Consumer Confidence Report Certification Form

(to be submitted with a copy of the CCR)

(to certify electronic delivery of the CCR, use the certification form on the State Water Board's website at $\underline{ http://www.swrcb.ca.gov/drinking_water/certlic/drinkingwater/CCR.shtml) }$

Wate	er Syste	m Name:	FRESH POIN	T (PIRANHA PRODUCE)			
Wate	er Syste	m Number:	5000555				
certif	ies that	$\frac{2}{2}$ (date the information)	ate) to custome ation contained	r certifies that its Consumer (ers (and appropriate notices of I in the report is correct and er Resources Control Board, I	of availability l consistent wit	nave been given). Furt h the compliance moni	her, the system
Cert	ified By	: Nam	e:	SEAN GAFFA	WEY		
		Signa	ature:	Sean Of lane	1		
		Title:		VICE PRESIDENT	OPERATION	S	
		Phon	e Number:	(209) 216-0237		Date: 5/24/2	
To su	mmariz apply an	re report del ad fill-in whe	ivery used and ere appropriate	good-faith efforts taken, plea	ase complete i	the form below by chec	cking all items
		l faith" effor		other direct delivery methods oreach non-bill paying custon			
				ternet at http:// patrons within the service a	rea (attach zip	codes used)	
		Advertised	the availabilit	y of the CCR in news media (attach a copy	of press release)	
		published 1	notice, includir	a a local newspaper of genera	d date publish	ned)	a
		Posted the	CCR in public	places (attach a list of location	ons) Asso	CLATTE SHETY	CENTER
		Delivery of	multiple copie	es of CCR to single bill addres nesses, and schools	sses serving s	everal persons,	
		Delivery to	community or	ganizations (attach a list of o	rganizations)		
		Other (atta	ich a list of oth	er methods used)			
				,000 persons: Posted CCR on			
				ivered the CCR to the Califor			
					ina i abiic Oti	11002 COHHH11221011	

(This form is provided as a convenience and may be used to meet the certification requirement of section 64483(c), California Code of Regulations.)

2020 Consumer Confidence Report

Water System Name: FRESH POINT (PIRANHA PRODUCE) Report Date: May 2021

We test the drinking water quality for many constituents as required by state and federal regulations. This report shows the results of our monitoring for the period of January 1 - December 31, 2020.

Este informe contiene información muy importante sobre su agua potable. Tradúzcalo ó hable con alquien que lo entienda bien.

Type of water source(s) in use: This info is not available, please see the Drinking Water Source Assessment Information section located at the end of this report for more details.

Your water comes from 1 source(s): 2012 WELL and from 1 treated location(s): Treated Effluent

Opportunities for public participation in decisions that affect drinking water quality: Regularly-scheduled water board or city/county council meetings currently are not held.

For more information about this report, or any questions relating to your drinking water, please call (209)838-7842 and ask for Quality Service, Inc..

TERMS USED IN THIS REPORT

Maximum Contaminant Level (MCL): The highest level of contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs (or MCLGs) as is economically feasible. Secondary MCLs are set to protect the odor, taste, and appearance of drinking water.

Maximum Contaminant Level Goal (MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the U.S. Environmental Protection Agency (USEPA).

Public Health Goal (PHG): The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California Environmental Protection Agency.

Maximum Residual Disinfectant Level (MRDL): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Maximum Residual Disinfectant Level Goal (MRDLG): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

Primary Drinking Water Standards (PDWS): MCLs and MRDLs for the contaminants that affect health along with their monitoring and reporting requirements, and water treatment requirements.

Secondary Drinking Water Standards (SDWS): MCLs for the contaminants that affect taste, odor, or appearance of the drinking water. Contaminants with SDWSs do not affect the health at the MCL levels.

Treatment Technique (TT): A required process intended to reduce the level of a contaminant in drinking water.

Regulatory Action Level (AL): The concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow.

Level 1 Assessment: A Level 1 assessment is a study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system.

Level 2 Assessment: A Level 2 assessment is a very detailed study of the water system to identify potential problems and determine (if possible) why an E. coli MCL violation has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions.

ND: not detectable at testing limit

mg/L: milligrams per liter or parts per million (ppm)

ug/L: micrograms per liter or parts per billion (ppb)

pCi/L: picocuries per liter (a measure of radiation)

umhos/cm: micro mhos per centimeter

The sources of drinking water: (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include:

- *Microbial contaminants*, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- *Inorganic contaminants*, such as salts and metals, that can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- *Pesticides and herbicides,* that may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses.
- Organic chemical contaminants, including synthetic and volatile organic chemicals, that are by-products if industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, agricultural application, and septic systems.
- Radioactive contaminants, that can be naturally-occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, the USEPA and the State Water Resource Control Board (State Water Board) prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. State Water Board regulations also establish limits for contaminants in bottled water that provide the same protection for public health.

Tables 1, 2, 3, 4, 5, 6 and 7 list all of the drinking water contaminants that were detected during the most recent sampling for the constituent. The presence of these contaminants in the water does not necessarily indicate that the water poses a health risk. The State Water Board allows us to monitor for certain contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of the data, though representative of the water quality, are more than one year old.

Any violation of MCL, AL or MRDL is highlighted. Additional information regarding the violation is provided later in this report.

Tabl	Table 1 - SAMPLING RESULTS SHOWING THE DETECTION OF LEAD AND COPPER												
Lead and Copper (complete if lead or copper detected in last sample set)	Sample Date	No. of Samples	90th percentile level detected	No. Sites Exceeding AL	AL	PHG	Typical Sources of Contaminant						
Copper (mg/L)	(2020)	5	0.03	0	1.3	.3	Internal corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives						

	Table 2	- SAMPLING	RESULTS FO	R SO	DIUM AND	HARDNESS
Chemical or Constituent (and reporting units)	nstituent Sample Date		Range of Detections	MCL	PHG (MCLG)	Typical Sources of Contaminant
Sodium (mg/L)	(2014)	25	n/a	none	none	Salt present in the water and is generally naturally occurring
Hardness (mg/L)	(2014)	66.4	n/a	none	nono	Sum of polyvalent cations present in the water, generally magnesium and calcium, and are usually naturally occurring

Table 3 - 1	Table 3 - DETECTION OF CONTAMINANTS WITH A <u>PRIMARY</u> DRINKING WATER STANDARD												
Chemical or Constituent (and reporting units)	Sample Date Average Level Detected		Range of Detections MCL [MRDL]		PHG (MCLG) [MRDLG]	Typical Sources of Contaminant							
Arsenic (ug/L)	(2020)	13	12 - 13	10		Erosion of natural deposits; runoff from orchards, glass and electronics production wastes							

Fluoride (mg/L)	(2020)	0.1	n/a	2	1	Erosion of natural deposits; water additive that promotes strong teeth; discharge from fertilizer and aluminum factories.
Hexavalent Chromium (ug/L)	(2020)	8.1	n/a		0.02	Discharge from electroplating factories, leather tanneries, wood preservation, chemical synthesis, refractory production, and textile manufacturing facilities; erosion of natural deposits.
Nitrate as N (mg/L)	(2019)	1.5	n/a	10	10	Runoff and leaching from fertilizer use; leaching from septic tanks and sewage; erosion of natural deposits
Nitrate + Nitrite as N (mg/L)	(2020)	1.7	n/a	10	10	Runoff and leaching from fertilizer use; leaching from septic tanks and sewage; erosion of natural deposits
Gross Alpha (pCi/L)	(2017)	ND	ND - 1.01	15	(0)	Erosion of natural deposits.

Table 4 - TREA	Table 4 - TREATED DETECTION OF CONTAMINANTS WITH A <u>PRIMARY</u> DRINKING WATER STANDARD											
Chemical or Constituent (and reporting units)	Sample Date	Average Level Detected	Range of Detections	MCL [MRDL]		Typical Sources of Contaminant						
Arsenic (ug/L)	(2020)	5	3 - 7	10	0.004	Erosion of natural deposits; runoff from orchards, glass and electronics production wastes						

Table 5 - DETE	Table 5 - DETECTION OF CONTAMINANTS WITH A <u>SECONDARY</u> DRINKING WATER STANDARD											
Chemical or Constituent (and reporting units)	Sample Date	Average Level Detected	Range of Detections			Typical Sources of Contaminant						
Chloride (mg/L)	(2014)	6	n/a	500	n/a	Runoff/leaching from natural deposits; seawater influence						
Specific Conductance (umhos/cm)	(2014)	260	n/a	1600	n/a	Substances that form ions when in water; seawater influence						
Sulfate (mg/L)	(2014)	4.7	n/a	500	n/a	Runoff/leaching from natural deposits; industrial wastes						
Total Dissolved Solids (mg/L)	(2014)	210	n/a	1000	n/a	Runoff/leaching from natural deposits						

	Table 6 - DETECTION OF UNREGULATED CONTAMINANTS											
Chemical or Constituent (and reporting units)	Sample Date	Average Level Range of Detections		Notification Level	Typical Sources of Contaminant							
Vanadium (mg/L)	(2020)	0.049	n/a	0.05	Vanadium exposures resulted in developmental and reproductive effects in rats.							

Tal	Table 7 - DETECTION OF DISINFECTANT/DISINFECTANT BYPRODUCT RULE												
Chemical or Constituent (and reporting units)	Sample Date	Average Level Detected	Range of Detections	MCL (MRDL)	PHG (MCLG)	Violation	Typical Sources of Contaminant						
Chlorine (mg/L)	(2020)	0.00	n/a	4.0	4.0		Drinking water disinfectant added for treatment.						
Haloacetic Acids (five) (ug/L)	(2020)	1	n/a	60	n/a		By-product of drinking water disinfection						

Additional General Information on Drinking Water

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts if some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the USEPA's Safe Drinking Water Hotline (1-800-426-4791).

Some people may be more vulnerable to contaminants in drinking water than the general population. Immunocompromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. USEPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* and other microbial contaminants are available from the Safe Drinking Water Hotline (1-800-426-4791).

Lead Specific Language for Community Water Systems: If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with the service lines and home plumbing. *Fresh Point WS* is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/lead.

Summary Information for Violation of a MCL, MRDL, AL, TT, or Monitoring and Reporting Requirement

VIOLATION	OF A MCL,MRDL,AL,TT, OR	MONITORING A	AND REPORTING	REQUIREMENT
Violation	Explanation	Duration	Actions Taken To Correct the Violation	Health Effects Language
Arsenic				Some people who drink water containing arsenic in excess of the MCL over many years could experience skin damage or problems with their circulatory system, and may have an increased risk of getting cancer.

About your Arsenic: For Arsenic detected above 5 ug/L (50% of the MCL) but below 10 ug/L: While your drinking water meets the federal and state standard for arsenic, it does contain low levels of arsenic. The arsenic standard balances the current understanding of arsenic's possible health effects against the costs of removing arsenic from drinking water. The U.S. Environmental Protection Agency continues to research the health effects of low levels of arsenic, which is a mineral known to cause cancer in humans at high concentrations and is linked to other health effects such as skin damage and circulatory problems.

2020 Consumer Confidence Report

Drinking Water Assessment Information

Assessment Information

A source water assessment has not been completed for the 2012 WELL of the FRESH POINT (PIRANHA PRODUCE) water system.

2012 WELL - is considered most vulnerable to the following activities not associated with any detected contaminants:

Automobile - Gas stations

Discussion of Vulnerability

NOTE: The following Vulnerability Summary is based on an assessment made in January, 2006.

Nitrates have been detected in this water source. The level was below the Maximum Contaminant Level (MCL) of 45 mg/l. Nitrates are typically associated with onsite sewage disposal, as well as the use of fertilizers containing nitrogen. This general area has historically been used for agricultural purposes. There is low-density activity of onsite, sewage disposal in the first two Time-of-Travel (TOT) zones. In the third TOT zone, there is high-density activity of onsite, sewage disposal. Recent water quality analyses on file, indicate that this source is currently in compliance with State Standards.

Acquiring Information

A copy of the complete assessment may be viewed at: Stanislaus County, DER 3800 Cornucopia Way, Suite C Modesto, CA 95358

You may request a summary of the assessment be sent to you by contacting: Small Public Water Systems SJ CO Environmental Health Department (209) 468-3420

Fresh Point WS Analytical Results By FGL - 2020

	LEAD AND COPPER RULE													
		Units	MCLG	CA-MCL	PHG	Sampled	Result	90th Percentile	# Samples					
Copper	mg/L		1.3	.3			0.03	5						
Drinking Fountain-Break Area	STK2052250-1	mg/L				2020-08-23	ND							
Kitchen Sink	STK2052250-5	mg/L				2020-08-23	ND							
Kitchen Sink-Break Area	STK2052250-2	mg/L				2020-08-23	ND							
Mens Restroom Sink	STK2052250-3	mg/L				2020-08-23	0.06							
Womens Restroom Sink	STK2052250-4	mg/L				2020-08-23	ND							

	SAMPLING RESULTS FOR SODIUM AND HARDNESS												
		Units	MCLG	CA-MCL	PHG	Sampled	Result	Avg. Result(a)	Range (b)				
Sodium	Sodium			none	none			25	25 - 25				
2012 WELL	STK1438411-1	mg/L				2014-08-19	25						
Hardness		mg/L		none	none			66.4	66.4 - 66.4				
2012 WELL	STK1438411-1	mg/L				2014-08-19	66.4						

	PRIM	ARY DRI	NKING W	ATER STAN	DARDS ((PDWS)			
		Units	MCLG	CA-MCL	PHG	Sampled	Result	Avg. Result(a)	Range (b)
Arsenic		ug/L		10	0.004			13	12 - 13
2012 WELL	STK2056154-1	ug/L				2020-11-16	13		
2012 WELL	STK2051932-1	ug/L				2020-08-20	13		
2012 WELL	STK2036760-1	ug/L				2020-05-18	12		
2012 WELL	STK2032370-1	ug/L				2020-02-18	13		
Fluoride		mg/L		2	1			0.1	0.1 - 0.1
2012 WELL	STK2051932-1	mg/L				2020-08-20	0.1		
Hexavalent Chromium		ug/L			0.02			8.1	8.1 - 8.1
2012 WELL	STK2051934-1	ug/L				2020-08-20	8.1		
Nitrate as N		mg/L		10	10			1.5	1.5 - 1.5
2012 WELL	STK1952403-1	mg/L				2019-08-21	1.5		
Nitrate + Nitrite as N		mg/L		10	10			1.7	1.7 - 1.7
2012 WELL	STK2051932-1	mg/L				2020-08-20	1.7		
Gross Alpha		pCi/L		15	(0)			ND	ND - 1.01
2012 WELL	STK1750925-1	pCi/L				2017-08-25	ND		
2012 WELL	STK1735921-1	pCi/L				2017-05-16	ND		
2012 WELL	STK1731894-1	pCi/L				2017-02-15	1.01		

	TREATED PRIMARY DRINKING WATER STANDARDS (PDWS)										
		Units	MCLG	CA-MCL	PHG	Sampled	Result	Avg. Result(a)	Range (b)		
Arsenic		ug/L		10	0.004			5	3 - 7		
Treated Effluent	STK2057488-2	ug/L				2020-12-18	7				
Treated Effluent	STK2056155-2	ug/L				2020-11-16	7				
Treated Effluent	STK2054932-2	ug/L				2020-10-20	7				
Treated Effluent	STK2053501-2	ug/L				2020-09-22	5				
Treated Effluent	STK2051931-2	ug/L				2020-08-20	4				
Treated Effluent	STK2050035-2	ug/L				2020-07-20	4				
Treated Effluent	STK2038473-2	ug/L				2020-06-17	4				
Treated Effluent	STK2036761-2	ug/L				2020-05-18	3				
Treated Effluent	STK2035308-2	ug/L				2020-04-21	4				
Treated Effluent	STK2033720-2	ug/L				2020-03-18	4				
Treated Effluent	STK2032369-2	ug/L				2020-02-18	3				
Treated Effluent	STK2031112-2	ug/L				2020-01-20	3				

SECONDARY DRINKING WATER STANDARDS (SDWS)											
		Units	MCLG	CA-MCL	PHG	Sampled	Result	Avg. Result(a)	Range (b)		
Chloride		mg/L		500	n/a			6	6 - 6		
2012 WELL	STK1438411-1	mg/L				2014-08-19	6				
Specific Conductance		umhos/cm		1600	n/a			260	260 - 260		
2012 WELL	STK1438411-1	umhos/cm				2014-08-19	260				
Sulfate		mg/L		500	n/a			4.7	4.7 - 4.7		
2012 WELL	STK1438411-1	mg/L				2014-08-19	4.7				
Total Dissolved Solids		mg/L		1000	n/a			210	210 - 210		
2012 WELL	STK1438411-1	mg/L				2014-08-19	210				

UNREGULATED CONTAMINANTS									
		Units	MCLG	CA-MCL	PHG	Sampled	Result	Avg. Result(a)	Range (b)
Vanadium		mg/L		NS	n/a			0.049	0.049 - 0.049
2012 WELL	STK2051932-1	mg/L				2020-08-20	0.049		

	DETECTION OF DISINFECTANT/DISINFECTANT BYPRODUCT RULE										
		Units	MCLG	CA-MCL	PHG	Sampled	Result	Avg. Result(a)	Range (b)		
Chlorine		mg/L		4.0	4.0			0.00	ND -		
2012 WELL	STK2057488-3	mg/L				2020-12-18	ND				
2012 WELL	STK2056155-3	mg/L				2020-11-16	ND				
2012 WELL	STK2054932-3	mg/L				2020-10-20	ND				
2012 WELL	STK2053501-3	mg/L				2020-09-22	ND				
2012 WELL	STK2051931-3	mg/L				2020-08-20	ND				
2012 WELL	STK2050035-3	mg/L				2020-07-20	ND				
2012 WELL	STK2038473-3	mg/L				2020-06-17	ND				
2012 WELL	STK2036761-3	mg/L				2020-05-18	ND				
2012 WELL	STK2035308-3	mg/L				2020-04-21	ND				
2012 WELL	STK2034372-4	mg/L				2020-04-06	ND				
2012 WELL	STK2033720-3	mg/L				2020-03-18	ND				
Average 2012 WELL								0			
2012 Well - Source Bacti	STK2032369-3	mg/L				2020-02-18	ND				
2012 Well - Source Bacti	STK2031112-3	mg/L				2020-01-20	ND				
Average 2012 Well - Source Bac	ti							0			
Haloacetic Acids (five)		ug/L		60	n/a			1	1 - 1		
Northwest HB	STK2051933-1	ug/L				2020-08-20	1				
Average Northwest HB								1			

Fresh Point WS CCR Login Linkage - 2020

FGL Code	Lab ID	Date_Sampled	Method	Description	Property
NEW Well	STK1438411-1	2014-08-19	General Mineral	2012 WELL	Water Quality Monitoring
WELL 2012	STK1731894-1	2017-02-15	Radio Chemistry	2012 WELL	Water Quality - Radio
	STK1735921-1	2017-05-16	Radio Chemistry	2012 WELL	Water Quality - Radio
	STK1750925-1	2017-08-25	Radio Chemistry	2012 WELL	Water Quality - Radio
	STK1952403-1	2019-08-21	Wet Chemistry	2012 WELL	Water Quality Monitoring
	STK2032370-1	2020-02-18	Metals, Total	2012 WELL	Water Quality Monitoring
	STK2033720-3	2020-03-18	Field Test	2012 WELL	Routine Bacteriological - 3
	STK2034372-4	2020-04-06	Field Test	2012 WELL	Bacteriological Sampling
	STK2035308-3	2020-04-21	Field Test	2012 WELL	Routine Bacteriological - 1
	STK2036760-1	2020-05-18	Metals, Total	2012 WELL	Water Quality Monitoring
	STK2036761-3	2020-05-18	Field Test	2012 WELL	Routine Bacteriological - 2
	STK2038473-3	2020-06-17	Field Test	2012 WELL	Routine Bacteriological - 3
	STK2050035-3	2020-07-20	Field Test	2012 WELL	Routine Bacteriological - 1
	STK2051932-1	2020-08-20	Metals, Total	2012 WELL	Water Quality Monitoring
	STK2051932-1	2020-08-20	Wet Chemistry	2012 WELL	Water Quality Monitoring Water Quality Monitoring
	STK2051932-1	2020-08-20	Wet Chemistry Wet Chemistry	2012 WELL	Chrome 6 Monitoring
	STK2051934-1	2020-08-20	Field Test	2012 WELL	Routine Bacteriological - 2
		2020-08-20	Field Test	2012 WELL 2012 WELL	Routine Bacteriological - 2
	STK2053501-3 STK2054932-3	2020-09-22	Field Test	2012 WELL 2012 WELL	Routine Bacteriological - 3
		2020-10-20	Metals, Total	2012 WELL 2012 WELL	Water Quality Monitoring
	STK2056154-1		· ·		
	STK2056155-3	2020-11-16	Field Test	2012 WELL	Routine Bacteriological - 2
0040 147 11 0	STK2057488-3	2020-12-18	Field Test	2012 WELL	Routine Bacteriological - 3
2012 Well - Sou	STK2031112-3	2020-01-20	Coliform	2012 Well - Source Bacti	Routine Bacteriological - 1
	STK2031112-3	2020-01-20	Field Test	2012 Well - Source Bacti	Routine Bacteriological - 1
	STK2032369-3	2020-02-18	Coliform	2012 Well - Source Bacti	Routine Bacteriological - 2
	STK2032369-3	2020-02-18	Field Test	2012 Well - Source Bacti	Routine Bacteriological - 2
CuPb-ss01	STK2052250-1	2020-08-23	Metals, Total	Drinking Fountain-Break Area	Copper & Lead Monitoring
Bacti-Rout-3	STK2033720-1	2020-03-18	Coliform	HB Left of Front Office	Routine Bacteriological - 3
	STK2038473-1	2020-06-17	Coliform	HB Left of Front Office	Routine Bacteriological - 3
	STK2053501-1	2020-09-22	Coliform	HB Left of Front Office	Routine Bacteriological - 3
	STK2057488-1	2020-12-18	Coliform	HB Left of Front Office	Routine Bacteriological - 3
Bacti-Rout-2	STK2032369-1	2020-02-18	Coliform	HB South Side of Building	Routine Bacteriological - 2
	STK2034372-2	2020-04-06	Coliform	HB South Side of Building	Bacteriological Sampling
	STK2036761-1	2020-05-18	Coliform	HB South Side of Building	Routine Bacteriological - 2
	STK2051931-1	2020-08-20	Coliform	HB South Side of Building	Routine Bacteriological - 2
	STK2056155-1	2020-11-16	Coliform	HB South Side of Building	Routine Bacteriological - 2
Bacti-Rout-1	STK2031112-1	2020-01-20	Coliform	HB West Side of Building	Routine Bacteriological - 1
	STK2034372-1	2020-04-06	Coliform	HB West Side of Building	Bacteriological Sampling
	STK2035308-1	2020-04-21	Coliform	HB West Side of Building	Routine Bacteriological - 1
	STK2050035-1	2020-07-20	Coliform	HB West Side of Building	Routine Bacteriological - 1
	STK2054932-1	2020-10-20	Coliform	HB West Side of Building	Routine Bacteriological - 1
CuPb-ss05	STK2052250-5	2020-08-23	Metals, Total	Kitchen Sink	Copper & Lead Monitoring
CuPb-ss02	STK2052250-2	2020-08-23	Metals, Total	Kitchen Sink-Break Area	Copper & Lead Monitoring
Left of Front O	STK2034372-3	2020-04-06	Coliform	Left of Front Office	Bacteriological Sampling
CuPb-ss03	STK2052250-3	2020-08-23	Metals, Total	Mens Restroom Sink	Copper & Lead Monitoring
DBP SS01	STK2051933-1	2020-08-20	EPA 552.2	Northwest HB	DBP Monitoring
Arsenic-ss01	STK2031112-2	2020-01-20	Metals, Total	Treated Effluent	Monthly Arsenic Treatment Sample
	STK2032369-2	2020-02-18	Metals, Total	Treated Effluent	Monthly Arsenic Treatment Sample
	STK2033720-2	2020-03-18	Metals, Total	Treated Effluent	Monthly Arsenic Treatment Sample
	STK2035308-2	2020-04-21	Metals, Total	Treated Effluent	Monthly Arsenic Treatment Sample
	STK2036761-2	2020-05-18	Metals, Total	Treated Effluent	Monthly Arsenic Treatment Sample
	STK2038473-2	2020-06-17	Metals, Total	Treated Effluent	Monthly Arsenic Treatment Sample
	STK2050035-2	2020-07-20	Metals, Total	Treated Effluent	Monthly Arsenic Treatment Sample Monthly Arsenic Treatment Sample
	STK2050033-2	2020-07-20	Metals, Total	Treated Effluent	Monthly Arsenic Treatment Sample Monthly Arsenic Treatment Sample
	STK2051931-2 STK2053501-2	2020-09-22	Metals, Total	Treated Effluent	Monthly Arsenic Treatment Sample Monthly Arsenic Treatment Sample
J	01112000001-2	2020-03-22	incuis, itual	1100000 LIIIUGIII	Lucinimy Arsonic Freatment Sample

	STK2054932-2	2020-10-20	Metals, Total	Treated Effluent	Monthly Arsenic Treatment Sample
	STK2056155-2	2020-11-16	Metals, Total	Treated Effluent	Monthly Arsenic Treatment Sample
	STK2057488-2	2020-12-18	Metals, Total	Treated Effluent	Monthly Arsenic Treatment Sample
CuPb-ss04	STK2052250-4	2020-08-23	Metals, Total	Womens Restroom Sink	Copper & Lead Monitoring