2020 Consumer Confidence Report

Water System Name: BEDEL MUTUAL WATER CO. Report Date: March 2021

We test the drinking water quality for many constituents as required by state and federal regulations. This report shows the results of our monitoring for the period of January 1 - December 31, 2020.

Este informe contiene información muy importante sobre su agua potable. Tradúzcalo ó hable con alquien que lo entienda bien.

Type of water source(s) in use: According to SWRCB records, this Source is Groundwater. This Assessment was done using the Default Groundwater System Method.

Your water comes from 2 source(s): Well 02 - BACKUP and Well 03 - PENDING

Opportunities for public participation in decisions that affect drinking water quality: Regularly-scheduled water board meetings are held Annually in May at the Well lot 2444 E. College Ave.

For more information about this report, or any questions relating to your drinking water, please call (559)361-3137 and ask for Scott Pfanstiel.

TERMS USED IN THIS REPORT

Maximum Contaminant Level (MCL): The highest level of contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs (or MCLGs) as is economically feasible. Secondary MCLs are set to protect the odor, taste, and appearance of drinking water.

Maximum Contaminant Level Goal (MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the U.S. Environmental Protection Agency (USEPA).

Public Health Goal (PHG): The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California Environmental Protection Agency.

Maximum Residual Disinfectant Level (MRDL): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Maximum Residual Disinfectant Level Goal (MRDLG): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

Primary Drinking Water Standards (PDWS): MCLs and MRDLs for the contaminants that affect health along with their monitoring and reporting requirements, and water treatment requirements.

Secondary Drinking Water Standards (SDWS): MCLs for the contaminants that affect taste, odor, or appearance of the drinking water. Contaminants with SDWSs do not affect the health at the MCL levels

Treatment Technique (TT): A required process intended to reduce the level of a contaminant in drinking water.

Regulatory Action Level (AL): The concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow.

Level 1 Assessment: A Level 1 assessment is a study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system.

Level 2 Assessment: A Level 2 assessment is a very detailed study of the water system to identify potential problems and determine (if possible) why an E. coli MCL violation has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions.

ND: not detectable at testing limit

mg/L: milligrams per liter or parts per million (ppm)

ug/L: micrograms per liter or parts per billion (ppb)

pCi/L: picocuries per liter (a measure of radiation)

NTU: Nephelometric Turbidity Units

umhos/cm: micro mhos per centimeter

The sources of drinking water: (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include:

- *Microbial contaminants*, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- *Inorganic contaminants*, such as salts and metals, that can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- *Pesticides and herbicides,* that may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses.
- *Organic chemical contaminants*, including synthetic and volatile organic chemicals, that are by-products if industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, agricultural application, and septic systems.
- Radioactive contaminants, that can be naturally-occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, the USEPA and the State Water Resource Control Board (State Water Board) prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. State Water Board regulations also establish limits for contaminants in bottled water that provide the same protection for public health.

Tables 1, 2, 3, 4, 5, 6, 7 and 8 list all of the drinking water contaminants that were detected during the most recent sampling for the constituent. The presence of these contaminants in the water does not necessarily indicate that the water poses a health risk. The State Water Board allows us to monitor for certain contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of the data, though representative of the water quality, are more than one year old.

Any violation of MCL, AL or MRDL is highlighted. Additional information regarding the violation is provided later in this report.

Table 1 - SAMPLING RESULTS SHOWING THE DETECTION OF COLIFORM BACTERIA										
Microbiological Contaminants (complete if bacteria detected)	Highest No. of Detections	No. of Months in Violation	MCL	MCLG	Typical Sources of Contaminant					
Total Coliform Bacteria	1/mo. (2020)	0	no more than 1 positive monthly sample		Naturally present in the environment.					

	Table 2 - SAMPLING RESULTS FOR SODIUM AND HARDNESS									
Chemical or Constituent (and reporting units)	Sample Date	Detected Detections (MCLG)		Typical Sources of Contaminant						
Sodium (mg/L)	(2018 - 2020)	10	8 - 12	none	none	Salt present in the water and is generally naturally occurring				
Hardness (mg/L)	(2018 - 2020)	76.8	54.0 - 99.5	none	nono	Sum of polyvalent cations present in the water, generally magnesium and calcium, and are usually naturally occurring				

Table 3 - D	Table 3 - DETECTION OF CONTAMINANTS WITH A <u>PRIMARY</u> DRINKING WATER STANDARD									
Chemical or Constituent (and reporting units)	Sample Date	Average Level Detected	Range of Detections	MCL [MRDL]	PHG (MCLG) [MRDLG]	Typical Sources of Contaminant				
Aluminum (mg/L)	(2018 - 2020)	ND	ND - 0.09	1	0.6	Erosion of natural deposits; residue from some surface water treatment processes				
Nitrate as N (mg/L)	(2020)	2.7	1.4 - 3.4	10	10	Runoff and leaching from fertilizer use; leaching from septic tanks and sewage; erosion of natural deposits				

Nitrate + Nitrite as N (mg/L)	(2018 - 2020)	2.4	1.4 - 3.3	10	10	Runoff and leaching from fertilizer use; leaching from septic tanks and sewage; erosion of natural deposits
Gross Alpha (pCi/L)	(2015 - 2020)	1.55	ND - 3.49	15	(0)	Erosion of natural deposits.
Uranium (pCi/L)	(2015)	1.48	n/a	20	0.43	Erosion of natural deposits

Table 4 - DETI	ECTION OF C	CONTAMINA	NTS WITH A	SECO:	NDARY DI	RINKING WATER STANDARD
Chemical or Constituent (and reporting units)	Sample Date	Average Level Detected	Range of Detections	MCL	PHG (MCLG)	Typical Sources of Contaminant
Chloride (mg/L)	(2018 - 2020)	4	3 - 5	500	n/a	Runoff/leaching from natural deposits; seawater influence
Color (Units)	(2018 - 2020)	10	n/a	15	n/a	Naturally-occurring organic materials
Iron (ug/L)	(2018 - 2020)	1157	ND - 1970	300	n/a	Leaching from natural deposits; Industrial wastes
Manganese (ug/L)	(2018 - 2020)	62	ND - 140	50	n/a	Leaching from natural deposits
Specific Conductance (umhos/cm)	(2018 - 2020)	220	175 - 264	1600	n/a	Substances that form ions when in water; seawater influence
Sulfate (mg/L)	(2018 - 2020)	6.4	5.0 - 7.7	500	n/a	Runoff/leaching from natural deposits; industrial wastes
Total Dissolved Solids (mg/L)	(2018 - 2020)	140	100 - 180	1000	n/a	Runoff/leaching from natural deposits
Turbidity (NTU)	(2018 - 2020)	5.1	4.8 - 5.3	5	n/a	Soil runoff

Table 5 - DETECTION OF UNREGULATED CONTAMINANTS									
Chemical or Constituent (and reporting units)	Sample Date	Average Level Detected	Range of Detections	Notification Level	Typical Sources of Contaminant				
Vanadium (mg/L)	(2018 - 2020)	0.007	0.006 - 0.008	0.05	Vanadium exposures resulted in developmental and reproductive effects in rats.				

	Table 6 - ADDITIONAL DETECTIONS											
Chemical or Constituent (and reporting units)	Sample Date	Average Level Detected	Range of Detections	Notification Level	Typical Sources of Contaminant							
Calcium (mg/L)	(2018 - 2020)	25	20 - 30	n/a	n/a							
Magnesium (mg/L)	(2018 - 2020)	4	1 - 6	n/a	n/a							
pH (units)	(2018 - 2020)	7.1	6.6 - 7.6	n/a	n/a							
Alkalinity (mg/L)	(2018 - 2020)	85	70 - 100	n/a	n/a							
Aggressiveness Index	(2018 - 2020)	10.8	10.1 - 11.5	n/a	n/a							
Langelier Index	(2018 - 2020)	-1	-1.60.3	n/a	n/a							

T	Table 7 - DETECTION OF DISINFECTANT/DISINFECTANT BYPRODUCT RULE									
Chemical or Constituent (and reporting units)	Sample Date	Average Level Detected	Range of Detections	MCL (MRDL)	PHG (MCLG)	Violation	Typical Sources of Contaminant			
Chlorine (mg/L)	(2017)	0.12	0.04 - 0.12	4.0	4.0	No	Drinking water disinfectant added for treatment.			

Additional General Information on Drinking Water

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts if some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the USEPA's Safe Drinking Water Hotline (1-800-426-4791).

Some people may be more vulnerable to contaminants in drinking water than the general population. Immunocompromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. USEPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* and other microbial contaminants are available from the Safe Drinking Water Hotline (1-800-426-4791).

Lead Specific Language for Community Water Systems: If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with the service lines and home plumbing. *Bedel Mutual Water Co.* is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/lead.

Summary Information for Violation of a MCL, MRDL, AL, TT, or Monitoring and Reporting Requirement

VIOLATION C	OF A MCL,MRDL,AL,TT, OR M	MONITORING A	AND REPORTING	REQUIREMENT
Violation	Explanation	Duration	Actions Taken To Correct the Violation	Health Effects Language
Total Coliform Bacteria				Coliforms are bacteria that are naturally present in the environment and are used as an indicator that other, potentially harmful, waterborne pathogens may be present or that a potential pathway exists through which contamination may enter the drinking water distribution system. We found coliforms indicating the need to look for potential problems in water treatment or distribution. When this occurs, we are required to conduct assessment(s) to identify problems and to correct any problems that were found during these assessments.
Iron				Iron was found at levels that exceed the secondary MCL. The Iron MCL was set to protect you against unpleasant aesthetic affects such as color, taste, odor and the staining of plumbing fixtures (e.g., tubs and sinks), and clothing while washing. Violating this MCL does not pose a risk to public health.

Manganese		Manganese was found at levels that exceed the secondary MCL. The Manganese MCL was set to protect you against unpleasant aesthetic affects such as color, taste, odor and the staining of plumbing fixtures (e.g., tubs and sinks), and clothing while washing. Violating this MCL does not pose a risk to public health.
Turbidity		Turbidity is Secondary Drinking Water Standards and has found no health effects. However, high levels of turbidity can interfere with disinfection and provide a medium for microbial growth. Turbidity may indicate the presence of disease-causing organisms. These organisms include bacteria, viruses, and parasites that can cause symptoms such as nausea, cramps, diarrhea and associated headaches.

2020 Consumer Confidence Report

Drinking Water Assessment Information

Assessment Information

A source water assessment was completed for the WELL 03 of the BEDEL MUTUAL WATER CO. water system, in October 2002. Because of Microbial contamination, a level II Assessment of the water system was conducted on April 16, 2018.

Well 02 - BACKUP - - is considered most vulnerable to the following activities not associated with any detected contaminants:

Historic gas stations

Known Contaminant Plumes

Septic systems - high density [>1/acre]

Underground storage tanks - Confirmed leaking tanks

Well 03 - PENDING - is considered most vulnerable to the following activities not associated with any detected

contaminants:

Automobile - Gas stations

Chemical/petroleum processing/storage

Historic gas stations

Known Contaminant Plumes

Septic systems - high density [>1/acre]

Underground storage tanks - Confirmed leaking tanks

Discussion of Vulnerability

The activities to which the Bedel Mutual Water Company is most vulnerable include historic leaking underground fuel storage tanks, petroleum and chemical storage, and septic systems and sewer collection systems. The leaking tanks have been removed and remediation has been completed at the various sites being replaced with new double containment tanks.

It is important that septic systems be kept in good repair and pumped regularly. It is also necessary to keep the well site clean and free of weeds and debris to prevent contamination. The cement surface seal needs to be checked for cracks and immediately repaired or sealed.

Acquiring Information

A copy of the complete assessment may be viewed at: Fresno - Department of Health Services 265 W. Bullard Avenue Suite 101 Fresno, CA 93704

You may request a summary of the assessment be sent to you by contacting: Tiffany Steinert
Drinking Water Field Operations
559-447-3392
559-447-3304 (fax)
tiffany.steinert@waterboards.ca.gov

Bedel Mutual Water Co. Analytical Results By FGL - 2020

		MICROB	IOLOGIC	AL CONTAM	11NANT	S	_		
		Units	MCLG	CA-MCL	PHG	Sampled	Result	Avg. Result(a)	Range (b)
Total Coliform Bacteria			0	5%	n/a			0	-
2133 Westcott	VI 2043689-1					2020-05-21	<1.0		
2225 E. Westcott	VI 2049805-1					2020-12-16	Absent		
2225 E. Westcott	VI 2049161-1					2020-11-19	Absent		
2225 E. Westcott	VI 2048318-1					2020-10-26	Absent		
2225 E. Westcott	VI 2047154-1					2020-09-14	Absent		
2225 E. Westcott	VI 2046170-1					2020-08-12	Absent		
2225 E. Westcott	VI 2045587-1					2020-07-22	Absent		
2225 E. Westcott	VI 2044678-1					2020-06-17	Absent		
2225 E. Westcott	VI 2043689-3					2020-05-21	<1.0		
2225 E. Westcott	VI 2043279-1					2020-05-07	Present		
2225 E. Westcott	VI 2042736-1					2020-04-22	Absent		
2225 E. Westcott	VI 2041469-1					2020-03-02	Absent		
2225 E. Westcott	VI 2041031-1					2020-02-13	Absent		
2225 E. Westcott	VI 2040010-1					2020-01-02	Absent		
2426 Westcott	VI 2043689-2					2020-05-21	<1.0		
Well 03	VI 2043995-1					2020-05-29	<1.0		
Well 03	VI 2043689-4					2020-05-21	<1.0		

	SAMPLING RESULTS FOR SODIUM AND HARDNESS										
		Units	MCLG	CA-MCL	PHG	Sampled	Result	Avg. Result(a)	Range (b)		
Sodium		mg/L		none	none			10	8 - 12		
Well 02 - BACKUP	VI 2041478-1	mg/L				2020-03-02	8				
Well 03 - PENDING	VI 1841031-1	mg/L				2018-03-09	12				
Hardness	Hardness			none	none			76.8	54.0 - 99.5		
Well 02 - BACKUP	VI 2041478-1	mg/L				2020-03-02	99.5				
Well 03 - PENDING	VI 1841031-1	mg/L				2018-03-09	54.0				

	PRIMA	RY DRIN	KING WA	TER STANI	DARDS ((PDWS)			
		Units	MCLG	CA-MCL	PHG	Sampled	Result	Avg. Result(a)	Range (b)
Aluminum		mg/L		1	0.6			ND	ND - 0.09
Well 02 - BACKUP	VI 2041478-1	mg/L				2020-03-02	ND		
Well 03 - PENDING	VI 1841031-1	mg/L				2018-03-09	0.09		
Nitrate as N		mg/L		10	10			2.7	1.4 - 3.4
Well 02 - BACKUP	VI 2042735-1	mg/L				2020-04-22	3.4		
Well 02 - BACKUP	VI 2041478-1	mg/L				2020-03-02	3.3		
Well 03 - PENDING	VI 2041480-1	mg/L				2020-03-02	1.4		
Nitrate + Nitrite as N		mg/L		10	10			2.4	1.4 - 3.3
Well 02 - BACKUP	VI 2041478-1	mg/L				2020-03-02	3.3		
Well 03 - PENDING	VI 1841031-1	mg/L				2018-03-09	1.4		
Gross Alpha		pCi/L		15	(0)			1.550	ND - 3.49
Well 02	VI 2041482-1	pCi/L				2020-03-02	3.49		
Well 03 - PENDING	VI 1544584-2	pCi/L				2015-11-19	1.16		
Well 03 - PENDING	VI 1541271-1	pCi/L				2015-04-22	ND		
Uranium	_	pCi/L		20	0.43			1.48	1.48 - 1.48
Well 03 - PENDING	VI 1541271-1	pCi/L		_		2015-04-22	1.48		

SECONI	SECONDARY DRINKING WATER STANDARDS (SDWS)							
	Units	MCLG	CA-MCL	PHG	Sampled	Result	Avg. Result(a)	Range (b)
Chloride	mg/L		500	n/a			4	3 - 5

Well 02 - BACKUP	VI 2041478-1	mg/L			2020-03-02	5		
Well 03 - PENDING	VI 1841031-1	mg/L			2018-03-09	3		
Color		Units	15	n/a			10	10 - 10
Well 02 - BACKUP	VI 2041478-1	Units			2020-03-02	10		
Well 02 - BACKUP	VI 2041478-1	Units			2020-03-02	10		
Well 03 - PENDING	VI 1841031-1	Units			2018-03-09	10		
Iron	· ·	ug/L	300	n/a			1157	ND - 1970
Well 02 - BACKUP	VI 2049810-1	ug/L			2020-12-16	680		
Well 02 - BACKUP	VI 2047152-1	ug/L			2020-09-14	1450		
Well 02 - BACKUP	VI 2044680-1	ug/L			2020-06-17	1040		
Well 02 - BACKUP	VI 2042735-1	ug/L			2020-04-22	1800		
Well 02 - BACKUP	VI 2041478-1	ug/L			2020-03-02	1970		
Well 03 - PENDING	VI 1841031-1	ug/L			2018-03-09	ND		
Manganese	•	ug/L	50	n/a			62	ND - 140
Well 02 - BACKUP	VI 2049810-1	ug/L			2020-12-16	30		
Well 02 - BACKUP	VI 2047152-1	ug/L			2020-09-14	140		
Well 02 - BACKUP	VI 2044680-1	ug/L			2020-06-17	70		
Well 02 - BACKUP	VI 2042735-1	ug/L			2020-04-22	50		
Well 02 - BACKUP	VI 2041478-1	ug/L			2020-03-02	80		
Well 03 - PENDING	VI 1841031-1	ug/L			2018-03-09	ND		
Specific Conductance		umhos/cm	1600	n/a			220	175 - 264
Well 02 - BACKUP	VI 2041478-1	umhos/cm			2020-03-02	264		
Well 03 - PENDING	VI 1841031-1	umhos/cm			2018-03-09	175		
Sulfate	•	mg/L	500	n/a			6.4	5.0 - 7.7
Well 02 - BACKUP	VI 2041478-1	mg/L			2020-03-02	7.7		
Well 03 - PENDING	VI 1841031-1	mg/L			2018-03-09	5.0		
Total Dissolved Solids	•	mg/L	1000	n/a			140	100 - 180
Well 02 - BACKUP	VI 2041478-1	mg/L			2020-03-02	180		
Well 03 - PENDING	VI 1841031-1	mg/L			2018-03-09	100		
Turbidity		NTU	5	n/a			5.1	4.8 - 5.3
Well 02 - BACKUP	VI 2041478-1	NTU			2020-03-02	5.3		
Well 02 - BACKUP	VI 2041478-1	NTU			2020-03-02	5.3		
Well 03 - PENDING	VI 1841031-1	NTU			2018-03-09	4.8		

		UNREC	GULATED	CONTAMIN	IANTS				
Units MCLG CA-MCL PHG Sampled Result Avg. Result(a) Range (
Vanadium		mg/L		NS	n/a			0.007	0.006 - 0.008
Well 02 - BACKUP	VI 2041478-1	mg/L				2020-03-02	0.008		
Well 03 - PENDING	VI 1841031-1	mg/L				2018-03-09	0.006		

		ADI	DITIONAL	DETECTIO	NS				
		Units	MCLG	CA-MCL	PHG	Sampled	Result	Avg. Result(a)	Range (b)
Calcium		mg/L			n/a			25	20 - 30
Well 02 - BACKUP	VI 2041478-1	mg/L				2020-03-02	30		
Well 03 - PENDING	VI 1841031-1	mg/L				2018-03-09	20		
Magnesium		mg/L			n/a			4	1 - 6
Well 02 - BACKUP	VI 2041478-1	mg/L				2020-03-02	6		
Well 03 - PENDING	VI 1841031-1	mg/L				2018-03-09	1		
pН		units			n/a			7.1	6.6 - 7.6
Well 02 - BACKUP	VI 2041478-1	units				2020-03-02	7.6		
Well 03 - PENDING	VI 1841031-1	units				2018-03-09	6.6		
Alkalinity		mg/L			n/a			85	70 - 100
Well 02 - BACKUP	VI 2041478-1	mg/L				2020-03-02	100		
Well 03 - PENDING	VI 1841031-1	mg/L				2018-03-09	70		
Aggressiveness Index					n/a			10.8	10.1 - 11.5
Well 02 - BACKUP	VI 2041478-1					2020-03-02	11.5		
Well 03 - PENDING	VI 1841031-1					2018-03-09	10.1		
Langelier Index	· · · · · · · · · · · · · · · · · · ·				n/a			-1.0	-1.60.3

Well 02 - BACKUP	VI 2041478-1			2020-03-02	-0.3	
Well 03 - PENDING	VI 1841031-1			2018-03-09	-1.6	

	DETECTION OI	DISINE	ECTANT/I	DISINFECTA	ANT BY	PRODUCT RU	LE		
		Units	MCLG	CA-MCL	PHG	Sampled	Result	Avg. Result(a)	Range (b)
Chlorine		mg/L		4.0	4.0			0.12	0.04 - 0.12
2133 Westcott	VI 1741534-5	mg/L				2017-05-01	0.12		
Average 2133 Westcott								0.12	
2225 E. Westcott	VI 1743087-4	mg/L				2017-07-06	0.09		
2225 E. Westcott	VI 1741534-3	mg/L				2017-05-01	0.04		
Average 2225 E. Westcott								0.07	
2320 Westcott	VI 1741534-4	mg/L				2017-05-01	0.11		
Average 2320 Westcott								0.11	
2536 College	VI 1743087-1	mg/L				2017-07-06	0.04		
Average 2536 College								0.04	
Well 03	VI 1741534-2	mg/L				2017-05-01	0.07		
Average Well 03								0.07	

Bedel Mutual Water Co.

CCR Login Linkage - 2020

FGL Code	Lab ID	Date_Sampled	Method	Description	Property
2133 Westcott	VI 1741534-5	2017-05-01	Field Test	2133 Westcott	Bacteriological Monitoring
H	VI 2043689-1	2020-05-21	Coliform	2133 Westcott	Bacti Repeats
2224 E. College	VI 2047185-1	2020-09-09	Metals, Total	2224 E. College Ave.	Copper & Lead Monitoring
Bacti-ss Westco	VI 1741534-3	2017-05-01	Field Test	2225 E. Westcott	Bacteriological Monitoring
	VI 1743087-4	2017-07-06	Field Test	2225 E. Westcott	Bacteriological Monitoring (2)
	VI 1946715-1	2019-11-11		2225 E. Westcott	Asbestos Monitoring
	VI 2040010-1	2020-01-02	Coliform	2225 E. Westcott	Bacteriological Monitoring
1	VI 2041031-1	2020-02-13	Coliform	2225 E. Westcott	Bacteriological Monitoring
	VI 2041469-1	2020-03-02	Coliform	2225 E. Westcott	Bacteriological Monitoring
	VI 2042736-1	2020-04-22	Coliform	2225 E. Westcott	Bacteriological Monitoring
	VI 2043279-1	2020-05-07	Coliform	2225 E. Westcott	Bacteriological Monitoring
	VI 2043689-3	2020-05-21	Coliform	2225 E. Westcott	Bacti Repeats
	VI 2044678-1	2020-05-21	Coliform	2225 E. Westcott	Bacteriological Monitoring
	VI 2044070-1 VI 2045587-1	2020-00-17	Coliform	2225 E. Westcott	Bacteriological Monitoring
	VI 2045367-1 VI 2046170-1	2020-07-22	Coliform	2225 E. Westcott	
	VI 2046170-1 VI 2047154-1	+	Coliform	2225 E. Westcott	Bacteriological Monitoring
		2020-09-14	Coliform	2225 E. Westcott	Bacteriological Monitoring Bacteriological Monitoring
	VI 2048318-1		***************************************		· · ·
	VI 2049161-1	2020-11-19	Coliform Coliform	2225 E. Westcott	Bacteriological Monitoring
0000 F 0 11	VI 2049805-1	2020-12-16		2225 E. Westcott	Bacteriological Monitoring
2300 E. College	VI 2047185-2	2020-09-09	Metals, Total	2300 E. College Ave.	Copper & Lead Monitoring
2320 Westcott	VI 1741534-4	2017-05-01	Field Test	2320 Westcott	Bacteriological Monitoring
4	VI 2047185-5	2020-09-15	Metals, Total	2412 E. Westcott Ave.	Copper & Lead Monitoring
2426 WESTCOTT		2020-05-21	Coliform	2426 Westcott	Bacti Repeats
2534 E. Westco	VI 2047185-4	2020-09-10	Metals, Total	2534 E. Westcott Ave.	Copper & Lead Monitoring
2536 COLLEGE	VI 1743087-1	2017-07-06	Field Test	2536 College	Bacteriological Monitoring (2)
2624 E. College	VI 2047185-3	2020-09-09	Metals, Total	2624 E. College Ave.	Copper & Lead Monitoring
WELL02	VI 2041482-1	2020-03-02	Radio Chemistry	Well 02	Well 02 - Radio Monitoring
	VI 2041478-1	2020-03-02	Wet Chemistry	Well 02 - BACKUP	Water Quality Monitoring
	VI 2041478-1	2020-03-02	General Mineral	Well 02 - BACKUP	Water Quality Monitoring
	VI 2041478-1	2020-03-02	Metals, Total	Well 02 - BACKUP	Water Quality Monitoring
	VI 2042735-1	2020-04-22	Metals, Total	Well 02 - BACKUP	BEDEL MUTUAL WATER CO.
	VI 2042735-1	2020-04-22	Wet Chemistry	Well 02 - BACKUP	BEDEL MUTUAL WATER CO.
	VI 2044680-1	2020-06-17	Metals, Total	Well 02 - BACKUP	Water Quality Monitoring
	VI 2047152-1	2020-09-14	Metals, Total	Well 02 - BACKUP	Water Quality Monitoring
	VI 2049810-1	2020-12-16	Metals, Total	Well 02 - BACKUP	Water Quality Monitoring
NEW WELL (#3)	VI 1541496-1	2015-05-07	Coliform	Well 03	New Well
	VI 1541692-1	2015-05-15	Sampling	Well 03	New Well Bacti
	VI 1541870-1	2015-05-22	Coliform	Well 03	New Well
	VI 1541941-1	2015-05-27	Coliform	Well 03	Bedel Well 3
	VI 1541941-1	2015-05-27	Sampling	Well 03	Bedel Well 3
	VI 1541970-1	2015-05-28	Sampling	Well 03	Well 3
	VI 1541970-1	2015-05-28	Coliform	Well 03	Well 3
	VI 1542607-4	2015-07-07	Coliform	Well 03	Bacteriological Monitoring
WELL 03	VI 1740994-1	2017-03-23	Wet Chemistry	Well 03	BEDEL MUTUAL WATER CO
	VI 1740994-1	2017-03-23	Sampling	Well 03	BEDEL MUTUAL WATER CO
Well 03	VI 1741534-2	2017-05-01	Field Test	Well 03	Bacteriological Monitoring
	VI 1741618-1	2017-05-05	Coliform	Well 03	Bacteriological Monitoring
1	VI 1741816-1	2017-05-12	Coliform	Well 03	BEDEL MUTUAL WATER CO
	VI 1741816-1	2017-05-12	Sampling	Well 03	BEDEL MUTUAL WATER CO
WELL 03	VI 1741010-1 VI 1742164-1	2017-05-25	Sampling	Well 03	Bacteriological Monitoring
.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	VI 1742104-1 VI 1744126-4	2017-03-23	Coliform	Well 03	Bacteriological Monitoring - Repeats
	VI 1744120-4 VI 1841685-1	2018-04-11	Coliform	Well 03	BEDEL MUTUAL WATER CO
	VI 1841685-1 VI 1841685-1	_		Well 03	
	VI 1841885-1 VI 1841889-7	2018-04-11	Sampling Coliform	Well 03	BEDEL MUTUAL WATER CO
 		2018-04-25			BEDEL MUTUAL WATER CO
	VI 1842183-6	2018-05-10	Coliform	Well 03	BEDEL MUTUAL WATER CO

	VI 1842300-6	2018-05-17	Coliform	Well 03	BEDEL MUTUAL WATER CO
	VI 1842524-6	2018-05-30	Coliform	Well 03	BEDEL MUTUAL WATER CO
	VI 2043689-4	2020-05-21	Coliform	Well 03	Bacti Repeats
	VI 2043995-1	2020-05-29	Coliform	Well 03	Bacti Repeat
New Well (#3)	VI 1541271-1	2015-04-22	EPA 504.1	Well 03 - PENDING	New Well Bacti
	VI 1541271-1	2015-04-22	Metals, Total	Well 03 - PENDING	New Well Bacti
	VI 1541271-1	2015-04-22	Sampling	Well 03 - PENDING	New Well Bacti
	VI 1541271-1	2015-04-22	EPA 505	Well 03 - PENDING	New Well Bacti
	VI 1541271-1	2015-04-22	Radio Chemistry	Well 03 - PENDING	New Well Bacti
	VI 1541271-1	2015-04-22	General Mineral	Well 03 - PENDING	New Well Bacti
	VI 1541271-1	2015-04-22	EPA 507	Well 03 - PENDING	New Well Bacti
	VI 1541271-1	2015-04-22	Wet Chemistry	Well 03 - PENDING	New Well Bacti
	VI 1541271-1	2015-04-22	Field Test	Well 03 - PENDING	New Well Bacti
	VI 1541271-1	2015-04-22	Coliform	Well 03 - PENDING	New Well Bacti
Well #3	VI 1544584-2	2015-11-19	EPA 524.2	Well 03 - PENDING	Water Quality Monitoring
	VI 1544584-2	2015-11-19	Radio Chemistry	Well 03 - PENDING	Water Quality Monitoring
	VI 1544584-2	2015-11-19	EPA 504.1	Well 03 - PENDING	Water Quality Monitoring
	VI 1544584-2	2015-11-19	EPA 507	Well 03 - PENDING	Water Quality Monitoring
WELL 03	VI 1641840-1	2016-05-27	Sampling	Well 03 - PENDING	Toluene Monitoring
	VI 1840189-1	2018-01-11	EPA 504.1	Well 03 - PENDING	Well 03 - SOC Monitoring
	VI 1840189-1	2018-01-11	EPA 507	Well 03 - PENDING	Well 03 - SOC Monitoring
	VI 1840189-1	2018-01-11	Sampling	Well 03 - PENDING	Well 03 - SOC Monitoring
	VI 1840190-1	2018-01-11	EPA 524.2	Well 03 - PENDING	Well 03 - VOC Monitoring
	VI 1840192-2	2018-01-11	SRL 524M-TCP	Well 03 - PENDING	TCP Monitoring
	VI 1841031-1	2018-03-09	General Mineral	Well 03 - PENDING	Well 03 - Water Quality
	VI 1841035-1	2018-03-09	EPA 504.1	Well 03 - PENDING	Well 03 - SOC Monitoring
	VI 1841031-1	2018-03-09	Metals, Total	Well 03 - PENDING	Well 03 - Water Quality
	VI 1841035-1	2018-03-09	EPA 507	Well 03 - PENDING	Well 03 - SOC Monitoring
	VI 1841031-1	2018-03-09	Sampling	Well 03 - PENDING	Well 03 - Water Quality
	VI 1841031-1	2018-03-09	Wet Chemistry	Well 03 - PENDING	Well 03 - Water Quality
	VI 1841035-1	2018-03-09	Sampling	Well 03 - PENDING	Well 03 - SOC Monitoring
	VI 1841031-1	2018-03-09	Field Test	Well 03 - PENDING	Well 03 - Water Quality
	VI 1841034-1	2018-03-09	Sampling	Well 03 - PENDING	Well 03 - VOC Monitoring
	VI 1841686-2	2018-04-11	SRL 524M-TCP	Well 03 - PENDING	BEDEL MUTUAL WATER CO
	VI 1845545-2	2018-10-15	SRL 524M-TCP	Well 03 - PENDING	TCP Monitoring
	VI 1940868-1	2019-03-01	EPA 507	Well 03 - PENDING	Well 03 - SOC Monitoring
	VI 1940867-1	2019-03-01	EPA 524.2	Well 03 - PENDING	Well 03 - VOC Monitoring
	VI 1940867-1	2019-03-01	Sampling	Well 03 - PENDING	Well 03 - VOC Monitoring
	VI 1940868-1	2019-03-01	EPA 504.1	Well 03 - PENDING	Well 03 - SOC Monitoring
	VI 2041480-1	2020-03-02	Wet Chemistry	Well 03 - PENDING	Well 03 - Water Quality