Ratna Ling Retreat Center

Water Quality Report for 2022 Public Water System 4901264

Prepared 08/08/2023

2022 Consumer Confidence Report

Water System Information

Water System Name: Ratna Ling Retreat

Report Date: August 8, 2023

Type of Water Source(s) in Use: Surface Water

Name and General Location of Source(s): Well 01, Well 02, Well 04, Well 05, Poly Tank Outlet (raw Water), Reservoir , [Enter Source Locations]

Drinking Water Source Assessment Information: Completed Nov. 2006 for the wells. and May 2010 for the reservoir. They can be viewed at water Boards. 50 D Street. Santa Rosa. CA or online at http://swap.des.ucdavis.edu under Source Water Assessments - Public Access Site

Time and Place of Regularly Scheduled Board Meetings for Public Participation: Periodic planning and operations meetings at Ratna Ling Retreat Center

For More Information, Contact: Gene Gretchen at 510-809-1549

About This Report

We test the drinking water quality for many constituents as required by state and federal regulations. This report shows the results of our monitoring for the period of January 1 to December 31, 2021 and may include earlier monitoring data.

For more information contact Dan Albers at 510-809-1017.

Drinking Water Contaminants Detected

Tables 1, 2, 3, 4, 5, 6, and 8 list all of the drinking water contaminants that were detected during the most recent sampling for the constituent. The presence of these contaminants in the water does not necessarily indicate that the water poses a health risk. The State Board allows us to monitor for certain contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of the data, though representative of the water quality, are more than one year old. Any violation of an AL, MCL, MRDL, or TT is asterisked. Additional information regarding the violation is provided later in this report.

Table 1. Sampling Results Showing the Detection of Coliform Bacteria

Complete if bacteria are detected.

Microbiological Contaminants	Highest No. of Detections	No. of Months in Violation	MCL	MCLG	Typical Source of Bacteria
E. coli	0	0	(a)	0	Human and animal fecal waste

Table 2. Sampling Results Showing the Detection of Lead and Copper

Complete if lead or copper is detected in the last sample set.

Lead and Copper	Sample Date	No. of Samples Collected	90 th Percentile Level Detected	No. Sites Exceeding AL	AL	DHG	No. of Schools Requesting Lead Sampling	Typical Source of Contaminant
Lead (ppb)	8/10/22	5	0.003	0	15	0.2	0	Internal corrosion of household water plumbing systems; discharges from industrial manufacturers; erosion of natural deposits
Copper (ppm)	8/10/22	5	0.33	0	1.3	0.3	Not applicab le	Internal corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives

 Table 3. Sampling Results for Sodium and Hardness

Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	MCL	PHG (MCLG)	Typical Source of Contaminant
Sodium (ppm)	07/06/09	14	n/a	None	None	generally naturally occurring
Hardness (ppm)	• 07/06/09	75	[Enter Range]	None	None	usually naturally occurring

Table 4. Detection of Contaminants with a Primary Drinking Water Standard

Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	MCL [MRDL]	PHG (MCLG) [MRDLG]	Typical Source of Contaminant
Aluminum	7/7/21	< 50	n/a	1000	600	Erosion of natural deposits
Antimony	7/7/21	< 6	n/a	6	1	ceramics; electronics; solder
Arsenic	3/10/21	2.1ppb	n/a	10ppb	4ppb	Erosion of natural deposits
Barium	7/7/21	< 100	n/a	1000	2000	erosion of natural deposits
Beryllium	7/7/21	< 1.0	n/a	4	1	aerospace, and defense industries
Cadmium	7/7/21	< 1.0	n/a	5	.04	runoff from waste batteries and paints
Chromium	7/7/21	< 10.0	n/a	50	(100)	erosion of natural deposits
Flouride	3/10/21	0.25	n/a	2.0	1	Erosion of natural deposits
Mercury	7/7//21	< 1.0	n/a	2.0	1.2	Erosion of natural deposits
Nickle	7/7/21	< 10	n/a	100	12	Erosion of natural deposits
Nitrate	7/7/21	< 0.4	n/a	10	10	Runoff and leaching from fertilizer use
Perchlorate	7/7/21	< 2.0	n/a	6	1	historic aerospace or other industrial operations
Selenium .	7/7/21	< 5	n/a	50	30	glass, and metal refineries
Thallium	7/7/21	< 1	n/a	2	0.1 '	electronics, glass, and drug factories

			-	•		
Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	SMCL	PHG (MCLG)	Typical Source of Contaminant
None	[Enter Date]	[Enter No.]	[Enter Range]	[Enter No.]	[Enter No.]	[Enter Source]

Table 5. Detection of Contaminants with a Secondary Drinking Water Standard

Table 6. Detection of Unregulated Contaminants

Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	Notification Level	Health Effects
None	[Enter Date]	[Enter No.]	[Enter Range]	[Enter No.]	[Enter Language]

Summary Information for Violation of a MCL, MRDL, AL, TT, or Monitoring and Reporting Requirement

Table 7. Violation of a MCL, MRDL, AL, TT or Monitoring Reporting Requirement

Violation	Explanation	Duration	Actions Taken to Correct Violation	Health Effects Language
None	[Enter Violation Explanation]	[Enter Duration]	[Enter Actions Taken]	[Enter Language]
None	[Enter Violation Explanation]	[Enter Duration]	Enter Actions Taken]	[Enter Language]

For Water Systems Providing Groundwater as a Source of Drinking Water

Table 8. Sampling Results Showing Fecal Indicator-Positive Groundwater Source Samples

Microbiological Contaminants (complete if fecal- indicator detected)	Total No. of Detections	Sample Dates	MCL [MRDL]	PHG (MCLG) [MRDLG]	Typical Source of Contaminant
E. coli	1	5/4/22	0	(0)	Human and animal fecal waste
Enterococci	0	[Enter Dates]	ТТ	N/A	Human and animal fecal waste
Coliphage	0	[Enter Dates]	ТТ	N/A	Human and animal fecal waste

Table 9. Violation of Groundwater TT

Violation	Explanation	Duration	Actions Taken to Correct Violation	Health Effects Language
None	[Enter Explanation]	[Enter Duration]	[Enter Actions]	[Enter Language]

For Systems Providing Surface Water as a Source of Drinking Water

Table 10. Sampling Results Showing Treatment of Surface Water Sources

Treatment Technique ^(a) (Type of approved filtration technology used)	NextSand media pre-filters, GE Homespring UFZLI ultrafiltration
Turbidity Performance Standards ^(b) (that must be met through the water treatment process)	Turbidity of the filtered water must. 1 - Be less than or equal to 0.10 NTU measurements in a month. 2 - Not exceed 1.0 NTU at any time.
Lowest monthly percentage of samples that met Turbidity Performance Standard No. 1.	100%
Highest single turbidity measurement during the year	0.05 on 11/11/22
Number of violations of any surface water treatment requirements	0

(a) A required process intended to reduce the level of a contaminant in drinking water.

(b) Turbidity (measured in NTU) is a measurement of the cloudiness of water and is a good indicator of water quality and filtration performance. Turbidity results which meet performance standards are considered to be in compliance with filtration requirements.

Summary Information for Violation of a Surface Water TT

Table 11. Violation of Surface Water TT

Violation	Explanation	Duration	Actions Taken to Correct Violation	Health Effects Language
None	[Enter Explanation]	[Enter Duration]	[Enter Actions]	[Enter Language]