2023 Consumer Confidence Report

Water System Name: Sonoma West Holdings Industrial Park - South Report Date: 05/15/2024

We test the drinking water quality for many constituents as required by state and federal regulations. This report shows the results of our monitoring for the period of January 1 - December 31, 2023 and may include earlier monitoring data.

Este informe contiene información muy importante sobre su agua potable. Tradúzcalo ó hable con alguien que lo entienda bien.

Type of water source(s) in use: Ground Water Well

Name & general location of source(s): Well # 02 is located approximately 15' East of the driveway near the second entrance gate.

Drinking Water Source Assessment information: <u>Completed January 2003. Please see the attached vulnerability</u> summary for further information. Please note this summary needs to be updated – The leaking

Tank has been removed and remediation completed with a "No Further Action" letter issued by the County of Sonoma.

Time and place of regularly scheduled board meetings for public participation: N/A

For more information, contact: Tyler Judson, Weeks Water Treatment Phone: (707) 823-3184

TERMS USED IN THIS REPORT

Maximum Contaminant Level (MCL): The highest level of a contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs (or MCLGs) as is economically and technologically feasible. Secondary MCLs are set to protect the odor, taste, and appearance of drinking water.

Maximum Contaminant Level Goal (MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the U.S. Environmental Protection Agency (USEPA).

Public Health Goal (PHG): The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California Environmental Protection Agency.

Maximum Residual Disinfectant Level (MRDL): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Maximum Residual Disinfectant Level Goal (MRDLG): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

Primary Drinking Water Standards (PDWS): MCLs and MRDLs for contaminants that affect health along with their monitoring and reporting requirements, and water treatment requirements.

Secondary Drinking Water Standards (SDWS): MCLs for contaminants that affect taste, odor, or appearance of the drinking water. Contaminants with SDWSs do not affect the health at the MCL levels.

Treatment Technique (TT): A required process intended to reduce the level of a contaminant in drinking water.

Regulatory Action Level (AL): The concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow.

Variances and Exemptions: State Board permission to exceed an MCL or not comply with a treatment technique under certain conditions.

Level 1 Assessment: A Level 1 assessment is a study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system.

Level 2 Assessment: A Level 2 assessment is a very detailed study of the water system to identify potential problems and determine (if possible) why an *E. coli* MCL violation has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions.

ND: not detectable at testing limit

ppm: parts per million or milligrams per liter (mg/L)

ppb: parts per billion or micrograms per liter ($\mu g/L$)

ppt: parts per trillion or nanograms per liter (ng/L)

ppq: parts per quadrillion or picogram per liter (pg/L)

pCi/L: picocuries per liter (a measure of radiation)

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include:

- *Microbial contaminants*, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- *Inorganic contaminants*, such as salts and metals, that can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- *Pesticides and herbicides*, that may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses.
- Organic chemical contaminants, including synthetic and volatile organic chemicals, that are by-products of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, agricultural application, and septic systems.
- Radioactive contaminants, that can be naturally-occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, the USEPA and the State Water Resources Control Board (State Board) prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. State Board regulations also establish limits for contaminants in bottled water that provide the same protection for public health.

Tables 1, 2, 3, 4, 5, and 6 list all of the drinking water contaminants that were detected during the most recent sampling for the constituent. The presence of these contaminants in the water does not necessarily indicate that the water poses a health risk. The State Board allows us to monitor for certain contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of the data, though representative of the water quality, are more than one year old. Any violation of an AL, MCL, MRDL, or TT is asterisked. Additional information regarding the violation is provided later in this report.

TABLE 1 – SAMPLING RESULTS SHOWING THE DETECTION OF COLIFORM BACTERIA							
Microbiological Contaminants (complete if bacteria detected)	Highest No. of Detections	No. of months in violation	MCL	MCLG	Typical Source of Bacteria		
Total Coliform Bacteria (state Total Coliform Rule)	(In a mo.) <u>0</u>	0	1 positive monthly sample	0	Naturally present in the environment		
Fecal Coliform or <i>E. coli</i> (state Total Coliform Rule)	(In the year)	0	A routine sample and a repeat sample are total coliform positive, and one of these is also fecal coliform or <i>E. coli</i> positive		Human and animal fecal waste		
E. coli (federal Revised Total Coliform Rule)	(In the year)	Ō	(a)	0	Human and animal fecal waste		

(a) Routine and repeat samples are total coliform-positive and either is *E. coli*-positive or system fails to take repeat samples following *E. coli*-positive routine sample or system fails to analyze total coliform-positive repeat sample for *E. coli*.

TABLE 2	TABLE 2 – SAMPLING RESULTS SHOWING THE DETECTION OF LEAD AND COPPER							
Lead and Copper (complete if lead or copper detected in the last sample set)	Sample Date	No. of samples collected	90 th percentile level detected	No. sites exceeding AL	AL	PHG	Typical Source of Contaminant	
Lead (ppb)	9/27/22	5	ND	0	15	0.2	Internal corrosion of household water plumbing systems; discharges from industrial manufacturers; erosion of natural deposits	
Copper (ppm)	9/27/22	5	0.17	0	1.3	0.3	Internal corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives	

	TABLE 3	- SAMPLING	RESULTS FOR	SODIUM A	AND HARDI	NESS
Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	MCL	PHG (MCLG)	Typical Source of Contaminant
Sodium (ppm)	10/1993	14	n/a	none	none	Salt present in the water and is generally naturally occurring
Hardness (ppm)	10/1993	26	n/a	none	none	Sum of polyvalent cations present in the water, generally magnesium and calcium, and are usually naturally occurring
TABLE 4 – DET	ECTION O	F CONTAMIN	ANTS WITH A	<u>PRIMARY</u>	DRINKING	WATER STANDARD
Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	MCL [MRDL]	PHG (MCLG) [MRDLG]	Typical Source of Contaminant
Aluminum (ppm)	3/2/21	0.052	n/a	1	0.6	Erosion of natural deposits; residue from some surface water treatment processes
*Arsenic (ppb)	3/02/21	6.2	n/a	10	0.004	Erosion of natural deposits; runoff from orchards; glass and electronics production wastes
Chlorine (ppm)	2023	0.93	<0.1-3.0	[MRDL = 4.0 (as Cl ₂₎]	[MRDLG = 4 (as Cl ₂₎	Drinking water disinfectant added for treatment
Nickel (ppb)	3/2/21	13	n/a	100	12	Erosion of natural deposits; discharge from metal factories.
Total Trihalomethanes (TTHMs) (ppb)	8/2/22	9.9	n/a	80	na	By-product of drinking water disinfection
Haloacetic Acids (HAA5) (ppb)	8/2/22	13.2	n/a	60	na	By-product of drinking water disinfection
Fluoride (ppm)	3/2/21	0.24	n/a	2.0	1.0	Erosion of natural deposits; water additive that promotes strong teeth; discharge from fertilizer and aluminum factories
Gross Alpha (pCi/L)	1/4/16	1.62	n/a	15	(0)	Erosion of natural deposits
TABLE 5 – DETE	CTION OF	CONTAMINA	NTS WITH A <u>S</u> I	ECONDAR	<u>Y</u> DRINKIN	G WATER STANDARD
Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	MCL	PHG (MCLG)	Typical Source of Contaminant
Aluminum (ppb)	3/2/21	52	n/a	0.2	600	Erosion of natural deposits; residue from some surface water treatment processes
	TABLE (6 – DETECTIO	N OF UNREGU	LATED CO	NTAMINA	NTS
Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	Notification Level		Health Effects Language
None						

Additional General Information on Drinking Water

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the USEPA's Safe Drinking Water Hotline (1-800-426-4791).

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. USEPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* and other microbial contaminants are available from the Safe Drinking Water Hotline (1-800-426-4791).

Lead-Specific Language for Community Water Systems: If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Sonoma West Holdings Industrial Park South is responsible for providing high quality drinking water but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. [Optional: If you do so, you may wish to collect the flushed water and reuse it for another beneficial purpose, such as watering plants.] If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline (1-800-426-4701) or at http://www.epa.gov/lead.

*While your drinking water meets the federal and state standard for arsenic, it does contain low levels of arsenic. The arsenic standard balances the current understanding of arsenic's possible health effects against the cost of removing arsenic from drinking water. The U.S. Environmental Protection Agency continues to research the health effects of low levels of arsenic, which is a mineral known to cause cancer in humans at high concentrations and is linked to other health effects such as skin damage and circulatory problems.

The Sonoma West Holdings Industrial Park water system is operated under contract by Weeks Water
Treatment of Sebastopol. To inquire about the system or to report trouble, please call (707) 823-3184.
In 2023, Sonoma West Holdings Industrial Park began testing for PFOA's and PFOS in raw water. Although there were
detections, all results for the individual analytes were below the notification levels.

Summary Information for Violation of a MCL, MRDL, AL, TT, or Monitoring and Reporting Requirement

VIOLATION OF A MCL, MRDL, AL, TT, OR MONITORING AND REPORTING REQUIREMENT						
Violation Explanation Duration Actions Taken to Correct the Violation Language						
None						

For Water Systems Providing Ground Water as a Source of Drinking Water

TABLE 7 – SAMPLING RESULTS SHOWING FECAL INDICATOR-POSITIVE GROUND WATER SOURCE SAMPLES							
Microbiological Contaminants (complete if fecal-indicator detected) Total No. of Detections Sample Dates MCL (MCLG) (MCLG) [MRDLG] Typical Source of Contaminant							
E. coli	(In the year)		0	(0)	Human and animal fecal waste		
Enterococci	(In the year)		TT	n/a	Human and animal fecal waste		
Coliphage	(In the year)		TT	n/a	Human and animal fecal waste		

Summary Information for Fecal Indicator-Positive Ground Water Source Samples, Uncorrected Significant Deficiencies, or Ground Water TT

SPECIAL	NOTICE OF FECAL IND	ICATOR-POSITIVE GR	ROUND WATER SOURCE	E SAMPLE			
None							
	SPECIAL NOTICE FOR	UNCORRECTED SIGNI	IFICANT DEFICIENCIES				
None							
	VIOLATION OF GROUND WATER TT						
TT Violation	TT Violation Explanation Duration Actions Taken to Correct the Violation Language						
None							

Drinking Water Source Assessment and Protection (DWSAP) Program

Vulnerat	olliyeSimmeley		(Company) (Compa	The second secon	
District Name	DHS Sonoma District	District No. 18	County	Sonoma	
System Name	Sonoma West Holdings Indi	ustrial Park		System	No. <u>4901250</u>
Source Name	WELL 02	Source No.	002	PS Code	4901250-002
Completed by	Erica Wolski	Date	January	, 2003	
A source wate	er assessment was conduc	ted for the _WELL 02			
of the Sono	ma West <u>Holdings Industr</u>	rial Park	_ water s	ystem in <u>Jan</u>	uary, 2003
	considered most vulnerable cted contaminants:	e to the following activities	s not assoc	clated	
	Septic systems - high de	ensity			

Discussion of Vulnerability

There have been no contaminants detected in the water supply, however the source is still considered vulnerable to activities located near the drinking water source. A leaking underground fuel tank exists on the property; however, monitoring of the tank has shown non detects for benzene and MTBE in 2002 and both were non detect when the well was sampled in 1999. A TCE and PCE plume exists in Zone B10 on the west side of Highway 116. Results from 2001 were 0.5 and 6 ppb respectively; however, neither chemical was detected when the well was sampled in 1999.

Underground storage tanks - Confirmed leaking tanks

A copy of the complete assessment may be viewed at:

Drinking Water Field Operations Branch 50 D Street, Suite 200 Santa Rosa, CA 95404

You may request a summary of the assessment be sent to you by contacting:

Office Representative (707) 576-2145 (707) 576-2722 (fax)

Please note the tank described in this summary has been removed and remediation completed with a "No Further Action" letter issued by the County of Sonoma. Additional note - the Well 02 was tested for MTBE on 3/20/18 with zero detection.