2019 Consumer Confidence Report

Water System Name:	Oak Valley School	Report Date:	2019					
Ve test the drinking water quality for many constituents as required by state and federal regulations. This report shows assults of our monitoring for the period of January 1 to December 31, 2019 and may include earlier monitoring data.								
Este informe contiene a 559-688-2908 para a	v 1	sobre su agua para beber. Favor d	e comunicarse Oak Valley School					
Type of water source(s)	in use: Groundwater							
Name & general location	on of source(s): Well 1 is lo	ocated on the south end of the School'	s property					
U		The source is considered most vulnera stations, known contaminant plumes,	2					
·		k was removed, and remediation was						
	5	,	•					
Time and place of regul	arly scheduled board meetings	for public participation: Please	call for an appointment					

TERMS USED IN THIS REPORT

Maximum Contaminant Level (MCL): The highest level of a contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs (or MCLGs) as is economically and technologically feasible. Secondary MCLs are set to protect the odor, taste, and appearance of drinking water.

Heather Pilgrim

For more information, contact:

Maximum Contaminant Level Goal (MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the U.S. Environmental Protection Agency (U.S. EPA).

Public Health Goal (PHG): The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California Environmental Protection Agency.

Maximum Residual Disinfectant Level (MRDL): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Maximum Residual Disinfectant Level Goal (MRDLG): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

Primary Drinking Water Standards (PDWS): MCLs and MRDLs for contaminants that affect health along with their monitoring and reporting requirements, and water treatment requirements.

Secondary Drinking Water Standards (SDWS): MCLs for contaminants that affect taste, odor, or appearance of the drinking water. Contaminants with SDWSs do not affect the health at the MCL levels.

559-688-2908

Phone:

Treatment Technique (TT): A required process intended to reduce the level of a contaminant in drinking water.

Regulatory Action Level (AL): The concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow.

Variances and Exemptions: Permissions from the State Water Resources Control Board (State Board) to exceed an MCL or not comply with a treatment technique under certain conditions.

Level 1 Assessment: A Level 1 assessment is a study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system.

Level 2 Assessment: A Level 2 assessment is a very detailed study of the water system to identify potential problems and determine (if possible) why an *E. coli* MCL violation has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions.

ND: not detectable at testing limit

ppm: parts per million or milligrams per liter (mg/L)

ppb: parts per billion or micrograms per liter (µg/L)

ppt: parts per trillion or nanograms per liter (ng/L)

ppq: parts per quadrillion or picogram per liter (pg/L)

pCi/L: picocuries per liter (a measure of radiation)

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include:

- *Microbial contaminants*, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- *Inorganic contaminants*, such as salts and metals, that can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- *Pesticides and herbicides*, that may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses.
- Organic chemical contaminants, including synthetic and volatile organic chemicals, that are byproducts of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, agricultural application, and septic systems.
- Radioactive contaminants, that can be naturally-occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, the U.S. EPA and the State Board prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. The U.S. Food and Drug Administration regulations and California law also establish limits for contaminants in bottled water that provide the same protection for public health.

Tables 1, 2, 3, 4, 5, and 6 list all of the drinking water contaminants that were detected during the most recent sampling for the constituent. The presence of these contaminants in the water does not necessarily indicate that the water poses a health risk. The State Board allows us to monitor for certain contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of the data, though representative of the water quality, are more than one year old. Any violation of an AL, MCL, MRDL, or TT is asterisked. Additional information regarding the violation is provided later in this report.

TABLE 1 – SAMPLING RESULTS SHOWING THE DETECTION OF COLIFORM BACTERIA								
Microbiological Contaminants (complete if bacteria detected)	Highest No. of Detections	No. of Months in Violation	MCL	MCLG	Typical Source of Bacteria			
Total Coliform Bacteria (state Total Coliform Rule)	(In a month)	0	1 positive monthly sample ^(a)	0	Naturally present in the environment			
Fecal Coliform or <i>E. coli</i> (state Total Coliform Rule)	(In the year)	0	A routine sample and a repeat sample are total coliform positive, and one of these is also fecal coliform or <i>E. coli</i> positive		Human and animal fecal waste			
E. coli (federal Revised Total Coliform Rule)	(In the year)	0	(b)	0	Human and animal fecal waste			

⁽a) Two or more positive monthly samples is a violation of the MCL

⁽b) Routine and repeat samples are total coliform-positive and either is *E. coli*-positive or system fails to take repeat samples following *E. coli*-positive routine sample or system fails to analyze total coliform-positive repeat sample for *E. coli*.

** ») ****** - *****								
TABLE 2 – SAMPLING RESULTS SHOWING THE DETECTION OF LEAD AND COPPER								
Lead and Copper (complete if lead or copper detected in the last sample set)	Sample Date	No. of Samples Collected	90 th Percentile Level Detected	No. Sites Exceeding AL	AL	PHG	No. of Schools Requesting Lead Sampling	Typical Source of Contaminant
Lead (ppb)	9/25/19	5	ND	0	15	0.2	Not applicable	Internal corrosion of household water plumbing systems; discharges from industrial manufacturers; erosion of natural deposits
Copper (ppm)	9/25/19	5	1.65	1	1.3	0.3	Not applicable	Internal corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives

TABLE 3 – SAMPLING RESULTS FOR SODIUM AND HARDNESS									
Chemical or Constituent Sample Level Pange of PHC									
(and reporting units)	Date	Detected	Detections	MCL	(MCLG)	Typical Source of Contaminant			
Sodium (ppm)	2016	35	35	None	None	Salt present in the water and is generally naturally occurring			
Hardness (ppm)	2016	3.6	3.6	None	None	Sum of polyvalent cations present in the water, generally magnesium and calcium, and are usually naturally occurring			
TABLE 4 – DETECTION OF CONTAMINANTS WITH A <u>PRIMARY</u> DRINKING WATER STANDARD									
			- 0	3.507	PHG				
Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	MCL [MRDL]	(MCLG) [MRDLG]	Typical Source of Contaminant			
Aluminum (ppb)	2019	1.1	1.1	1	0.6	Erosion of natural deposits; residue from some surface water treatment processes			
Arsenic (ppb) Before Treatment	2019	17.5	16 – 21	10	0.004	Erosion of natural deposits; runoff from orchards; glass and			
Arsenic (ppb)	2019	2.4	ND – 8.6	10	0.004	electronics production wastes Erosion of natural deposits; runoff			
*After Treatment	2019	2.4	ND - 8.0	10	0.004	from orchards; glass and electronics production wastes			
						senic. The arsenic standard balances			
Protection Agency continue.	s to research	the health effects of		ic, which is a	ı mineral know	nking water. The U.S. Environmental n to cause cancer in humans at high			
Fluoride (ppm)	2019	0.24	0.24	2 2	1	Erosion of natural deposits; water			
4.						additive that promotes strong teeth; discharge from fertilizer and			
Gross Alpha (pCi/L)	2019	3.07	3.07	15	0	aluminum factories Erosion of natural deposits			
Total Radium for NTNC (pCi/L)	2019	0.25	ND – 0.87	5	N/A	Erosion of natural deposits			
Total Trihalomethanes [TTHM] (ppb)	2017	2	2	80	N/A	Byproduct of drinking water disinfection			
Haloacetic Acids (Sum of 5 haloacetic acids) [HAA5] (ppb)	2017	6.1	6.1	60	N/A	Byproduct of drinking water disinfection			
	CTION OF	CONTAMINA	NTS WITH A <u>SI</u>	ECONDAR	Y DRINKIN	IG WATER STANDARD			
Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	SMCL	PHG (MCLG)	Typical Source of Contaminant			
Aluminum (ppb)	2019	1100	1100	200	N/A	Erosion of natural deposits; residual from some surface water treatment processes			
Iron (ppb)	2016	550	550	300	N/A	Leaching from natural deposits; industrial wastes			
Chloride (ppm)	2016	3.3	3.3	500	N/A	Runoff/leaching from natural deposits; seawater influence			
Color (Units)	2016	10	10	15	N/A	Naturally-occurring organic materials			
Specific Conductance [EC] (μS/cm)	2019	150	150	1,600	N/A	Substances that form ions when in water; seawater influence			
Sulfate (ppm)	2016	3	3	500	N/A	Runoff/leaching from natural deposits; industrial wastes			
Total Dissolved Solids [TDS] (ppm)	2016	130	130	1,000	N/A	Runoff/leaching from natural deposits			
Turbidity (NTU)	2016	11	11	5	N/A	Soil runoff			
Zinc (ppm)	2016	61	61	5,000	N/A	Runoff/leaching from natural deposits; industrial wastes			

TABLE 6 – DETECTION OF UNREGULATED CONTAMINANTS							
Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	Notification Level	Health Effects Language		
Alkalinity (ppm)	2016	67	67	N/A	N/A		
Calcium (ppm)	2016	1.4	1.4	N/A	N/A		
pH *Before Treatment	2019	9.8	9.6 – 9.9	N/A	N/A		
pH *After Treatment	2019	6.7	5.5 – 7.4	N/A	N/A		

The State allows us to monitor for some contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of our data, though representative, are more than one year old

Additional General Information on Drinking Water

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the U.S. EPA's Safe Drinking Water Hotline (1-800-426-4791).

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. U.S. EPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* and other microbial contaminants are available from the Safe Drinking Water Hotline (1-800-426-4791).

Lead-Specific Language: If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. **Oak Valley School** is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline (1-800-426-4791) or at http://www.epa.gov/lead.

Summary Information for Violation of a MCL, MRDL, AL, TT, or Monitoring and Reporting Requirement

VIOLATION OF A MCL, MRDL, AL, TT, OR MONITORING AND REPORTING REQUIREMENT							
Violation	Explanation	Duration	Actions Taken to Correct the Violation	Health Effects Language			
Lead and Copper Rule (Copper AL Violation)	On 9/25/2019 the Oak Valley School's water system exceeded the 1.2 ppm action level for copper. This exceedance resulted in a Notice of Violation being issued on 11/22/2019.	Ongoing	Water Quality Parameter Monitoring, a Corrosion Control Study and increased Lead and Copper Monitoring have are in the process of being completed.	Copper is an essential nutrient, but some people who drink water containing copper in excess of the action level over a relatively short amount of time may experience gastrointestinal distress. Some people who drink water containing copper in excess of the action level over many years may suffer liver or kidney damage. People with Wilson's Disease should consult their personal doctor.			
Aluminum	Erosion of natural deposits; residue from some surface water treatment processes	Ongoing	Continue monitoring to gather data.	Some people who drink water containing aluminum in excess of the MCL over many years may experience short-term gastrointestinal tract effects.			
Arsenic *Raw water (untreated)	Erosion of natural deposits; runoff from orchards; glass and electronics production wastes	Ongoing	Oak Valley School has installed an arsenic treatment plant to reduce the arsenic levels in the drinking water.	Some people who drink water containing arsenic in excess of the MCL over many years may experience skin damage or circulatory system problems, and may have an increased risk of getting cancer.			
Lead	Leaching from natural deposits; industrial wastes	Ongoing	In 2016 an iron sample exceeded the secondary MCL of 300 ppb. The iron MCL was set to protect against unpleasant aesthetic effects such as: color, taste and odor. Iron in the water can also stain plumbing fixtures and clothing.	There is no health effects language available for lead.			