2019 Consumer Confidence Report Water System Name: EAST THREE RIVERS MUTUAL Report Date: May 2020 We test the drinking water quality for many constituents as required by state and federal regulations. This report shows the results of our monitoring for the period of January 1 - December 31, 2019. Este informe contiene información muy importante sobre su agua potable. Tradúzcalo ó hable con alquien que lo entienda bien. **Type of water source(s) in use:** Information regarding the type of water source in use is not available, as this water system does not have a completed assessment on file. Please see the Drinking Water Source Assessment Information section located at the end of this report for more details. Your water comes from 1 source(s): WELL 01 **Opportunities for public participation in decisions that affect drinking water quality:** Regularly-scheduled water board or city/county council meetings currently are not held. For more information about this report, or any questions relating to your drinking water, please call and ask for Kellie Lasswell or email e3rmwc@vahoo.com. #### TERMS USED IN THIS REPORT Maximum Contaminant Level (MCL): The highest level of contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs (or MCLGs) as is economically feasible. Secondary MCLs are set to protect the odor, taste, and appearance of drinking water. Maximum Contaminant Level Goal (MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the U.S. Environmental Protection Agency (USEPA). **Public Health Goal (PHG):** The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California Environmental Protection Agency. Maximum Residual Disinfectant Level (MRDL): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants. Maximum Residual Disinfectant Level Goal (MRDLG): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants. **Primary Drinking Water Standards (PDWS):** MCLs and MRDLs for the contaminants that affect health along with their monitoring and reporting requirements, and water treatment requirements. **Secondary Drinking Water Standards (SDWS):** MCLs for the contaminants that affect taste, odor, or appearance of the drinking water. Contaminants with SDWSs do not affect the health at the MCL levels. **Treatment Technique (TT):** A required process intended to reduce the level of a contaminant in drinking water. **Regulatory Action Level (AL):** The concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow. **Level 1 Assessment:** A Level 1 assessment is a study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system. **Level 2 Assessment:** A Level 2 assessment is a very detailed study of the water system to identify potential problems and determine (if possible) why an E. coli MCL violation has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions. mg/L: milligrams per liter or parts per million (ppm) ug/L: micrograms per liter or parts per billion (ppb) pCi/L: picocuries per liter (a measure of radiation) NTU: Nephelometric Turbidity Units umhos/cm: micro mhos per centimeter The sources of drinking water: (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity. #### Contaminants that may be present in source water include: - *Microbial contaminants*, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife. - *Inorganic contaminants*, such as salts and metals, that can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming. - Pesticides and herbicides, that may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses. - Organic chemical contaminants, including synthetic and volatile organic chemicals, that are by-products if industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, agricultural application, and septic systems. - Radioactive contaminants, that can be naturally-occurring or be the result of oil and gas production and mining activities. In order to ensure that tap water is safe to drink, the USEPA and the State Water Resource Control Board (State Water Board) prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. State Water Board regulations also establish limits for contaminants in bottled water that provide the same protection for public health. **Tables 1, 2, 3, 4, 5 and 6 list all of the drinking water contaminants that were detected during the most recent sampling for the constituent.** The presence of these contaminants in the water does not necessarily indicate that the water poses a health risk. The State Water Board allows us to monitor for certain contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of the data, though representative of the water quality, are more than one year old. Any violation of MCL, AL or MRDL is highlighted. Additional information regarding the violation is provided later in this report. | Table | Table 1 - SAMPLING RESULTS SHOWING THE DETECTION OF LEAD AND COPPER | | | | | | | | | | |---|---|-----------------------------------|---------------------------|-----|-----|---|--|--|--|--| | Lead and Copper
(complete if lead or
copper detected in last
sample set) | Sample Date | 90th percentile
level detected | No. Sites
Exceeding AL | AL | PHG | Typical Sources of Contaminant | | | | | | Copper (mg/L) | 10
(2019) | 0.26 | 1 | 1.3 | .3 | Internal corrosion of household plumbing
systems; erosion of natural deposits;
leaching from wood preservatives | | | | | | | Table 2 | - SAMPLING | RESULTS FO | R SO | DIUM AND | HARDNESS | |---|-------------|------------------------------|------------------------|------|---------------|--| | Chemical or
Constituent
(and reporting units) | Sample Date | Average
Level
Detected | Range of
Detections | MCL | PHG
(MCLG) | Typical Sources of Contaminant | | Sodium (mg/L) | (2019) | 36 | n/a | none | none | Salt present in the water and is generally naturally occurring | | Hardness (mg/L) | (2019) | 177 | n/a | none | none | Sum of polyvalent cations present in the water, generally magnesium and calcium, and are usually naturally occurring | | Table 3 - I | DETECTION (| OF CONTAN | IINANTS WI | TH A PRIN | <u>IARY</u> DRIN | KING WATER STANDARD | |---|-------------|------------------------------|------------------------|---------------|--------------------------|---| | Chemical or
Constituent
(and reporting units) | Sample Date | Average
Level
Detected | Range of
Detections | MCL
[MRDL] | PHG
(MCLG)
[MRDLG] | Typical Sources of Contaminant | | Fluoride (mg/L) | (2019) | 0.1 | n/a | 2 | 1 | Erosion of natural deposits; water additive that promotes strong teeth; discharge from fertilizer and aluminum factories. | | Nitrate as N (mg/L) | (2019) | 7 | 6.1 - 8.6 | 10 | 10 | Runoff and leaching from fertilizer use; leaching from septic tanks and sewage; erosion of natural deposits | | Nitrate + Nitrite as
N (mg/L) | (2019) | 6.4 | n/a | 10 | 10 | Runoff and leaching from fertilizer use; leaching from septic tanks and sewage; erosion of natural deposits | |----------------------------------|--------|------|-----|----|------|---| | Gross Alpha (pCi/L) | (2019) | 12.6 | n/a | 15 | (0) | Erosion of natural deposits. | | Uranium (pCi/L) | (2019) | 4.07 | n/a | 20 | 0.43 | Erosion of natural deposits | | Table 4 - DETEC | CTION OF CO | NTAMINAN | ITS WITH A S | SECO | NDARY DI | RINKING WATER STANDARD | |---|-------------|------------------------------|------------------------|------|---------------|---| | Chemical or
Constituent
(and reporting units) | Sample Date | Average
Level
Detected | Range of
Detections | MCL | PHG
(MCLG) | Typical Sources of Contaminant | | Chloride (mg/L) | (2019) | 76 | n/a | 500 | n/a | Runoff/leaching from natural deposits; seawater influence | | Odor Threshold at 60 °C (TON) | (2019) | 2 | n/a | 3 | n/a | Naturally-occurring organic materials. | | Specific Conductance
(umhos/cm) | (2019) | 568 | n/a | 1600 | n/a | Substances that form ions when in water; seawater influence | | Sulfate (mg/L) | (2019) | 14.5 | n/a | 500 | n/a | Runoff/leaching from natural deposits; industrial wastes | | Total Dissolved Solids (mg/L) | (2019) | 390 | n/a | 1000 | n/a | Runoff/leaching from natural deposits | | Turbidity (NTU) | (2019) | 0.3 | n/a | 5 | n/a | Soil runoff | | | Table 5 - DETECTION OF UNREGULATED CONTAMINANTS | | | | | | | | | | | |---|---|---------------------------|------------------------|-----------------------|---|--|--|--|--|--|--| | Chemical or
Constituent
(and reporting units) | Sample Date | Average Level
Detected | Range of
Detections | Notification
Level | Typical Sources of Contaminant | | | | | | | | Boron (mg/L) | (2019) | 0.1 | n/a | 1 | Boron exposures resulted in decreased fetal weight (developmental effects) in newborn rats. | | | | | | | | Vanadium (mg/L) | (2019) | 0.014 | n/a | 0.05 | Vanadium exposures resulted in developmental and reproductive effects in rats. | | | | | | | | Table 6 - ADDITIONAL DETECTIONS | | | | | | | | | | | |--|-------------|---------------------------|------------------------|--------------------|-----------------------------------|--|--|--|--|--| | Chemical or Constituent
(and reporting units) | Sample Date | Average Level
Detected | Range of
Detections | Notification Level | Typical Sources of
Contaminant | | | | | | | Calcium (mg/L) | (2019) | 48 | n/a | n/a | n/a | | | | | | | Magnesium (mg/L) | (2019) | 14 | n/a | n/a | n/a | | | | | | | pH (units) | (2019) | 6.8 | n/a | n/a | n/a | | | | | | | Alkalinity (mg/L) | (2019) | 120 | n/a | n/a | n/a | | | | | | | Aggressiveness Index | (2019) | 11 | n/a | n/a | n/a | | | | | | | Langelier Index | (2019) | -0.9 | n/a | n/a | n/a | | | | | | ## **Additional General Information on Drinking Water** Drinking water, including bottled water, may reasonably be expected to contain at least small amounts if some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the USEPA's Safe Drinking Water Hotline (1-800-426-4791). Some people may be more vulnerable to contaminants in drinking water than the general population. Immunocompromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. USEPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* and other microbial contaminants are available from the Safe Drinking Water Hotline (1-800-426- Lead Specific Language for Community Water Systems: If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with the service lines and home plumbing. East Three Rivers Mutual Water Corp. is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/lead. ## Summary Information for Violation of a MCL, MRDL, AL, TT, or Monitoring and Reporting Requirement | VIOLATION (| OF A MCL,MRDL,AL,TT, OR I | MONITORING A | AND REPORTING | REQUIREMENT | |-------------|---------------------------|--------------|--|--| | Violation | Explanation | Duration | Actions Taken To
Correct the
Violation | Health Effects Language | | Copper | | | | Copper is an essential nutrient, but some people who use water containing copper in excess of the action level over a relatively short amount of time may experience gastrointesteinal distress. Some people who drink water containing copper in excess of the action level over many years may suffer liver or kidney damage. People with Wilson's Disease should consult their personal doctor. | **About your Nitrate as N:** Nitrate above 5 mg/L as nitrogen (50 percent of the MCL), but below 10 mg/L as nitrogen (the MCL); Nitrate in drinking water at levels above 10 mg/L is a health risk for infants of less than six months of age. Such nitrate levels in drinking water can interfere with the capacity of the infant blood to carry oxygen, resulting in a serious illness; symptoms include shortness of breath and blueness of the skin. Nitrate levels above 10 mg/L may also affect the ability of the blood to carry oxygen in other individuals, such as pregnant women and those with certain specific enzyme deficiencies. If you are caring for an infant, or you are pregnant, you should ask advice from your health care provider. ## 2019 Consumer Confidence Report Drinking Water Assessment Information #### **Assessment Information** A Drinking Water Source Assessment has not been completed for the WELL 01 of the EAST THREE RIVERS MUTUAL water system. WELL 01 - does not have a completed assessment on file. #### Discussion of Vulnerability Assessment summaries are not available for some sources. This is because: The Assessment has not been completed. Contact the local Department of Health Services (DHS) Drinking Water field | office or the water system to find out when the Assessment is scheduled to be done. | |--| | ☐ The source is not active. It may be out of service, or new and not yet in service. | | ☐ The Assessment was not submitted electronically. The site used to obtain Assessments only provides access to | | Assessment summaries submitted electronically. | #### **Acquiring Information** For more info you may visit https://www.waterboards.ca.gov/drinking_water/certlic/drinkingwater/DWSAP.html or contact the health department in the county to which the water system belongs as indicated on this following link: https://www.waterboards.ca.gov/drinking_water/programs/documents/ddwem/DDWdistrictofficesmap.pdf # East Three Rivers Mutual Water Corp. Analytical Results By FGL - 2019 | | | LE | AD AND (| COPPER RU | LE | | | | | |----------------------|--------------|-------|----------|-----------|-----|------------|--------|--------------------|--| | | | Units | MCLG | CA-MCL | PHG | Sampled | Result | 90th
Percentile | # Samples | | Copper | | mg/L | | 1.3 | .3 | | | 0.26 | 10 | | 42116 Eggers | VI 1945603-2 | mg/L | | | | 2019-09-24 | 0.07 | | | | 42161 Eggers | VI 1944488-3 | mg/L | | | | 2019-08-20 | 4.83 | | | | 42183 Eggers | VI 1944488-2 | mg/L | | | | 2019-08-20 | ND | | | | 42183 Eggers - 42183 | VI 1945603-1 | mg/L | | | | 2019-09-24 | ND | | | | 42190 Eggers | VI 1944488-5 | mg/L | | | | 2019-08-20 | 0.26 | 3 | | | 42240 Mynatt | VI 1945603-3 | mg/L | | | | 2019-09-24 | ND | | District Control of the t | | 42281 Mynatt | VI 1945603-4 | mg/L | | | | 2019-09-24 | ND | | | | 42281 Mynatt | VI 1944488-4 | mg/L | | | | 2019-08-20 | ND | | | | 42288 Mynatt | VI 1945603-5 | mg/L | | | | 2019-09-24 | ND | | | | 42888 Mynatt Drive | VI 1944488-1 | mg/L | | | | 2019-08-20 | ND | | | | SAMPLING RESULTS FOR SODIUM AND HARDNESS | | | | | | | | | | | |--|--------------|-------|------|--------|------|------------|--------|-------------------|-----------|--| | | | Units | MCLG | CA-MCL | PHG | Sampled | Result | Avg.
Result(a) | Range (b) | | | Sodium | | mg/L | | none | none | | | 36 | 36 - 36 | | | WELL 01 | VI 1940057-1 | mg/L | | | | 2019-01-07 | 36 | | | | | Hardness | | mg/L | | none | none | | | 177 | 177 - 177 | | | WELL 01 | VI 1940057-1 | mg/L | | | | 2019-01-07 | 177 | | | | | PRIMA | RY DRIN | KING WA | TER STAN | DARDS | (PDWS) | | | | |--------------|--|---|---|---|--|---|---|--| | | Units | MCLG | CA-MCL | PHG | Sampled | Result | Avg.
Result(a) | Range (b) | | | mg/L | | 2 | 1 | | | 0.1 | 0.1 - 0.1 | | VI 1940057-1 | mg/L | | | | 2019-01-07 | 0.1 | | | | | mg/L | | 10 | 10 | | | 7.0 | 6.1 - 8.6 | | VI 1947502-1 | mg/L | | | | 2019-12-10 | 8.6 | | | | VI 1944204-3 | mg/L | | | | 2019-08-07 | 7.0 | | | | VI 1941418-1 | mg/L | | | | 2019-04-01 | 6.1 | 41 | | | VI 1940057-1 | mg/L | | | | 2019-01-07 | 6.4 | | | | | mg/L | | 10 | 10 | | | 6.4 | 6.4 - 6.4 | | VI 1940057-1 | mg/L | | | | 2019-01-07 | 6.4 | | 5. 5.00 (1.00.000) | | | pCi/L | | 15 | (0) | | | 12.6 | 12.6 - 12.6 | | VI 1940057-1 | pCi/L | | | | 2019-01-07 | 12.6 | | | | | pCi/L | | 20 | 0.43 | | | 4.07 | 4.07 - 4.07 | | VI 1940057-1 | pCi/L | 240 | | | 2019-01-07 | 4.07 | | | | | VI 1940057-1 VI 1947502-1 VI 1944204-3 VI 1941418-1 VI 1940057-1 VI 1940057-1 | Units mg/L VI 1940057-1 mg/L mg/L VI 1947502-1 mg/L VI 1944204-3 mg/L VI 1941418-1 mg/L VI 1940057-1 mg/L VI 1940057-1 mg/L VI 1940057-1 pCi/L VI 1940057-1 pCi/L | Units MCLG mg/L VI 1940057-1 mg/L mg/L VI 1947502-1 mg/L VI 1944204-3 mg/L VI 1941418-1 mg/L VI 1940057-1 mg/L VI 1940057-1 mg/L VI 1940057-1 pCi/L VI 1940057-1 pCi/L PCi/L | Units MCLG CA-MCL mg/L 2 VI 1940057-1 mg/L 10 VI 1947502-1 mg/L 10 VI 1944204-3 mg/L VI 1941418-1 VI 1940057-1 mg/L 10 VI 1940057-1 mg/L 10 VI 1940057-1 pCi/L 15 VI 1940057-1 pCi/L 20 | Units MCLG CA-MCL PHG mg/L 2 1 VI 1940057-1 mg/L 10 10 VI 1947502-1 mg/L 10 10 VI 1944204-3 mg/L 10 10 VI 1941418-1 mg/L 10 10 VI 1940057-1 mg/L 10 10 VI 1940057-1 mg/L 15 (0) VI 1940057-1 pCi/L 20 0.43 | mg/L 2 1 VI 1940057-1 mg/L 2019-01-07 mg/L 10 10 VI 1947502-1 mg/L 2019-12-10 VI 1944204-3 mg/L 2019-08-07 VI 1941418-1 mg/L 2019-04-01 VI 1940057-1 mg/L 2019-01-07 mg/L 10 10 VI 1940057-1 mg/L 2019-01-07 pCi/L 15 (0) VI 1940057-1 pCi/L 2019-01-07 pCi/L 20 0.43 | Units MCLG CA-MCL PHG Sampled Result VI 1940057-1 mg/L 2 1 VI 1947502-1 mg/L 10 10 VI 1944204-3 mg/L 2019-12-10 8.6 VI 1941418-1 mg/L 2019-08-07 7.0 VI 1940057-1 mg/L 2019-04-01 6.1 VI 1940057-1 mg/L 2019-01-07 6.4 PCi/L 15 (0) VI 1940057-1 pCi/L 2019-01-07 12.6 VI 1940057-1 pCi/L 20 0.43 | Units MCLG CA-MCL PHG Sampled Result Avg. Result(a) Mg/L 2 1 0.1 VI 1940057-1 mg/L 2 1 7.0 VI 1947502-1 mg/L 10 10 7.0 VI 1947502-1 mg/L 2019-12-10 8.6 8.6 VI 1944204-3 mg/L 2019-08-07 7.0 7.0 VI 1941418-1 mg/L 2019-04-01 6.1 7.0 VI 1940057-1 mg/L 2019-01-07 6.4 6.4 VI 1940057-1 mg/L 2019-01-07 6.4 7.0 VI 1940057-1 mg/L 2019-01-07 6.4 7.0 VI 1940057-1 pCi/L 15 (0) 2019-01-07 12.6 VI 1940057-1 pCi/L 2019-01-07 12.6 4.07 | | SECONDARY DRINKING WATER STANDARDS (SDWS) | | | | | | | | | | | |---|--------------|----------|------|--------|-----|------------|--------|-------------------|-------------|--| | | | Units | MCLG | CA-MCL | PHG | Sampled | Result | Avg.
Result(a) | Range (b) | | | Chloride | | mg/L | | 500 | n/a | | | 76 | 76 - 76 | | | WELL 01 | VI 1940057-1 | mg/L | | | | 2019-01-07 | 76 | | | | | Odor Threshold at 60 °C | | TON | | 3 | n/a | | | 2 | 2 - 2 | | | WELL 01 | VI 1942254-1 | TON | | | | 2019-05-17 | 2 | | | | | Specific Conductance | | umhos/cm | | 1600 | n/a | | | 568 | 568 - 568 | | | WELL 01 | VI 1940057-1 | umhos/cm | | | | 2019-01-07 | 568 | | | | | Sulfate | | mg/L | | 500 | n/a | | | 14.5 | 14.5 - 14.5 | | | WELL 01 | VI 1940057-1 | mg/L | | | | 2019-01-07 | 14.5 | | | | | Total Dissolved Solids | | mg/L | | 1000 | n/a | | | 390 | 390 - 390 | | | WELL 01 | VI 1940057-1 | mg/L | | | | 2019-01-07 | 390 | 7998 | | | | Turbidity | | NTU | | 5 | n/a | | | 0.3 | 0.3 - 0.3 | | | WELL 01 | VI 1942254-1 | NTU | | | | 2019-05-17 | 0.3 | | | | | | | UNREC | GULATED | CONTAMIN | NANTS | | | | | |----------|--------------|-------|---------|----------|-------|------------|--------|-------------------|---------------| | | | Units | MCLG | CA-MCL | PHG | Sampled | Result | Avg.
Result(a) | Range (b) | | Boron | | mg/L | | NS | n/a | | | 0.1 | 0.1 - 0.1 | | WELL 01 | VI 1940057-1 | mg/L | | | | 2019-01-07 | 0.1 | | | | Vanadium | | mg/L | | NS | n/a | | | 0.014 | 0.014 - 0.014 | | WELL 01 | VI 1942254-1 | mg/L | | | | 2019-05-17 | 0.014 | | | | ADDITIONAL DETECTIONS | | | | | | | | | | | |-----------------------|--------------|-------|------|--------|-----|------------|--------|-------------------|-------------|--| | | | Units | MCLG | CA-MCL | PHG | Sampled | Result | Avg.
Result(a) | Range (b) | | | Calcium | | mg/L | | | n/a | | | 48 | 48 - 48 | | | WELL 01 | VI 1940057-1 | mg/L | | | | 2019-01-07 | 48 | | | | | Magnesium | | mg/L | | | n/a | | | 14 | 14 - 14 | | | WELL 01 | VI 1940057-1 | mg/L | | | | 2019-01-07 | 14 | | | | | pН | | units | | . = | n/a | | | 6.8 | 6.8 - 6.8 | | | WELL 01 | VI 1940057-1 | units | | | | 2019-01-07 | 6.8 | | | | | Alkalinity | | mg/L | | | n/a | | | 120 | 120 - 120 | | | WELL 01 | VI 1940057-1 | mg/L | | | | 2019-01-07 | 120 | | | | | Aggressiveness Index | | | | | n/a | | | 11.0 | 11.0 - 11.0 | | | WELL 01 | VI 1940057-1 | | | | | 2019-01-07 | 11.0 | | | | | Langelier Index | | | | | n/a | | | -0.9 | -0.90.9 | | | WELL 01 | VI 1940057-1 | | | | | 2019-01-07 | -0.9 | | | | ## East Three Rivers Mutual Water Corp. CCR Login Linkage - 2019 | FGL Code Lab ID Date_Sampled | | Method | Description | Property | | | |------------------------------|--------------|------------|-----------------|--------------------------|-----------------------------------|--| | 42116 Eggers | VI 1945603-2 | 2019-09-24 | Metals, Total | 42116 Eggers | Lead and Copper Monitoring | | | 42161 Eggers | VI 1944488-3 | 2019-08-20 | Metals, Total | 42161 Eggers | LEAD & COPPER | | | 42183 Eggers | VI 1944488-2 | 2019-08-20 | Metals, Total | 42183 Eggers | LEAD & COPPER | | | 42183 Eggers - | VI 1945603-1 | 2019-09-24 | Metals, Total | 42183 Eggers - 42183 | Lead and Copper Monitoring | | | 42190 Eggers | VI 1944488-5 | 2019-08-20 | Metals, Total | 42190 Eggers | LEAD & COPPER | | | 42240 Mynatt | VI 1945603-3 | 2019-09-24 | Metals, Total | 42240 Mynatt | Lead and Copper Monitoring | | | ROUTINE 2 | VI 1942044-2 | 2019-05-06 | Coliform | 42240 Mynatt Hose Bib | EAST THREE RIVERS MUTUAL | | | | VI 1942564-2 | 2019-06-04 | Coliform | 42240 Mynatt Hose Bib | Bacteriological Monitoring | | | | VI 1943270-2 | 2019-07-01 | Coliform | 42240 Mynatt Hose Bib | Bacteriological Monitoring | | | | VI 1944204-2 | 2019-08-07 | Coliform | 42240 Mynatt Hose Bib | Bacteriological Monitoring | | | | VI 1944929-2 | 2019-09-03 | Coliform | 42240 Mynatt Hose Bib | Bacteriological Monitoring | | | | VI 1945780-2 | 2019-10-01 | Coliform | 42240 Mynatt Hose Bib | Bacteriological Monitoring | | | | VI 1946537-2 | 2019-11-04 | Coliform | 42240 Mynatt Hose Bib | Bacteriological Monitoring | | | | VI 1947502-2 | 2019-12-10 | Coliform | 42240 Mynatt Hose Bib | Bacteriological Monitoring | | | 42281 Mynatt | VI 1944488-4 | 2019-08-20 | Metals, Total | 42281 Mynatt | LEAD & COPPER | | | | VI 1945603-4 | 2019-09-24 | Metals, Total | 42281 Mynatt | Lead and Copper Monitoring | | | 42288 Mynatt | VI 1945603-5 | 2019-09-24 | Metals, Total | 42288 Mynatt | Lead and Copper Monitoring | | | 42888 Mynatt Dr | VI 1944488-1 | 2019-08-20 | Metals, Total | 42888 Mynatt Drive | LEAD & COPPER | | | Melanie Clark-H | VI 1940056-2 | 2019-01-07 | Coliform | Melanie Clark-Hose Bib | East 3 Rivers | | | ROUTINE 1 | VI 1940540-2 | 2019-02-12 | Coliform | Melanie Clark-Hose Bib | Routine Drinking Water Monitoring | | | | VI 1940906-2 | 2019-03-05 | Coliform | Melanie Clark-Hose Bib | Routine Drinking Water Monitoring | | | 5400744-900 | VI 1941418-2 | 2019-04-01 | Coliform | ST2S1 - 42240 MYNATT DR. | Water Monitoring | | | 5400744-001 | VI 1940057-1 | 2019-01-07 | Metals, Total | WELL 01 | EAST THREE RIVERS MUTUAL | | | | VI 1940057-1 | 2019-01-07 | General Mineral | WELL 01 | EAST THREE RIVERS MUTUAL | | | | VI 1940057-1 | 2019-01-07 | Radio Chemistry | WELL 01 | EAST THREE RIVERS MUTUAL | | | | VI 1941418-1 | 2019-04-01 | Wet Chemistry | WELL 01 | Water Monitoring | | | Well 01-Raw | VI 1942254-1 | 2019-05-17 | Metals, Total | WELL 01 | Water Quality Well 01 | | | | VI 1942254-1 | 2019-05-17 | Wet Chemistry | WELL 01 | Water Quality Well 01 | | | Nitrates | VI 1944204-3 | 2019-08-07 | Wet Chemistry | WELL 01 | Bacteriological Monitoring | | | 5400744-001 | VI 1947502-1 | 2019-12-10 | Wet Chemistry | WELL 01 | Bacteriological Monitoring | |