Consumer Confidence Report Certification Form

(to be submitted with a copy of the CCR)

(to certify electronic delivery of the CCR, use the certification form on the State Water Board's website at http://www.swrcb.ca.gov/drinking_water/certlic/drinkingwater/CCR.shtml)

Water	Syste	m Nar	ne: SEVILLE WAT	ER COMPANY			
Water	Syste	m Nur	mber: CA5400550				
June 7,	es that	the in	_(date) to customers information contained i	certifies that its Consumer ((and appropriate notices of n the report is correct and Resources Control Board, I	f availability ha consistent witl	ve been given). Furthen the compliance moni	er, the system
Certi	fied By	:	Name:	Celeste Perez			
			Signature:	Oct			
			Title:	General Manager			
			Phone Number:	(559) 528-5252		Date: 06-25-2024	
	oply an	d fill-i was di	in where appropriate:	good-faith efforts taken, ple ther direct delivery method	·	,	-
	b	y mail					
X	"Good	ods:	" efforts were used to ed the CCR on the inte	reach non-bill paying custo	omers. Those ef	fforts included the follo	owing
				patrons within the service a	urea (attach zin	codes used)	
	\Box			of the CCR in news media	_		
				a local newspaper of genera g name of the newspaper a			
	X	Post	ed the CCR in public p	places (attach a list of locat	ions) Stone Corr	ral School - Seville CA	
			very of multiple copies as apartments, busing	s of CCR to single bill addre	esses serving se	everal persons,	
		Deliv	very to community org	ganizations (attach a list of	organizations)		
		Othe	er (attach a list of othe	er methods used)			
	For sy	ystems	s serving at least 100,0	000 persons: Posted CCR o	n a publicly-ac	cessible internet site	
	at the	follov	ving address: http://				
	For in	vesto	r-owned utilities: Deliv	vered the CCR to the Califo	rnia Public Uti	lities Commission	

2023 Consumer Confidence Report

Water System Name: SEVILLE WATER COMPANY Report Date: April 2024

We test the drinking water quality for many constituents as required by state and federal regulations. This report shows the results of our monitoring for the period of January 1 - December 31, 2023.

Este informe contiene información muy importante sobre su agua potable. Tradúzcalo ó hable con alquien que lo entienda bien.

Type of water source(s) in use: Information regarding the type of water source in use is not available, as this water system does not have a completed assessment on file. Please see the Drinking Water Source Assessment Information section located at the end of this report for more details.

Your water comes from 2 source(s): WELL 01 - RAW and WELL 02 - RAW

Opportunities for public participation in decisions that affect drinking water quality: Regularly-scheduled water board meetings currently are held every 3rd Tuesday of the month.

For more information about this report, or any questions relating to your drinking water, please call (559) 458 - 6144 and ask for Jose Padilla.

TERMS USED IN THIS REPORT

Maximum Contaminant Level (MCL): The highest level of contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs (or MCLGs) as is economically feasible. Secondary MCLs are set to protect the odor, taste, and appearance of drinking water.

Maximum Contaminant Level Goal (MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the U.S. Environmental Protection Agency (USEPA).

Public Health Goal (PHG): The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California Environmental Protection Agency.

Maximum Residual Disinfectant Level (MRDL): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Maximum Residual Disinfectant Level Goal (MRDLG): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

Primary Drinking Water Standards (PDWS): MCLs and MRDLs for the contaminants that affect health along with their monitoring and reporting requirements, and water treatment requirements.

Secondary Drinking Water Standards (SDWS): MCLs for the contaminants that affect taste, odor, or appearance of the drinking water. Contaminants with SDWSs do not affect the health at the MCL levels.

Treatment Technique (TT): A required process intended to reduce the level of a contaminant in drinking water.

Regulatory Action Level (AL): The concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow.

Level 1 Assessment: A Level 1 assessment is a study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system.

Level 2 Assessment: A Level 2 assessment is a very detailed study of the water system to identify potential problems and determine (if possible) why an E. coli MCL violation has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions.

ND: not detectable at testing limit

mg/L: milligrams per liter or parts per million (ppm)

ug/L: micrograms per liter or parts per billion (ppb)

pCi/L: picocuries per liter (a measure of radiation)

umhos/cm: micro mhos per centimeter

The sources of drinking water: (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include:

- *Microbial contaminants*, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- *Inorganic contaminants*, such as salts and metals, that can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- *Pesticides and herbicides,* that may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses.
- *Organic chemical contaminants*, including synthetic and volatile organic chemicals, that are by-products if industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, agricultural application, and septic systems.
- Radioactive contaminants, that can be naturally-occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, the USEPA and the State Water Resource Control Board (State Water Board) prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. State Water Board regulations also establish limits for contaminants in bottled water that provide the same protection for public health.

Tables 1, 2, 3, 4, 5, 6 and 7 list all of the drinking water contaminants that were detected during the most recent sampling for the constituent. The presence of these contaminants in the water does not necessarily indicate that the water poses a health risk. The State Water Board allows us to monitor for certain contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of the data, though representative of the water quality, are more than one year old.

Any violation of MCL, AL or MRDL is highlighted. Additional information regarding the violation is provided later in this report.

	Table 1 - SAMPLING RESULTS FOR SODIUM AND HARDNESS											
Chemical or Constituent (and reporting units)	Sample Date	Average Level Detected	Range of Detections	MCL	PHG (MCLG)	Typical Sources of Contaminant						
Sodium (mg/L)	(2023)	40	31 - 49	none	none	Salt present in the water and is generally naturally occurring						
Hardness (mg/L)	(2023)	157	142 - 172	none	none	Sum of polyvalent cations present in the water, generally magnesium and calcium, and are usually naturally occurring						

Table 2 - I	Table 2 - DETECTION OF CONTAMINANTS WITH A PRIMARY DRINKING WATER STANDARD										
Chemical or Constituent (and reporting units)	Sample Date	Average Level Detected	Range of Detections	MCL [MRDL]	PHG (MCLG) [MRDLG]	Typical Sources of Contaminant					
Arsenic (ug/L)	(2023)	ND	ND - 2	10	0.004	Erosion of natural deposits; runoff from orchards, glass and electronics production wastes					
Fluoride (mg/L)	(2023)	0.1	n/a	2	1	Erosion of natural deposits; water additive that promotes strong teeth; discharge from fertilizer and aluminum factories.					
Nitrate as N (mg/L)	(2023)	6.3	5.0 - 7.9	10	10	Runoff and leaching from fertilizer use; leaching from septic tanks and sewage; erosion of natural deposits					
Nitrate + Nitrite as N (mg/L)	(2023)	6.7	5.5 - 7.9	10	10	Runoff and leaching from fertilizer use; leaching from septic tanks and sewage; erosion of natural deposits					
Gross Alpha (pCi/L)	(2023)	1.02	n/a	15	(0)	Erosion of natural deposits.					

Table 3 - DETE	Table 3 - DETECTION OF CONTAMINANTS WITH A <u>SECONDARY</u> DRINKING WATER STANDARD											
Chemical or Constituent (and reporting units)	Sample Date	Average Level Detected	Range of Detections	MCL	PHG (MCLG)	Typical Sources of Contaminant						
Chloride (mg/L)	(2023)	63	26 - 100	500	n/a	Runoff/leaching from natural deposits; seawater influence						
Manganese (ug/L)	(2023)	15	ND - 30	50	n/a	Leaching from natural deposits						
Specific Conductance (umhos/cm)	(2023)	540	445 - 635	1600	n/a	Substances that form ions when in water; seawater influence						
Sulfate (mg/L)	(2023)	17.4	14.3 - 20.5	500	n/a	Runoff/leaching from natural deposits; industrial wastes						
Total Dissolved Solids (mg/L)	(2023)	330	270 - 390	1000	n/a	Runoff/leaching from natural deposits						

	Table 4 - DETECTION OF UNREGULATED CONTAMINANTS										
Chemical or Constituent (and reporting units)	Sample Date	Average Level Range of Detections		Notification Level	Typical Sources of Contaminant						
Vanadium (ug/L)	(2023)	52	47 - 56	50	Vanadium exposures resulted in developmental and reproductive effects in rats.						
Manganese (ug/L)	(2023)	15	ND - 30	500	Manganese exposures resulted in neurological effects. High levels of manganese in people have been shown to result in adverse effects to the nervous system.						

	Table 5 - ADDITIONAL DETECTIONS											
Chemical or Constituent (and reporting units)	Sample Date	Average Level Detected	Range of Detections	Notification Level	Typical Sources of Contaminant							
Calcium (mg/L)	(2023)	39	32 - 46	n/a	n/a							
Magnesium (mg/L)	(2023)	15	14 - 15	n/a	n/a							
pH (units)	(2023)	6.86	6.84 - 6.87	n/a	n/a							
Alkalinity (mg/L)	(2023)	135	130 - 140	n/a	n/a							
Aggressiveness Index	(2023)	11	10.9 - 11.0	n/a	n/a							
Langelier Index	(2023)	-0.9	-0.90.8	n/a	n/a							

Table (Table 6 - DETECTION OF DISINFECTANT/DISINFECTANT BYPRODUCT RULE											
Chemical or Constituent (and reporting units)	Violation	Typical Sources of Contaminant										
Total Trihalomethanes (TTHMs) (ug/L)	(2023)	7	n/a	80	n/a		By-product of drinking water disinfection					
Haloacetic Acids (five) (2023) 3 n/a 60 n/a No By-product water disinf												

Additional General Information on Drinking Water

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts if some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the USEPA's Safe Drinking Water Hotline (1-800-426-4791).

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at

risk from infections. These people should seek advice about drinking water from their health care providers. USEPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* and other microbial contaminants are available from the Safe Drinking Water Hotline (1-800-426-4791).

Lead Specific Language for Community Water Systems: If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with the service lines and home plumbing. *Seville Water Company* is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/lead.

Summary Information for Violation of a MCL, MRDL, AL, TT, or Monitoring and Reporting Requirement

About your Nitrate as N: Nitrate above 5 mg/L as nitrogen (50 percent of the MCL), but below 10 mg/L as nitrogen (the MCL); Nitrate in drinking water at levels above 10 mg/L is a health risk for infants of less than six months of age. Such nitrate levels in drinking water can interfere with the capacity of the infant's blood to carry oxygen, resulting in a serious illness; symptoms include shortness of breath and blueness of the skin. Nitrate levels above 10 mg/L may also affect the ability of the blood to carry oxygen in other individuals, such as pregnant women and those with certain specific enzyme deficiencies. If you are caring for an infant, or you are pregnant, you should ask advice from your health care provider.

2023 Consumer Confidence Report

Drinking Water Assessment Information

Assessment Information

A Drinking Water Source Assessment has not been completed for the WELL 01 and WELL 02 of SEVILLE WATER COMPANY water system.

WELL 01 - RAW - does not have a completed assessment on file.

WELL 02 - RAW - does not have a completed assessment on file.

Discussion of Vulnerability

Assessment summaries are not available for some sources. This is because:

- ☐ The Assessment has not been completed. Contact the local DDW district office or the water system to find out when the Assessment is scheduled to be done.
- ☐ The source is not active. It may be out of service, or new and not yet in service.
- \square The Assessment was not submitted electronically. The site used to obtain Assessments only provides access to Assessment summaries submitted electronically

Acquiring Information

For more info you may visit https://www.waterboards.ca.gov/drinking_water/certlic/drinkingwater/DWSAP.html or contact the health department in the county to which the water system belongs as indicated on this following link: https://www.waterboards.ca.gov/drinking_water/programs/documents/ddwem/DDWdistrictofficesmap.pdf

Seville Water Company Analytical Results By FGL - 2023

SAMPLING RESULTS FOR SODIUM AND HARDNESS											
		Units	MCLG	CA-MCL	PHG	Sampled	Result	Avg. Result(a)	Range (b)		
Sodium		mg/L		none	none			40	31 - 49		
WELL 01 - RAW	VI 2345325-1	mg/L				2023-08-14	31				
WELL 02 - RAW	VI 2345326-1	mg/L				2023-08-14	49				
Hardness		mg/L		none	none			157	142 - 172		
WELL 01 - RAW	VI 2345325-1	mg/L				2023-08-14	142				
WELL 02 - RAW	VI 2345326-1	mg/L				2023-08-14	172				

	PRIMA	ARY DRIN	IKING WA	ATER STAN	DARDS ((PDWS)			
		Units	MCLG	CA-MCL	PHG	Sampled	Result	Avg. Result(a)	Range (b)
Arsenic		ug/L		10	0.004			ND	ND - 2
WELL 01 - RAW	VI 2345325-1	ug/L				2023-08-14	ND		
WELL 02 - RAW	VI 2345326-1	ug/L				2023-08-14	2		
Fluoride		mg/L		2	1			0.1	0.1 - 0.1
WELL 01 - RAW	VI 2345325-1	mg/L				2023-08-14	0.1		
WELL 02 - RAW	VI 2345326-1	mg/L				2023-08-14	0.1		
Nitrate as N	-	mg/L		10	10			6.3	5.0 - 7.9
WELL 01 - RAW	VI 2347589-1	mg/L				2023-11-08	6.8		
WELL 01 - RAW	VI 2345327-1	mg/L				2023-08-14	7.4		
WELL 01 - RAW	VI 2345325-1	mg/L				2023-08-14	7.9		
WELL 01 - RAW	VI 2342946-1	mg/L				2023-05-12	7.1		
WELL 01 - RAW	VI 2340937-1	mg/L				2023-02-13	5.1		
WELL 02 - RAW	VI 2347589-2	mg/L				2023-11-08	7.3		
WELL 02 - RAW	VI 2345327-2	mg/L				2023-08-14	5.3		
WELL 02 - RAW	VI 2345326-1	mg/L				2023-08-14	5.5		
WELL 02 - RAW	VI 2342946-2	mg/L				2023-05-12	5.7		
WELL 02 - RAW	VI 2340937-2	mg/L				2023-02-13	5.0		
Nitrate + Nitrite as N		mg/L		10	10			6.7	5.5 - 7.9
WELL 01 - RAW	VI 2345325-1	mg/L				2023-08-14	7.9		
WELL 02 - RAW	VI 2345326-1	mg/L				2023-08-14	5.5		
Gross Alpha	•	pCi/L		15	(0)			1.02	1.02 - 1.02
WELL 01 - RAW	VI 2345325-1	pCi/L				2023-08-14	1.02		

	SECON	DARY DRINE	ING WA	TER STANI	DARDS	(SDWS)			
		Units	MCLG	CA-MCL	PHG	Sampled	Result	Avg. Result(a)	Range (b)
Chloride		mg/L		500	n/a			63	26 - 100
WELL 01 - RAW	VI 2345325-1	mg/L				2023-08-14	26		
WELL 02 - RAW	VI 2345326-1	mg/L				2023-08-14	100		
Manganese		ug/L		50	n/a			15	ND - 30
WELL 01 - RAW	VI 2345325-1	ug/L				2023-08-14	ND		
WELL 02 - RAW	VI 2345326-1	ug/L				2023-08-14	30		
Specific Conductance		umhos/cm		1600	n/a			540	445 - 635
WELL 01 - RAW	VI 2345325-1	umhos/cm				2023-08-14	445		
WELL 02 - RAW	VI 2345326-1	umhos/cm				2023-08-14	635		
Sulfate		mg/L		500	n/a			17.4	14.3 - 20.5
WELL 01 - RAW	VI 2345325-1	mg/L				2023-08-14	20.5		
WELL 02 - RAW	VI 2345326-1	mg/L				2023-08-14	14.3		
Total Dissolved Solids	-	mg/L		1000	n/a			330	270 - 390
WELL 01 - RAW	VI 2345325-1	mg/L				2023-08-14	270		
WELL 02 - RAW	VI 2345326-1	mg/L				2023-08-14	390		

		Units	MCLG	CA-MCL	PHG	Sampled	Result	Avg. Result(a)	Range (b)
Vanadium		ug/L		NS	n/a			52	47 - 56
WELL 01 - RAW	VI 2345325-1	ug/L				2023-08-14	47		
WELL 02 - RAW	VI 2345326-1	ug/L				2023-08-14	56		
Manganese	•	ug/L		NS	n/a			15	ND - 30
WELL 01 - RAW	VI 2345325-1	ug/L				2023-08-14	ND		
WELL 02 - RAW	VI 2345326-1	ug/L				2023-08-14	30		

		ADI	DITIONAL	DETECTIO	NS				
		Units	MCLG	CA-MCL	PHG	Sampled	Result	Avg. Result(a)	Range (b)
Calcium		mg/L			n/a			39	32 - 46
WELL 01 - RAW	VI 2345325-1	mg/L				2023-08-14	32		
WELL 02 - RAW	VI 2345326-1	mg/L				2023-08-14	46		
Magnesium	=	mg/L			n/a			15	14 - 15
WELL 01 - RAW	VI 2345325-1	mg/L				2023-08-14	15		
WELL 02 - RAW	VI 2345326-1	mg/L				2023-08-14	14		
рН	•	units			n/a			6.86	6.84 - 6.87
WELL 01 - RAW	VI 2345325-1	units				2023-08-14	6.84		
WELL 02 - RAW	VI 2345326-1	units				2023-08-14	6.87		
Alkalinity		mg/L			n/a			135	130 - 140
WELL 01 - RAW	VI 2345325-1	mg/L				2023-08-14	140		
WELL 02 - RAW	VI 2345326-1	mg/L				2023-08-14	130		
Aggressiveness Index					n/a			11.0	10.9 - 11.0
WELL 01 - RAW	VI 2345325-1					2023-08-14	10.9		
WELL 02 - RAW	VI 2345326-1					2023-08-14	11.0		
Langelier Index	•				n/a			-0.9	-0.90.8
WELL 01 - RAW	VI 2345325-1					2023-08-14	-0.9		
WELL 02 - RAW	VI 2345326-1					2023-08-14	-0.8		

DETECTION OF DISINFECTANT/DISINFECTANT BYPRODUCT RULE												
		Units	MCLG	CA-MCL	PHG	Sampled	Result	Avg. Result(a)	Range (b)			
Total Trihalomethanes (TTHMs)		ug/L		80	n/a			7	7.00 - 7.00			
ST2S1-15348 AVE 381	VI 2344754-1	ug/L				2023-07-20	7.00					
Average ST2S1-15348 AVE 381								7				
Haloacetic Acids (five)		ug/L		60	n/a			3	3 - 3			
ST2S1-15348 AVE 381	VI 2344754-1	ug/L				2023-07-20	3					
Average ST2S1-15348 AVE 381								3				

Seville Water Company CCR Login Linkage - 2023

FGL Code	Lab ID	Date_Sampled	Method	Description	Property
CA5400550_LCR	VI 2145891-2	2021-07-30	Metals, Total	15322 Ave 383	Seville - Lead & Copper
	VI 2145891-1	2021-07-30	Metals, Total	15325 Ave 383	SEVILLE WATER COMPANY
	VI 2145891-3	2021-07-30	Metals, Total	15514 Ave 381	Seville - Lead & Copper
	VI 2145891-4	2021-07-30	Metals, Total	15578 Ave 381	Seville - Lead & Copper
	VI 2145891-5	2021-07-30	Metals, Total	15630 Seville Ave	Seville - Lead & Copper
DBP	VI 2344754-1	2023-07-20	EPA 552.2	ST2S1-15348 AVE 381	Disinfection Byproducts
	VI 2344754-1	2023-07-20	EPA 551.1	ST2S1-15348 AVE 381	Disinfection Byproducts
STNCRL SP	VI 2340146-3	2023-01-09	Coliform	Stone Corral Sample Point	Seville Bacteriological Monitoring
	VI 2340935-3	2023-02-13	Coliform	Stone Corral Sample Point	Seville Bacteriological Monitoring
	VI 2341353-3	2023-03-06	Coliform	Stone Corral Sample Point	Seville Bacteriological Monitoring
	VI 2342311-3	2023-04-18	Coliform	Stone Corral Sample Point	Seville Bacteriological Monitoring
	VI 2342808-3	2023-05-08	Coliform	Stone Corral Sample Point	Seville Bacteriological
	VI 2343516-3	2023-06-05	Coliform	Stone Corral Sample Point	Seville Bacteriological
	VI 2344755-3	2023-07-20	Coliform	Stone Corral Sample Point	Seville Bacteriological Monitoring
	VI 2345328-3	2023-08-14	Coliform	Stone Corral Sample Point	Seville Bacteriological Monitoring
	VI 2346130-3	2023-09-11	Coliform	Stone Corral Sample Point	Seville Bacteriological Monitoring
	VI 2346764-3	2023-10-05	Coliform	Stone Corral Sample Point	Seville Bacteriological Monitoring
	VI 2347590-3	2023-11-08	Coliform	Stone Corral Sample Point	Seville Bacteriological
	VI 2348177-3	2023-12-05	Coliform	Stone Corral Sample Point	Seville Bacteriological Monitoring
WELL01-RAW	VI 2340937-1	2023-02-13	Wet Chemistry	WELL 01 - RAW	Nitrate Monitoring
	VI 2342946-1	2023-05-12	Wet Chemistry	WELL 01 - RAW	Nitrate Monitoring
	VI 2345325-1	2023-08-14	Metals, Total	WELL 01 - RAW	Well 01 - Water Quality
	VI 2345325-1	2023-08-14	Radio Chemistry	WELL 01 - RAW	Well 01 - Water Quality
	VI 2345327-1	2023-08-14	Wet Chemistry	WELL 01 - RAW	Nitrate Monitoring
	VI 2345325-1	2023-08-14	General Mineral	WELL 01 - RAW	Well 01 - Water Quality
	VI 2347589-1	2023-11-08	Wet Chemistry	WELL 01 - RAW	Nitrate Monitoring
WELL02-RAW	VI 2340937-2	2023-02-13	Wet Chemistry	WELL 02 - RAW	Nitrate Monitoring
	VI 2342946-2	2023-05-12	Wet Chemistry	WELL 02 - RAW	Nitrate Monitoring
	VI 2345326-1	2023-08-14	General Mineral	WELL 02 - RAW	Well 02- Water Quality
	VI 2345326-1	2023-08-14	Metals, Total	WELL 02 - RAW	Well 02- Water Quality
	VI 2345327-2	2023-08-14	Wet Chemistry	WELL 02 - RAW	Nitrate Monitoring
	VI 2347589-2	2023-11-08	Wet Chemistry	WELL 02 - RAW	Nitrate Monitoring