized | |-----------------|-------------------------------|------------|------------------------|---|--| | | | + | | | Routine Bacteriological | | | VI 2440149-1 | 2024-01-04 | Field Test
Coliform | 10427 Ave 416 | Routine Bacteriological | | | VI 2441074-1 | 2024-02-12 | | 10427 Ave 416 | Routine Bacteriological | | | VI 2441074-1 | 2024-02-12 | Field Test | 10427 Ave 416 | Routine Bacteriological | | | VI 2441775-1 | 2024-03-07 | Coliform | 10427 Ave 416 | Routine Bacteriological | | | VI 2441775-1 | 2024-03-07 | Field Test | 10427 Ave 416 | Routine Bacteriological | | | VI 2443013-1 | 2024-04-16 | Field Test | 10427 Ave 416 | Routine Bacteriological | | | VI 2443013-1 | 2024-04-16 | Coliform | 10427 Ave 416 | Routine Bacteriological | | | VI 2443586-1 | 2024-05-06 | Coliform | 10427 Ave 416 | Routine Bacteriological | | | VI 2443586-1 | 2024-05-06 | Field Test | 10427 Ave 416 | Routine Bacteriological | | | VI 2444941-1 | 2024-06-20 | Field Test | 10427 Ave 416 | Routine Bacteriological | | | VI 2444941-1 | 2024-06-20 | Coliform | 10427 Ave 416 | Routine Bacteriological | | | VI 2445572-1 | 2024-07-11 | Coliform | 10427 Ave 416 | Routine Bacteriological | | | VI 2445572-1 | 2024-07-11 | Field Test | 10427 Ave 416 | Routine Bacteriological | | | VI 2446854-1 | 2024-08-22 | Coliform | 10427 Ave 416 | Routine Bacteriological | | | VI 2446854-1 | 2024-08-22 | Field Test | 10427 Ave 416 | Routine Bacteriological | | | VI 2447761-1 | 2024-09-23 | Coliform | 10427 Ave 416 | Routine Bacteriological | | | VI 2447761-1 | 2024-09-23 | Field Test | 10427 Ave 416 | Routine Bacteriological | | | VI 2448641-1 | 2024-10-24 | Coliform | 10427 Ave 416 | Routine Bacteriological | | | VI 2448641-1 | 2024-10-24 | Field Test | 10427 Ave 416 | Routine Bacteriological | | | VI 2449056-1 | 2024-11-11 | Coliform | 10427 Ave 416 | Routine Bacteriological | | | VI 2449056-1 | 2024-11-11 | Field Test | 10427 Ave 416 | Routine Bacteriological | | | VI 2460196-1 | 2024-12-26 | Field Test | 10427 Ave 416 | Routine Bacteriological | | | VI 2460196-1 | 2024-12-26 | Coliform | 10427 Ave 416 | Routine Bacteriological | | | VI 1642926-1 | 2016-07-22 | Field Test | 10427 Ave. 416 | Routine Bacteriological | | | VI 1643192-1 | 2016-08-08 | Field Test | 10427 Ave. 416 | Routine Bacteriological | | | VI 1644319-1 | 2016-10-17 | Field Test | 10427 Ave. 416 | Routine Bacteriological | | | VI 1644697-1 | 2016-11-14 |
Field Test | 10427 Ave. 416 | Routine Bacteriological | | | VI 1644936-1 | 2016-12-05 | Field Test | 10427 Ave. 416 | Routine Bacteriological | | 10444 Hobson | VI 1742920-1 | 2017-06-26 | Sub Contracted | 10444 Hobson | Drinking Water Monitoring | | 10457 Ave 416 | VI 1540092-1 | 2015-01-09 | Field Test | 10457 Ave. 416 | Routine Bacteriological | | | VI 1540457-1 | 2015-02-12 | Field Test | 10457 Ave. 416 | Routine Bacteriological | | | VI 1540752-1 | 2015-03-10 | Field Test | 10457 Ave. 416 | Routine Bacteriological | | | VI 1541330-1 | 2015-04-26 | Field Test | 10457 Ave. 416 | Routine Bacteriological | | | VI 1541539-1 | 2015-05-11 | Field Test | 10457 Ave. 416 | Routine Bacteriological | | | VI 1542123-1 | 2015-06-08 | Field Test | 10457 Ave. 416 | Routine Bacteriological | | | VI 1543016-1 | 2015-07-27 | Field Test | 10457 Ave. 416 | Routine Bacteriological | | | VI 1543315-1 | 2015-08-17 | Field Test | 10457 Ave. 416 | Routine Bacteriological | | | VI 1543681-1 | 2015-09-16 | Field Test | 10457 Ave. 416 | Routine Bacteriological | | | VI 1544017-1 | 2015-10-09 | Field Test | 10457 Ave. 416 | Routine Bacteriological | | | VI 1544539-1 | 2015-11-17 | Field Test | 10457 Ave. 416 | Routine Bacteriological | | | VI 1544823-1 | 2015-11-17 | Field Test | 10457 Ave. 416 | Routine Bacteriological | | | VI 1640130-1 | 2016-01-14 | Field Test | 10457 Ave. 416 | Routine Bacteriological | | | VI 1640130-1
VI 1640365-1 | 2016-01-14 | Field Test | 10457 Ave. 416 | Routine Bacteriological | | | VI 1640303-1
VI 1640782-1 | 2016-02-08 | Field Test | 10457 Ave. 416 | Routine Bacteriological | | | VI 1640782-1
VI 1641009-1 | 2016-03-19 | Field Test | 10457 Ave. 416 | Routine Bacteriological | | | VI 1641009-1
VI 1641341-1 | 2016-04-04 | Field Test | 10457 Ave. 416 | Routine Bacteriological | | | VI 1641341-1
VI 1642161-1 | 2016-05-02 | Field Test | 10457 Ave. 416 | Routine Bacteriological Routine Bacteriological | | DST LCR | VI 1642161-1
VI 2343667-10 | 2016-06-24 | Metals, Total | 10477 Ave. 416
10477 Ave 416 Sultana | Lead & Copper | | ר?ע דר∩ע | VI 2343667-10
VI 2343667-8 | 2023-06-09 | Metals, Total | 10477 Ave 416 Sultana
10477 Hopson Ave Sultana | Lead & Copper Lead & Copper | | - | | | 1 | - | | | - | VI 2343667-5 | 2023-06-09 | Metals, Total | 10565 Ave 416 Sultana | Lead & Copper | | 10707 Page 2 | VI 2343667-2 | 2023-06-09 | Metals, Total | 10699 Boone Dr. Sultana | Lead & Copper | | 10797 Boone Dr | VI 1943105-2 | 2019-06-24 | Field Test | 10797 Boone Dr | Water Monitoring | | DST_LCR | VI 2343667-3 | 2023-06-09 | Metals, Total | 10797 Boone Dr Sultana | Lead & Copper | | 11427 AVE 416 | VI 1643763-1 | 2016-09-12 | Field Test | 11427 Ave. 416 | Routine Bacteriological | | DST_LCR | VI 2343667-1 | 2023-06-09 | Metals, Total | 41581 Rd 106 Sultana | Lead & Copper | | 44500 5 1 4 2 5 | VI 2343667-4 | 2023-06-09 | Metals, Total | 41728 Rd 108 Sultana | Lead & Copper | | 41793 Rd 105 | VI 1943105-3 | 2019-06-24 | Field Test | 41793 Rd 105 | Water Monitoring | | DST_LCR | VI 2343667-6 | 2023-06-09 | Metals, Total | 41793 Rd 105 Sultana | Lead & Copper | | | VI 2343667-7 | 2023-06-09 | Metals, Total | 41793 Rd 105 Sultana | Lead & Copper | | I | VI 2343667-9 | 2023-06-09 | Metals, Total | 41793 Sultana Rd Sultana | Lead & Copper | | WELL 02 -
SOUTH | VI 2141248-1 | 2021-02-18 | Wet Chemistry | WELL 02 - SOUTH STBY | Sultana CSD-Well 02 General Mineral
Monitoring | |--------------------|--------------|------------|-----------------|----------------------|---| | | VI 2141248-1 | 2021-02-18 | General Mineral | WELL 02 - SOUTH STBY | Sultana CSD-Well 02 General Mineral
Monitoring | | | VI 2141248-1 | 2021-02-18 | Metals, Total | WELL 02 - SOUTH STBY | Sultana CSD-Well 02 General Mineral
Monitoring | | | VI 2241286-1 | 2022-02-28 | | WELL 02 - SOUTH STBY | Sultana CSD-Well 02 General Mineral
Monitoring | | | VI 2341039-1 | 2023-02-17 | | WELL 02 - SOUTH STBY | Sultana CSD-Well 02 General Mineral
Monitoring | | | VI 2341038-1 | 2023-02-17 | Radio Chemistry | WELL 02 - SOUTH STBY | Sultana CSD-Well 02 Radio Monitoring | | | VI 2441076-1 | 2024-02-12 | Wet Chemistry | WELL 02 - SOUTH STBY | Sultana CSD-Well 02 General Mineral
Monitoring | | WELL 03 - MAIN | VI 2241989-1 | 2022-03-21 | | Well 03 - Main | Sultana CSD Well 03-Water Quality
Monitoring | | | VI 2441776-1 | 2024-03-07 | Wet Chemistry | Well 03 - Main | Sultana CSD Well 03-Water Quality
Monitoring | | | VI 2049993-1 | 2020-12-21 | Radio Chemistry | WELL 03 - MAIN RAW | Sultana CSD Well 03-Radio Monitoring | | | VI 2241498-1 | 2022-03-07 | General Mineral | WELL 03 - MAIN RAW | Sultana CSD Well 03-Water Quality
Monitoring | | | VI 2241498-1 | 2022-03-07 | Metals, Total | WELL 03 - MAIN RAW | Sultana CSD Well 03-Water Quality
Monitoring | | | VI 2241498-1 | 2022-03-07 | Wet Chemistry | WELL 03 - MAIN RAW | Sultana CSD Well 03-Water Quality
Monitoring | | | VI 2241498-1 | 2022-03-07 | | WELL 03 - MAIN RAW | Sultana CSD Well 03-Water Quality
Monitoring | | | VI 2340936-1 | 2023-02-13 | Radio Chemistry | WELL 03 - MAIN RAW | Sultana CSD Well 03-Radio Monitoring | | | VI 2449055-1 | 2024-11-11 | EPA 504.1 | WELL 03 - MAIN RAW | Well 03-Quarterly Monitoring | | | VI 2449055-1 | 2024-11-11 | Wet Chemistry | WELL 03 - MAIN RAW | Well 03-Quarterly Monitoring |