2019 Consumer Confidence Report

Water System Name: STANISLAUS UNION SCHOOL & DISTRICT LOCAT

Report Date: April 2020

We test the drinking water quality for many constituents as required by state and federal regulations. This report shows the results of our monitoring for the period of January 1 - December 31, 2019.

Este informe contiene información muy importante sobre su agua potable. Tradúzcalo ó hable con alquien que lo entienda bien.

Type of water source(s) in use: This info is not available, as this water system does not have a completed assessment on file. Please see the Drinking Water Source Assessment Information section located at the end of this report for more details.

Your water comes from 1 source(s): Well 02 Raw

Opportunities for public participation in decisions that affect drinking water quality: Regularly-scheduled water board or city/county council meetings currently are not held. Consumers will be contacted by U.S. Mail of upcoming meeting for changes to the drinking water system.

For more information about this report, or any questions relating to your drinking water, please call (209) 838 - 7842 and ask for Quality Service, Inc..

TERMS U	SED IN THIS REPORT
Maximum Contaminant Level (MCL): The highest level of contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs (or MCLGs) as is economically feasible. Secondary MCLs are set to protect the odor, taste, and appearance of drinking	Secondary Drinking Water Standards (SDWS): MCLs for the contaminants that affect taste, odor, or appearance of the drinking water. Contaminants with SDWSs do not affect the health at the MCL levels.
water.	Treatment Technique (TT): A required process intended to reduce the level of a contaminant in drinking water.
Maximum Contaminant Level Goal (MCLG): The	5
level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the U.S. Environmental Protection Agency (USEPA).	Regulatory Action Level (AL): The concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow.
	Level 1 Assessment: A Level 1 assessment is a study of the water
Public Health Goal (PHG): The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California	system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system.
Environmental Protection Agency. Maximum Residual Disinfectant Level (MRDL): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial	Level 2 Assessment: A Level 2 assessment is a very detailed study of the water system to identify potential problems and determine (if possible) why an E. coli MCL violation has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions.
contaminants.	mg/L: milligrams per liter or parts per million (ppm)
Maximum Residual Disinfectant Level Goal (MRDLG): The level of a drinking water disinfectant	ug/L: micrograms per liter or parts per billion (ppb)
below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of	NTU: Nephelometric Turbidity Units
disinfectants to control microbial contaminants.	umhos/cm: micro mhos per centimeter
Primary Drinking Water Standards (PDWS): MCLs and MRDLs for the contaminants that affect health along with their monitoring and reporting requirements, and water treatment requirements.	

The sources of drinking water: (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include:

- *Microbial contaminants,* such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- *Inorganic contaminants,* such as salts and metals, that can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- *Pesticides and herbicides,* that may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses.
- Organic chemical contaminants, including synthetic and volatile organic chemicals, that are by-products if industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, agricultural application, and septic systems.
- *Radioactive contaminants,* that can be naturally-occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, the USEPA and the State Water Resource Control Board (State Water Board) prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. State Water Board regulations also establish limits for contaminants in bottled water that provide the same protection for public health.

Tables 1, 2, 3, 4, 5 and 6 list all of the drinking water contaminants that were detected during the most recent sampling for the constituent. The presence of these contaminants in the water does not necessarily indicate that the water poses a health risk. The State Water Board allows us to monitor for certain contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of the data, though representative of the water quality, are more than one year old.

Any violation of MCL, AL or MRDL is highlighted. Additional information regarding the violation is provided later in this report.

Tabl	e 1 - SAMPL	ING RESULTS S	SHOWING TH	E D	ETEC	CTION OF LEAD AND COPPER
Lead and Copper (complete if lead or copper detected in last sample set)	Sample Date	90th percentile level detected	No. Sites Exceeding AL	AL	PHG	Typical Sources of Contaminant
Lead (ug/L)	5 (2019)	20	1	15	0.2	Internal corrosion of household water plumbing systems; discharges from industrial manufacturers, erosion of natural deposits
Copper (mg/L)	5 (2019)	0.08	0	1.3	.3	Internal corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives

	Table 2 - SAMPLING RESULTS FOR SODIUM AND HARDNESS										
Chemical or Constituent (and reporting units)	Sample Date	Average Level Detected	Range of Detections	MCL	PHG (MCLG)	Typical Sources of Contaminant					
Sodium (mg/L)	(2017)	17	n/a	none	none	Salt present in the water and is generally naturally occurring					
Hardness (mg/L)	(2017)	34.8	n/a	none	none	Sum of polyvalent cations present in the water, generally magnesium and calcium, and are usually naturally occurring					

Table 3 - DETECT	Table 3 - DETECTION OF CONTAMINANTS WITH A PRIMARY DRINKING WATER STANDARD										
Chemical or Constituent (and reporting units)	Sample Date	Average Level Detected	Range of Detections	MCL [MRDL]	PHG (MCLG) [MRDLG]	Typical Sources of Contaminant					
Arsenic (ug/L)	(2017)	6	n/a	10	0.004	Erosion of natural deposits; runoff from orchards, glass and electronics production wastes					

Hexavalent Chromium (ug/L)	(2014)	3.7	n/a		0.02	Discharge from electroplating factories, leather tanneries, wood preservation, chemical synthesis, refractory production, and textile manufacturing facilities; erosion of natural deposits.
Fluoride (mg/L)	(2017)	0.1	n/a	2	1	Erosion of natural deposits; water additive that promotes strong teeth; discharge from fertilizer and aluminum factories.
Nitrate as N (mg/L)	(2019)	1.6	n/a	10	10	Runoff and leaching from fertilizer use; leaching from septic tanks and sewage; erosion of natural deposits
Nitrate + Nitrite as N (mg/L)	(2017)	1.4	n/a	10	10	Runoff and leaching from fertilizer use; leaching from septic tanks and sewage; erosion of natural deposits
1,2,3-Trichloropropane (1,2,3-TCP) (ug/L)	(2019)	0.016	0.014 - 0.019	0.005	0.0007	

Table 4 - DETEC	Table 4 - DETECTION OF CONTAMINANTS WITH A SECONDARY DRINKING WATER STANDARD										
Chemical or Constituent (and reporting units)	Sample Date	Average Level Detected	Range of MCL PHG		PHG (MCLG)	Typical Sources of Contaminant					
Chloride (mg/L)	(2017)	3	n/a	500	n/a	Runoff/leaching from natural deposits; seawater influence					
Specific Conductance (umhos/cm)	(2017)	163	n/a	1600	n/a	Substances that form ions when in water; seawater influence					
Sulfate (mg/L)	(2017)	3.7	n/a	500	n/a	Runoff/leaching from natural deposits; industrial wastes					
Total Dissolved Solids (mg/L)	(2017)	140	n/a	1000	n/a	Runoff/leaching from natural deposits					
Turbidity (NTU)	(2017)	0.2	n/a	5	n/a	Soil runoff					

Table 5 - DETECTION OF UNREGULATED CONTAMINANTS										
Chemical or Constituent (and reporting units)	Sample Date	Average Level Detected	Range of Detections	Notification Level	Typical Sources of Contaminant					
Vanadium (mg/L)	(2017)	0.046	n/a	0.05	Vanadium exposures resulted in developmental and reproductive effects in rats.					

	Table 6 - ADDITIONAL DETECTIONS											
Chemical or Constituent (and reporting units)	Sample Date	Average Level Detected	Range of Detections	Notification Level	Typical Sources of Contaminant							
Calcium (mg/L)	(2017)	9	n/a	n/a	n/a							
Magnesium (mg/L)	(2017)	3	n/a	n/a	n/a							
pH (units)	(2017)	7.2	n/a	n/a	n/a							
Alkalinity (mg/L)	(2017)	60	n/a	n/a	n/a							
Aggressiveness Index	(2017)	10.3	n/a	n/a	n/a							
Langelier Index	(2017)	-1.5	n/a	n/a	n/a							

Additional General Information on Drinking Water

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts if some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the USEPA's Safe Drinking Water Hotline (1-800-426-4791).

Some people may be more vulnerable to contaminants in drinking water than the general population. Immunocompromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. USEPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* and other microbial contaminants are available from the Safe Drinking Water Hotline (1-800-426-4791).

Lead Specific Language for Community Water Systems: If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with the service lines and home plumbing. *Stanislaus School Water System* is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/lead.

Summary Information for Violation of a MCL, MRDL, AL, TT, or Monitoring and Reporting Requirement

VIOLATION C	OF A MCL,MRDL,AL,TT, OR M	IONITORING A	AND REPORTING I	REQUIREMENT
Violation	Explanation	Duration	Actions Taken To Correct the Violation	Health Effects Language
Lead	Triannual lead and copper samples were collected 09/19/2019 and showed presence of lead above the lead action level of 15 μ g/L. It should be noted that only a single sample site in the maintenance shop had a lead detection.	September 2019 to Current Day	It is possible that positively -biased results were seen in 2019 due to stagnant water. Regardless, we are currently on an increased lead and copper sampling schedule and will know more once results are available. We will work with our regulator and follow the steps necessary to reduce the levels of lead in our water.	Infants and children who drink water containing lead in excess of the action level may experience delays in their physical or mental development. Children may show slight deficits in attention span and learning abilities. Adults who drink this water over many years may develop kidney problems or high blood pressure.
1,2,3-Trichloropropane (1,2,3-TCP)	In May of 2019, it was determined that the levels of 1,2,3-TCP detected in the groundwater supply exceeded the state standard of 0.005 µg/L (or 5 parts per trillion). As such, Compliance Order No. DER-19R-006 was issued.	May 2019 to Current Day	Our consumers were notified of the exceedance and have completed many of the directives of the Order. At this time, we are pursuing Grant Funding and hope to consolidate with a municipality to receive clean water.	Some people who use water containing 1,2,3- trichloropropane in excess of the action level over many years may have an increased risk of getting cancer, based on studies in laboratory animals.

About your Lead: For Systems with Lead (Pb) above 15 ppb (the regulatory AL) in more than 5%, and up to and including 10%, of sites sampled: Infants and young children are typically more vulnerable to lead in drinking water than the general population. It is possible that lead levels at your home may be higher than at other homes in the community as a result of materials used in your home`s plumbing. If you are concerned about elevated lead levels in your home`s water, you may wish to have your water tested and flush your tap for 30 seconds to 2 minutes before using tap water. Additional information is available from the Safe Drinking Water Hotline (800-426-4791). Infants and young children are typically more vulnerable to lead in drinking water than the general population. It is possible that lead levels in your home`s plumbing. If you are concerned about elevated lead levels in your home`s plumbing. If you are concerned about elevated lead levels in your home`s water, you may wish to have your water tested and elevels in your home`s water, you may wish to have your water tested and flush your home`s water, you may wish to have your water tested and flush your tap for 30 seconds to 2 minutes before using tap water. Additional information is available from the Safe Drinking water than the general population. It is possible that lead levels at your home may be higher than at other homes in the community as a result of materials used in your home`s plumbing. If you are concerned about elevated lead levels in your home`s water, you may wish to have your water tested and flush your tap for 30 seconds to 2 minutes before using tap water. Additional information is available from the Safe Drinking Water Hotline (800-426-4791).

About your Arsenic: For Arsenic detected above 5 ug/L (50% of the MCL) but below 10 ug/L: While your drinking water meets the federal and state standard for arsenic, it does contain low levels of arsenic. The arsenic standard balances the current understanding of arsenic's possible health effects against the costs of removing arsenic from drinking water. The U.S. Environmental Protection Agency continues to research the health effects of low levels of arsenic, which is a mineral known to cause cancer in humans at high concentrations and is linked to other health effects such as skin damage and circulatory problems.

2019 Consumer Confidence Report

Drinking Water Assessment Information

Assessment Information

A Source Water Assessment has not been completed for the sources WELL 02 of the STANISLAUS UNION SCHOOL & DISTRICT LOCAT water system.

Well 02 Raw - does not have a completed Source Water Assessment on file.

Discussion of Vulnerability

Assessment summaries are not available for some sources. This is because:

The Assessment has not been completed. Contact the local Department of Health Services (DHS) Drinking Water field office or the water system to find out when the Assessment is scheduled to be done.

The source is not active. It may be out of service, or new and not yet in service.

The Assessment was not submitted electronically. The site used to obtain Assessments only provides access to Assessment summaries submitted electronically.

Acquiring Information

For more info you may visit https://www.waterboards.ca.gov/drinking_water/certlic/drinkingwater/DWSAP.html or contact the health department in the county to which the water system belongs as indicated on this following link: https://www.waterboards.ca.gov/drinking_water/programs/documents/ddwem/DDWdistrictofficesmap.pdf

Stanislaus School Water System Analytical Results By FGL - 2019

	LEAD AND COPPER RULE											
		Units	MCLG	CA-MCL	PHG	Sampled	Result	90th Percentile	# Samples			
Lead		ug/L	0	15	0.2			20.3	5			
Multi-Purpose Drinking Fo	STK1954142-1	ug/L				2019-09-19	ND					
Nurses Room	STK1954142-5	ug/L				2019-09-19	ND					
Room #3	STK1954142-4	ug/L				2019-09-19	ND					
Shop	STK1954142-3	ug/L				2019-09-19	40.6					
Staff Room	STK1954142-2	ug/L				2019-09-19	ND					
Copper		mg/L		1.3	.3			0.075	5			
Multi-Purpose Drinking Fo	STK1954142-1	mg/L				2019-09-19	ND					
Nurses Room	STK1954142-5	mg/L				2019-09-19	0.06					
Room #3	STK1954142-4	mg/L				2019-09-19	ND					
Shop	STK1954142-3	mg/L				2019-09-19	ND					
Staff Room	STK1954142-2	mg/L				2019-09-19	0.09					

SAMPLING RESULTS FOR SODIUM AND HARDNESS									
		Units	MCLG	CA-MCL	PHG	Sampled	Result	Avg. Result(a)	Range (b)
Sodium		mg/L		none	none			17	17 - 17
Well 02 Raw	STK1737278-1	mg/L				2017-06-13	17		
Hardness		mg/L		none	none			34.8	34.8 - 34.8
Well 02 Raw	STK1737278-1	mg/L				2017-06-13	34.8		

	PRIM	ARY DRI	NKING W	ATER STAN	DARDS (PDWS)			
		Units	MCLG	CA-MCL	PHG	Sampled	Result	Avg. Result(a)	Range (b)
Arsenic		ug/L		10	0.004			6	6 - 6
Well 02 Raw	STK1737278-1	ug/L				2017-06-13	6		
Hexavalent Chromium		ug/L			0.02			3.7	3.7 - 3.7
Well 02 Raw	STK1451823-2	ug/L				2014-11-19	3.7		
Fluoride		mg/L		2	1			0.1	0.1 - 0.1
Well 02 Raw	STK1737278-1	mg/L				2017-06-13	0.1		
Nitrate as N		mg/L		10	10			1.6	1.6 - 1.6
Well 02 Raw	STK1938533-1	mg/L				2019-06-12	1.6		
Nitrate + Nitrite as N		mg/L		10	10			1.4	1.4 - 1.4
Well 02 Raw	STK1737278-1	mg/L				2017-06-13	1.4		
1,2,3-Trichloropropane (1,2,3-T	TCP)	ug/L		0.005	0.0007			0.016	0.014 - 0.019
Well 02 Raw	STK1956855-1	ug/L				2019-11-13	0.015		
Well 02 Raw	STK1951909-1	ug/L				2019-08-13	0.019		
Well 02 Raw	STK1936889-1	ug/L				2019-05-15	0.016		
Well 02 Raw	STK1932230-1	ug/L				2019-02-14	0.014		

SECONDARY DRINKING WATER STANDARDS (SDWS)										
		Units	MCLG	CA-MCL	PHG	Sampled	Result	Avg. Result(a)	Range (b)	
Chloride		mg/L		500	n/a			3	3 - 3	
Well 02 Raw	STK1737278-1	mg/L				2017-06-13	3			
Specific Conductance		umhos/cm		1600	n/a			163	163 - 163	
Well 02 Raw	STK1737278-1	umhos/cm				2017-06-13	163			
Sulfate		mg/L		500	n/a			3.7	3.7 - 3.7	
Well 02 Raw	STK1737278-1	mg/L				2017-06-13	3.7			
Total Dissolved Solids		mg/L		1000	n/a			140	140 - 140	
Well 02 Raw	STK1737278-1	mg/L				2017-06-13	140			
Turbidity		NTU		5	n/a			0.2	0.2 - 0.2	
Well 02 Raw	STK1737278-1	NTU				2017-06-13	0.2			

UNREGULATED CONTAMINANTS									
		Units	MCLG	CA-MCL	PHG	Sampled	Result	Avg. Result(a)	Range (b)
Vanadium		mg/L		NS	n/a			0.046	0.046 - 0.046
Well 02 Raw	STK1737278-1	mg/L				2017-06-13	0.046		

ADDITIONAL DETECTIONS									
		Units	MCLG	CA-MCL	PHG	Sampled	Result	Avg. Result(a)	Range (b)
Calcium		mg/L			n/a			9	9 - 9
Well 02 Raw	STK1737278-1	mg/L				2017-06-13	9		
Magnesium		mg/L			n/a			3	3 - 3
Well 02 Raw	STK1737278-1	mg/L				2017-06-13	3		
pH		units			n/a			7.2	7.2 - 7.2
Well 02 Raw	STK1737278-1	units				2017-06-13	7.2		
Alkalinity		mg/L			n/a			60	60 - 60
Well 02 Raw	STK1737278-1	mg/L				2017-06-13	60		
Aggressiveness Index					n/a			10.3	10.3 - 10.3
Well 02 Raw	STK1737278-1					2017-06-13	10.3		
Langelier Index					n/a			-1.5	-1.51.5
Well 02 Raw	STK1737278-1					2017-06-13	-1.5		

Stanislaus School Water System CCR Login Linkage - 2019

FGL Code	Lab ID	Date_Sampled	Method	Description	Property
Bacti-Rout-ss04	STK1934748-1	2019-04-09	Coliform	HB E. Side Wing "A"	Distribution Bacti Monitoring-4
	STK1951908-1	2019-08-13	Coliform	HB E. Side Wing "A"	Distribution Bacti Monitoring-4
	STK1958074-1	2019-12-10	Coliform	HB E. Side Wing "A"	Distribution Bacti Monitoring-4
CuPb-ss10	STK1954142-1	2019-09-19	Metals, Total	Multi-Purpose Drinking Fo	Copper & Lead Monitoring
CuPb-ss06	STK1954142-5	2019-09-19	Metals, Total	Nurses Room	Copper & Lead Monitoring
CuPb-ss08	STK1954142-4	2019-09-19	Metals, Total	Room #3	Copper & Lead Monitoring
CuPb-ss07	STK1954142-3	2019-09-19	Metals, Total	Shop	Copper & Lead Monitoring
Bacti-Rout-ss01	STK1930698-1	2019-01-15	Coliform	ST N. Side Multi Purpose Rm	Distribution Bacti Monitoring-1
	STK1936888-1	2019-05-15	Coliform	ST N. Side Multi Purpose Rm	Distribution Bacti Monitoring-1
	STK1953554-1	2019-09-11	Coliform	ST N. Side Multi Purpose Rm	Distribution Bacti Monitoring-1
Bacti-Rout-ss02	STK1932231-1	2019-02-14	Coliform	ST W. Side Wing "B"	Distribution Bacti Monitoring-2
	STK1938450-1	2019-06-12	Coliform	ST W. Side Wing "B"	Distribution Bacti Monitoring-2
	STK1955561-1	2019-10-16	Coliform	ST W. Side Wing "B"	Distribution Bacti Monitoring-2
Bacti-Rout-ss03	STK1933439-1	2019-03-11	Coliform	ST W. Side Wing "C"	Distribution Bacti Monitoring-3
	STK1939861-1	2019-07-09	Coliform	ST W. Side Wing "C"	Distribution Bacti Monitoring-3
	STK1956854-1	2019-11-13	Coliform	ST W. Side Wing "C"	Distribution Bacti Monitoring-3
CuPb-ss05	STK1954142-2	2019-09-19	Metals, Total	Staff Room	Copper & Lead Monitoring
Well #2	STK1451823-2	2014-11-19	Wet Chemistry	Well 02 Raw	Chrome 6 Monitoring
WELL 02	STK1737278-1	2017-06-13	General Mineral	Well 02 Raw	Well #2 Monitoring
	STK1737278-1	2017-06-13	Wet Chemistry	Well 02 Raw	Well #2 Monitoring
	STK1737278-1	2017-06-13	Metals, Total	Well 02 Raw	Well #2 Monitoring
	STK1932230-1	2019-02-14	SRL 524M-TCP	Well 02 Raw	TCP Monitoring
	STK1936889-1	2019-05-15	SRL 524M-TCP	Well 02 Raw	TCP Monitoring
	STK1938533-1	2019-06-12	Wet Chemistry	Well 02 Raw	Well #2 Monitoring
	STK1951909-1	2019-08-13	SRL 524M-TCP	Well 02 Raw	TCP Monitoring
	STK1956855-1	2019-11-13	SRL 524M-TCP	Well 02 Raw	TCP Monitoring