Consumer Confidence Report Certification Form (to be submitted with a copy of the CCR) (To certify electronic delivery of the CCR, use the certification form on the State Board's website at http://www.swrcb.ca.gov/drinking water/certlic/drinkingwater/CCR.shtml) | Water S | System Na | ime: | Hughson N | Nut #2 | | | | | | | |---------------|--|--|--|--|---|---|--|--|--|--| | Water S | System Nu | ımber: | 5000554 | | | | | | | | | Furthe | er, the syst | em certi | (date) to c | ustomers
informat | (and appropriate ion contained in the | notices of available report is corre | Report was distributed on ability have been given). ct and consistent with the Control Board, Division | | | | | Certified by: | | I by: Name:
Signature: | | Raquel Andrade | | | | | | | | | | | | Kengal Belale | | | | | | | | | | Title: | | QA Ma | anger | | | | | | | | | Phone Number: | | (209 |)883-0403 | Date: | Date: May 7, 2019 | | | | | all ite | <i>ms that ap</i>
CCR was | ply and distribits | fill-in where | appropri | iate: | | ete the below by checking | | | | | | Following Poly Pu Pu Pu Pu Poly Poly Def | sting the ailing the divertising blication blished the elivery of apartme elivery to | ds: c CCR on the CCR to poor the available of the CCR in put f multiple conts, business o community | e Internet
ostal patro
bility of the
CR in a loading name
blic places
opies of C
ses, and se | at wwwns within the servine CCR in news more all newspaper of e of newspaper and (attach a list of loc CCR to single-bille chools ations (attach a list | ce area (attach z
edia (attach copy
general circulat
d date published
cations)
ed addresses serv
of organizations | of press release) ion (attach a copy of the) ving several persons, such | | | | | | | | | | ersons: Posted CC | | -accessible internet site a | | | | | | | | | | | | Utilities Commission | | | | | This | form is provid | led as a con | venience for use | to meet the c | ertification requirement of | of the California Code | of Regulations, section 64483(c). | | | | # 2018 Consumer Confidence Report Water System Name: Hughson Nut #2 Report Date: May 2, 2019 We test the drinking water quality for many constituents as required by state and federal regulations. This report shows the results of our monitoring for the period of January 1 to December 31, 2018 and may include earlier monitoring data. Este informe contiene información muy importante sobre su agua para beber. Favor de comunicarse Hughson Nut Company a 1825 Verduga Road, Hughson, CA para asistirlo en español. Type of water source(s) in use: Groundwater Well Name & general location of source(s): Hughson Nut, 1825 Verduga Rd., Hughson, CA Drinking Water Source Assessment information: A source water assessment is not available for this location. You may request additional information regarding your water system by contacting: Stanislaus Environmental Health, (209) 525-6700 For more information, contact: Raquel Andrade Phone: (209) 883-0403 ext 254 #### TERMS USED IN THIS REPORT Maximum Contaminant Level (MCL): The highest level of a contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs (or MCLGs) as is economically and technologically feasible. Secondary MCLs are set to protect the odor, taste, and appearance of drinking water. Maximum Contaminant Level Goal (MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the U.S. Environmental Protection Agency (U.S. EPA). Public Health Goal (PHG): The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California Environmental Protection Agency. Maximum Residual Disinfectant Level (MRDL): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants. Maximum Residual Disinfectant Level Goal (MRDLG): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants. Primary Drinking Water Standards (PDWS): MCLs and MRDLs for contaminants that affect health along with their monitoring and reporting requirements, and water treatment requirements. Secondary Drinking Water Standards (SDWS): MCLs for contaminants that affect taste, odor, or appearance of the drinking water. Contaminants with SDWSs do not affect the health at the MCL levels. **Treatment Technique (TT):** A required process intended to reduce the level of a contaminant in drinking water. Regulatory Action Level (AL): The concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow. Variances and Exemptions: State Board permission to exceed an MCL or not comply with a treatment technique under certain conditions. Level 1 Assessment: A Level 1 assessment is a study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system. **Level 2 Assessment:** A Level 2 assessment is a very detailed study of the water system to identify potential problems and determine (if possible) why an *E. coli* MCL violation has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions. ND: not detectable at testing limit ppm: parts per million or milligrams per liter (mg/L) ppb: parts per billion or micrograms per liter ($\mu g/L$) ppt: parts per trillion or nanograms per liter (ng/L) ppq: parts per quadrillion or picogram per liter (pg/L) pCi/L: picocuries per liter (a measure of radiation) The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity. #### Contaminants that may be present in source water include: - Microbial contaminants, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife. - *Inorganic contaminants*, such as salts and metals, that can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming. - Pesticides and herbicides, that may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses. - Organic chemical contaminants, including synthetic and volatile organic chemicals, that are byproducts of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, agricultural application, and septic systems. - Radioactive contaminants, that can be naturally-occurring or be the result of oil and gas production and mining activities. In order to ensure that tap water is safe to drink, the U.S. EPA and the State Water Resources Control Board (State Board) prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. State Board regulations also establish limits for contaminants in bottled water that provide the same protection for public health. Tables 1, 2, 3, 4 and 5 list all of the drinking water contaminants that were detected during the most recent sampling for the constituent. The presence of these contaminants in the water does not necessarily indicate that the water poses a health risk. The State Board allows us to monitor for certain contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of the data, though representative of the water quality, are more than one year old. Any violation of an AL, MCL, MRDL, or TT is asterisked. Additional information regarding the violation is provided later in this report. | Microbiological Contaminants (complete if bacteria detected) | Highest No. of
Detections | No. of Months
in Violation | MCL | MCLG | Typical Source of
Bacteria | |--|------------------------------|-------------------------------|--|------|--------------------------------------| | Total Coliform Bacteria
(state Total Coliform Rule) | (In a month)
0 | 0 | 1 positive monthly sample | 0 | Naturally present in the environment | | Feeal Coliform or E. coli
(state Total Coliform Rule) | (In the year)
0 | 0 | A routine sample and a repeat sample are total coliform positive, and one of these is also fecal coliform or <i>E. coli</i> positive | | Human and animal fecal
waste | | E. coli (federal Revised Total Coliform Rule) | (In the year)
0 | 0 | (a) | 0 | Human and animal fecal
waste | (a) Routine and repeat samples are total coliform-positive and either is E. coli-positive or system fails to take repeat samples following E. coli-positive routine sample or system fails to analyze total coliform-positive repeat sample for E. coli. | TABLE 2 – SAMPLING RESULTS SHOWING THE DETECTION OF LEAD AND COPPER | | | | | | | | | |--|----------------|--------------------------------|---|------------------------------|-----|-----|---|---| | Lead and Copper
(complete if lead or copper
detected in the last sample set) | Sample
Date | No. of
Samples
Collected | 90 th
Percentile
Level
Detected | No. Sites
Exceeding
AL | AL | PHG | No. of Schools
Requesting
Lead Sampling | Typical Source of
Contaminant | | Lead (ppb) | 7/28/18 | 5 | 0.17 | 0 | 15 | 0.2 | 0 | Internal corrosion of
household water plumbing
systems; discharges from
industrial manufacturers;
crosion of natural deposits | | Copper (ppm) | 7/28/18 | 5 | 0.11 | 0 | 1.3 | 0.3 | Not applicable | Internal corrosion of
household plumbing
systems; crosion of natural
deposits; leaching from
wood preservatives | | | TABLE 3 | -SAMPLING | RESULTS FOR | SODIUM A | ND HARDI | NESS | |---|---|-------------------|------------------------|-------------------------------------|--------------------------|--| | Chemical or Constituent (and reporting units) | Sample
Date | Level
Detected | Range of
Detections | MCL | PHG
(MCLG) | Typical Source of Contaminant | | Sodium (ppm) | 04/06/11 | 26 | N/A | None | None | Salt present in the water and is generally naturally occurring | | Hardness (ppm) | 04/06/11 | 64 | N/A | None | None | Sum of polyvalent cations present in
the water, generally magnesium and
calcium, and are usually naturally
occurring | | TABLE 4 – DET | ECTION O | F CONTAMIN | ANTS WITH A | <u>PRIMARY</u> | DRINKING | WATER STANDARD | | Chemical or Constituent (and reporting units) | Sample
Date | Level
Detected | Range of
Detections | MCL
[MRDL] | PHG
(MCLG)
[MRDLG] | Typical Source of Contaminant | | Arsenic (ppb) | 04/20/17 | 4.7 | N/A | 10 | 0.004 | Erosion of natural deposits; runoff
from orchards; glass and electronics
production wastes | | Chlorine (ppm) | Monthly | 0.55 | 0.20 - 0.80 | [MRDL = $4.0 \text{ (as Cl}_{2)}$] | [MRDLG = 4 (as Cl2) | Drinking water disinfectant added for treatment | | Dibromochloropropane
(DBCP) (ng/l.) | 02/15/18
10/14/18 | 35 | 23-46 | 200 | 1.7 | Banned nematocide that may still be
present in soils due to
runoff/leaching from former use on
soybeans, cotton, vineyards,
tomatoes, and tree fruit | | Nitrate (as nitrogen, N) ppm | 04/12/18 | 2.7 | N/A | 10 | 10 | Runoff and leaching from fertilizer use; leaching from septic tanks and sewage; erosion of natural deposits | | Nitrate + Nitrite (as nitrogen, N) (ppm) | 4/20/17 | 1.7 | N/A | 10 | N/A | Runoff and leaching form fertilizer
use; leaching from septic tanks and
sewage; erosion of natural deposits. | | 1,2,3-Trichloropropane
[TCP] (ng/L) | 2/15/18
5/03/18
8/07/18
11/06/18
11/15/18 | 3 | ND – 7 | 5 | 0.7 | Discharge from industrial and agricultural chemical factories; leaching from hazardous waste sites; used as cleaning and maintenance solvent, paint and varnish remover, and cleaning and degreasing agent; byproduct during the production of other compounds and pesticides. | | TABLE 5 – DETE | CTION OF | CONTAMINA | NTS WITH A <u>S</u> | <u>ECONDAR</u> | <u>Y</u> DRINKIN | G WATER STANDARD | | Chemical or Constituent (and reporting units) | Sample
Date | Level Detected | Range of
Detections | SMCL | PHG
(MCLG) | Typical Source of Contaminant | | Chloride (ppm) | 04/06/11 | 11 | N/A | 500 | none | Runoff/leaching from natural deposits: seawater influence | | Specific Conductance
(µS/cm) | 04/20/17 | 260 | N/A | 1600 | none | Substances that form ions when in water: seawater influence. | | Sulfate (ppm) | 04/06/11 | 9.9 | N/A | 500 | none | Runoff/leaching from natural deposits; industrial wastes | | Total Dissolved Solids
(TDS) (ppm) | 04/06/11 | 240 | N/A | 1000 | none | Runoff/leaching from natural deposits. | ### Additional General Information on Drinking Water Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the U.S. EPA's Safe Drinking Water Hotline (1-800-426-4791). Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. U.S. EPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Drinking Water Hotline (1-800-426-4791). If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Hughson Nut Company is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline (1-800-426-4791) or at http://www.epa.gov/lead. # Summary Information for Violation of a MCL, MRDL, AL, TT, or Monitoring and Reporting Requirement During the last quarter of 2018, 1,2,3-TCP was found at levels that exceed the MCL of .005ppb. 1,2,3-TCP was not detected during the first three quarters of 2019. Hughson Nut has been in contact with the Stanislaus County Environmental Health Department and is continuing to monitor for this compound quarterly. Some people who drink water containing 1,2,3-TCP in excess of the MCL over many years may have an increased risk of getting cancer.