2020 Consumer Confidence Report

Water System Information

Water System Name: 4900897 Rodney Strong Wine Estates

Report Date: 6/18/2021

Type of Water Source(s) in Use: Groundwater Wells

Name and General Location of Source(s): Well 003, Well 004

Drinking Water Source Assessment Information: N/A

Time and Place of Regularly Scheduled Board Meetings for Public Participation: N/A

For More Information, Contact: Larry Solomon 707-433-0918

About This Report

We test the drinking water quality for many constituents as required by state and federal regulations. This report shows the results of our monitoring for the period of January 1 to December 31, 2020 and may include earlier monitoring data.

Importance of This Report Statement in Five Non-English Languages (Spanish, Mandarin, Tagalog, Vietnamese, and Hmong)

Language in Spanish: Este informe contiene información muy importante sobre su agua para beber. Favor de comunicarse [Enter Water System's Name] a [Enter Water System's Address or Phone Number] para asistirlo en español.

Language in Mandarin: 这份报告含有关于您的饮用水的重要讯息。请用以下地址和电话联系 [Enter Water System Name]以获得中文的帮助: [Enter Water System's Address][Enter Water System's Phone Number].

Language in Tagalog: Ang pag-uulat na ito ay naglalaman ng mahalagang impormasyon tungkol sa inyong inuming tubig. Mangyaring makipag-ugnayan sa [Enter Water System's Name and Address] o tumawag sa [Enter Water System's Phone Number] para matulungan sa wikang Tagalog.

Language in Vietnamese: Báo cáo này chứa thông tin quan trọng về nước uống của bạn. Xin vui lòng liên hệ [Enter Water System's Name] tại [Enter Water System's Address or Phone Number] để được hỗ trợ giúp bằng tiếng Việt.

Language in Hmong: Tsab ntawv no muaj cov ntsiab lus tseem ceeb txog koj cov dej haus. Thov hu rau [Enter Water System's Name] ntawm [Enter Water System's Address or Phone Number] rau kev pab hauv lus Askiv.

Terms Used in This Report

Term	Definition
Level 1 Assessment	A Level 1 assessment is a study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system.
Level 2 Assessment	A Level 2 assessment is a very detailed study of the water system to identify potential problems and determine (if possible) why an <i>E. coli</i> MCL violation has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions.
Maximum Contaminant Level (MCL)	The highest level of a contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs (or MCLGs) as is economically and technologically feasible. Secondary MCLs are set to protect the odor, taste, and appearance of drinking water.
Maximum Contaminant Level Goal (MCLG)	The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the U.S. Environmental Protection Agency (U.S. EPA).
Maximum Residual Disinfectant Level (MRDL)	The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.
Maximum Residual Disinfectant Level Goal (MRDLG)	The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.
Primary Drinking Water Standards (PDWS)	MCLs and MRDLs for contaminants that affect health along with their monitoring and reporting requirements, and water treatment requirements.
Public Health Goal (PHG)	The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California Environmental Protection Agency.
Regulatory Action Level (AL)	The concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow.
Secondary Drinking Water Standards (SDWS)	MCLs for contaminants that affect taste, odor, or appearance of the drinking water. Contaminants with SDWSs do not affect the health at the MCL levels.
Treatment Technique (TT)	A required process intended to reduce the level of a contaminant in drinking water.
Variances and Exemptions	Permissions from the State Water Resources Control Board (State Board) to exceed an MCL or not comply with a treatment technique under certain conditions.
ND	Not detectable at testing limit.
ppm	parts per million or milligrams per liter (mg/L)
ppb	parts per billion or micrograms per liter (µg/L)
ppt	parts per trillion or nanograms per liter (ng/L)
ppq	parts per quadrillion or picogram per liter (pg/L)

Term	Definition
pCi/L	picocuries per liter (a measure of radiation)

Sources of Drinking Water and Contaminants that May Be Present in Source Water

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include:

- Microbial contaminants, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- Inorganic contaminants, such as salts and metals, that can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- Pesticides and herbicides, that may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses.
- Organic chemical contaminants, including synthetic and volatile organic chemicals, that are byproducts of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, agricultural application, and septic systems.
- Radioactive contaminants, that can be naturally-occurring or be the result of oil and gas production and mining activities.

Regulation of Drinking Water and Bottled Water Quality

In order to ensure that tap water is safe to drink, the U.S. EPA and the State Board prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. The U.S. Food and Drug Administration regulations and California law also establish limits for contaminants in bottled water that provide the same protection for public health.

About Your Drinking Water Quality

Drinking Water Contaminants Detected

Tables 1, 2, 3, 4, 5, 6, and 8 list all of the drinking water contaminants that were detected during the most recent sampling for the constituent. The presence of these contaminants in the water does not necessarily indicate that the water poses a health risk. The State Board allows us to monitor for certain contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of the data, though representative of the water quality, are more than one year old. Any violation of an AL, MCL, MRDL, or TT is asterisked. Additional information regarding the violation is provided later in this report.

Table 1. Sampling Results Showing the Detection of Coliform Bacteria

Complete if bacteria are detected.

Microbiological Contaminants	Highest No. of Detections	No. of Months in Violation	MCL	MCLG	Typical Source of Bacteria
Total Coliform Bacteria (State Total Coliform Rule)	0	0	1 positive monthly sample (a)	0	Naturally present in the environment
Fecal Coliform or <i>E. coli</i> (State Total Coliform Rule)	0	0	A routine sample and a repeat sample are total coliform positive, and one of these is also fecal coliform or <i>E. coli</i> positive	None	Human and animal fecal waste
E. coli (Federal Revised Total Coliform Rule)	0	0	(b)	0	Human and animal fecal waste

⁽a) Two or more positive monthly samples is a violation of the MCL

Table 2. Sampling Results Showing the Detection of Lead and Copper

Complete if lead or copper is detected in the last sample set.

Lead and Copper	Sample Date	No. of Samples Collected	90 th Percentile Level Detected	No. Sites Exceeding AL	AL	PHG	No. of Schools Requesting Lead Sampling	Typical Source of Contaminant
Lead (ppb)	7/29/2020	5	<.005	none	15	0.2	0	Internal corrosion of household water plumbing systems; discharges from industrial manufacturers; erosion of natural deposits
Copper (ppm)	7/29/2020	5	.26	none	1.3	0.3	Not applicable	Internal corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives

 Table 3. Sampling Results for Sodium and Hardness

Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	MCL	PHG (MCLG)	Typical Source of Contaminant
Sodium (ppm)	11/7/96	26		None	None	Salt present in the water and is
Well 003	7/24/2000	33				generally naturally occurring
Well 004						
Hardness (ppm)	11/7/96	150		None	None	Sum of polyvalent cations
Well 003	7/24/2000	140				present in the water, generally magnesium and calcium, and are
Well 004						usually naturally occurring

⁽b) Routine and repeat samples are total coliform-positive and either is *E. coli*-positive or system fails to take repeat samples following *E. coli*-positive routine sample or system fails to analyze total coliform-positive repeat sample for *E. coli*.

Table 4. Detection of Contaminants with a Primary Drinking Water Standard

Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	MCL [MRDL]	PHG (MCLG) [MRDLG]	Typical Source of Contaminant
Nitrate (as no3) mg/l Well #3 Well#4	3/13/2020 3/13/2020	.53 .43		45	45	Runoff and leaching from fertilizer use; leaching from septic tanks and sewage; erosion of natural deposits
Nitrite (as N) mg/l Well #3 Well#4	5/24/19 5/24/19	.40 .40		1	1	Runoff and leaching from fertilizer use; leaching from septic tanks and sewage; erosion of natural deposits
*Arsenic ug/l Well #3 Well #4	3/12/20 6/18/20 9/17/20 12/17/20 12/21/20	*41.75 *18.75	23-55 11-23	10	.004	Erosion of natural deposits; runoff from orchards; glass and electronics production wastes
Aluminum Well #3 Well#4 Ug/l	5/9/13 5/24/19	<50		1000	0.6	Erosion of natural deposits; residue from some surface water treatment processes
Antimony Well #3 Well #4 ug/l	5/9/13 5/24/19	<6		6	20	Discharge from petroleum refineries; fire retardants; ceramics; electronics; solder erosion of natural deposits; discharge from metal factories
Barium Well #3 Well #4 Ug/l	5/9/13 5/24/19	250 110		1000	2	Discharge of drilling wastes; discharge from metal refineries; erosion of natural deposits
Beryllium Well #3 Well #4 ug/l	5/9/13 5/24/19	<1		4	1	Discharge from metal refineries and coal- burning factories; discharge from electrical, aerospace, and defense industries
Cadmium Well #3 Well #4 Ug/l	5/9/13 5/24/19	<1		5	.04	Corrosion of galvanized pipes; erosion of natural deposits; discharge from metal refineries; runoff from waste batteries and paints

			-	•	•	
Chromium Well #3 Well #4 ug/l	5/9/13 5/24/19	<1		50	100	Discharge from steel and pulp mills; erosion of natural deposits
Fluoride Well #3 Well #4 Mg/l	5/9/13 5/24/19	.21		2	1	Erosion of natural deposits; water additive which promotes strong teeth; discharge from fertilizer and aluminum
Mercury Well #3 Well #4 Ug/l	5/9/13 5/24/19	<1		2	1.2	Erosion of natural deposits; discharge from refineries and factories; runoff from landfills; runoff from cropland
Nickel Well #3 Well #4 Ug/l	5/9/13 5/24/19	<10		100	12	Erosion of natural deposits; discharge from metal factories.
Perchlorate Well #3 Well #4 Ug/l	5/24/19 5/24/19	<4		6	6	Perchlorate is an inorganic chemical used in solid rocket propellant, fireworks, explosives, flares, matches, and a variety of industries. It usually gets into drinking water as a result of environmental contamination from historic aerospace or other industrial operations that used or use, store, or dispose of perchlorate and its salts
Selenium Well #3 Well #4 ug/l	5/9/13 5/24/19	<5		50	30	Discharge from petroleum and metal refineries; erosion of natural deposits; discharge from mines
Thallium Well #3 Well #4 Ug/l	5/9/13 5/24/19	<1		2	.1	Leaching from ore- processing sites; discharge from electronics, glass, and drug factories
1,1,1 Trichloroethane Well #3 Well #4	5/18/16 5/24/19	<.5		200	1000	Discharge from metal degreasing sites and other factories; manufacture of food wrappings
Gross Alpha Particle Activity Well#3 Well#4 pCi/L	5/18/16	.856		15	3	Certain minerals are radioactive and may emit a form of radiation known as alpha radiation. Some people who drink water containing alpha emitters in excess of the MCL over many years may have an

					increased risk of
1.2.2 TCD	2/22/19	< 0.05			getting cancer.
1,2,3 TCP Ug/l	2/23/18 8/22/18	<.005 <.005			
Well 4	10/16/18	<.005	.005		
1,2,3 TCP	2/23/18	<.005	.003		
Ug/l	10/16/18	<.005	.005		
Well 3					
1,1,2,2 tetrachloroethane	5/18/16	<.5	1	0.1	Discharge from
Well#3	5/24/19				industrial and
Well#4					agricultural chemical factories; solvent
					used in production of
					TCE, pesticides,
					varnish and lacquers
1,1,2-Trichloroethane	5/18/16	<.5	5	0.3	Discharge from industrial chemical
Well #3	5/24/19	<.5			factories
Well #4					TWO TIES
1,1-Dichloroethane	5/18/16	<.5	5	3	Extraction and
Well #3	5/24/19	<5			degreasing solvent;
Well #4					used in the manufacture of
					pharmaceuticals, stone,
					clay, and glass
117011 11	5/10/16			10	products; fumigant
1,1 Dichloroethylene	5/18/16	<.5	6	10	Discharge from industrial chemical
Well #3	5/24/19	<.5			factories
Well #4					
1,2,4-Trichlorobenzene	5/18/16	<.5	5	5	Discharge from textile-
Well #3	5/24/19	<.5			finishing factories
Well #4					
1,2-Dichlorobenzene	5/18/16	<.5	600	600	Discharge from
Well #3	5/24/19	<.5			industrial chemical factories
Well #4					ractories
1,2-Dichloroethane	5/18/16	<.5	.5	400	Discharge from
Well #3	5/24/19	<.5			industrial chemical
Well #4					factories
1.2 Diahlararraran	5/18/16	<.5	5	0.5	Discharge from
1,2-Dichloropropane			3	0.5	industrial chemical
Well #3	5/24/19	<.5			factories; primary
Well #4					component of some fumigants
1,3-Dichloropropene (total)	5/18/16	<.5	.5	200	Runoff/leaching from
Well #3	5/24/19	<.5		200	nematocide used on
Well #4	J127117	\.J			croplands
	5/10/17	- 5	5	6	Digahamaa f
1,4-Dichlorobenzene	5/18/16	<.5	3	0	Discharge from industrial chemical
Well #3	5/24/19	<.5			factories
Well #4					
Benzene	5/18/16	<.5	1	0.15	Discharge from
Well #3	5/24/19	<.5			plastics, dyes and nylon factories;
Well #4					leaching from gas
					storage tanks and
					landfills

Carbon Tetrachloride	5/18/16	<.5	.5	100	Discharge from
Well #3	5/24/19	<.5			chemical plants and other industrial
Well #4					activities
CIS-1,2-Dichloroethylene	5/18/16	<.5	6	100	Discharge from
Well #3	5/24/19	<.5			industrial chemical factories; major
Well #4					biodegradation
					byproduct of TCE and
Dichloromethane	5/18/16	<.5	5	4	Discharge from pharmaceutical and
Well #3	5/24/19	<.5			chemical factories;
Well #4					insecticide
Ethyl Benzene	5/18/16	<.5	300	300	Discharge from
Well #3	5/24/19	<.5			petroleum refineries; industrial chemical
Well #4					factories
Methyl-tert-butyl-ether	5/18/16	<3	13	13	Leaking underground
(mtbe)	5/24/19	<3			storage tanks; discharges from
Well #3					petroleum and
Well #4					chemical factories
Monochlorobenzene	5/18/16	<.5	70	70	Discharge from
Well #3	5/24/19	<.5			industrial and agricultural chemical
Well #4					factories and dry-
					cleaning facilities
Styrene	5/18/16	<.5	100	0.5	Discharge from rubber
Well #3	5/24/19	<.5			and plastic factories; leaching from landfills
Well #4					leaching from landings
Tetrachloroethylene	5/18/16	<.5	5	0.06	Discharge from
Well #3	5/24/19	<.5			factories, dry cleaners, and auto shops (metal
Well #4					degreaser)
Toluene	5/18/16	<.5	150	150	Discharge from
Well #3	5/24/19	<.5			petroleum and chemical factories;
Well #4					underground gas tank
					leaks
Trans-1,2-Dichloroethylene	5/18/16	<.5	10	60	Discharge from
Well #3	5/24/19	<.5			industrial chemical factories; minor
Well #4					biodegradation
					byproduct of TCE and
					PCE groundwater contamination
Trichloroethylene	5/18/16	<.5	5	1.7	Discharge from metal
Well #3	5/24/19	<.5			degreasing sites and
Well #4					other factories
Trichlorofluoromethane	5/18/16	<5	150	1300	Discharge from
Freon 11	5/24/19	<5			industrial factories;
Well #3					degreasing solvent; propellant and
Well #4					refrigerant
Trichlorotrifluoroethane	5/18/16	<10	1200	400	Discharge from metal
(freon 113)	5/24/19	<10			degreasing sites and
Well #3					other factories; dry cleaning solvent;
Well #4					refrigerant

Vinyl Chloride	5/18/16	<.5	.5	50	Leaching from PVC
Well #3 Well #4	5/24/19	<.5			piping; discharge from plastics factories; biodegradation byproduct of TCE and PCE groundwater contamination
Xylenes (total)	5/18/16	<.5	1750	1.8	Discharge from
Well #3	5/24/19	<.5			petroleum and chemical factories; fuel
Well #4					solvent
1,2,3-Trichloropropane Well #4	5/20/19	<.005	.005	0.7	Discharge from industrial and agricultural chemical factories; leaching from hazardous waste sites; used as cleaning and maintenance solvent, paint and varnish remover, and cleaning and degreasing agent; byproduct during the production of other compounds and pesticides.
2,4,5-TP (silvex)	5/24/19	0	50	3	Residue of banned
Well #3					herbicide
Well #4					
2,4-D	5/24/19	0	70	20	Runoff from herbicide used on row crops, range land, lawns, and aquatic weeds
Atrazine Well #3 Well #4	5/24/19	0	1	0.15	Runoff from herbicide used on row crops and along railroad and highway rights-of-way
Carbofuran Well #3 Well #4	5/24/19	0	18	0.7	Leaching of soil fumigant used on rice and alfalfa, and grape vineyards
Dalapon Well #3 Well #4	5/24/19	0	200	790	Runoff from herbicide used on rights-of-ways, and crops and landscape maintenance
Dinoseb Well #3 Well #4	5/24/19	0	7	14	Runoff from herbicide used on soybeans, vegetables, and fruits
Diquat Well #3 Well #4	5/24/19	0	20	6	Runoff from herbicide use for terrestrial and aquatic weeds
Endothall Well #3 Well #4	5/24/19	0	100	94	Runoff from herbicide use for terrestrial and aquatic weeds; defoliant
Ethylene Dibromide Well #3 Well #4	5/24/19	0	.05	10	Discharge from petroleum refineries; underground gas tank leaks; banned

					nematocide that may still be present in soils due
Heptachlor	3/28/19	0	.010	8	Residue of banned
Well #3	5/24/19				insecticide
Well #4					
Heptachlor Epoxide	3/28/18	0	.2	6	Breakdown of
Well #3	5/24/19				heptachlor
Well #4					
Lindane	3/28/18	0	.2	32	Runoff/leaching from
Well #3	5/24/19				insecticide used on
Well #4					cattle, lumber, and gardens
Methoxychlor	3/28/19	0	30	0.09	Runoff/leaching from
Well #3	5/24/19				insecticide used on
Well #4					
Oxamyl	5/24/19	0	1	26	Runoff/leaching from
Well #3	5/24/19				insecticide used on field crops, fruits and
Well #4					ornamentals, especially apples, potatoes, and tomatoes
Pentachlorophenol	5/24/19	0	1	0.3	Discharge from wood
Well #3					preserving factories, cotton and other
Well #4					insecticidal/herbicidal uses
Picloram	5/24/19	0	500	166	Herbicide runoff
Well #3					
Well #4					
Simazine	5/24/19	0	4	4	Herbicide runoff
Well #3					
Well #4					
Toxaphene	3/28/18	0	3	0.03	Runoff/leaching from
Well #3	5/24/19				insecticide used on cotton and cattle
Well #4					conton and caute

Table 5. Detection of Contaminants with a Secondary Drinking Water Standard

Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	SMCL	PHG (MCLG)	Typical Source of Contaminant
Aluminum (secondary) Well#3 Well#4 Ug/I	5/9/2013	<50		200		Erosion of natural deposits; residual from some surface water treatment processes
Chloride Well#3 Well#4 Mg/l	5/13/2010	22 20		500		Runoff/leaching from natural deposits; seawater influence
Color Well#3	5/13/2010	3		15		Naturally-occurring organic materials

Well#4		-2	1 1	
		<3		
Unit				
Copper Well#3 Ug/l	5/13/2010	<50	1000	Internal corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives
Foaming agents(mbas) Well#3 Well#4 Mg/l	5/13/2010	<0.05	.50	Municipal and industrial waste discharges
*Manganese Well#4 Ug/l	5/12/2011	130.0	50	Leaching from natural deposits
Odor Well#3 Well#4 Units	5/13/2010	<1	3	Naturally-occurring organic materials
Silver Well#3 Well#4 Ug/l	5/9/2013	<10	100	Industrial discharges
Specific conductance Well#3 Well#4 Umho	5/13/2010	370	1600	Substances that form ions when in water; seawater influence
Sulfate Well#3 Well#4 Mg/l	5/13/2010	8.70 9.60	500	Runoff/leaching from natural deposits; industrial wastes
Total dissolved solids Well#3 Well#4 Mg/l	5/13/2010	230	1000	Runoff/leaching from natural deposits
Zinc Well#3 Ug/l	5/13/2010	<50	5000	Runoff/leaching from natural deposits; industrial wastes
Turbidity Well#3 Well#4 Ntu	5/13/2010 5/13/2010	3.1	5	Soil runoff

Table 6. Detection of Unregulated Contaminants

Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	Notification Level	Health Effects Language
[Enter Contaminant]	[Enter Date]	[Enter No.]	[Enter Range]	[Enter No.]	[Enter Language]
[Enter Contaminant]	[Enter Date]	[Enter No.]	[Enter Range]	[Enter No.]	[Enter Language]
[Enter Contaminant]	[Enter Date]	[Enter No.]	[Enter Range]	[Enter No.]	[Enter Language]

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the U.S. EPA's Safe Drinking Water Hotline (1-800-426-4791).

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. U.S. EPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* and other microbial contaminants are available from the Safe Drinking Water Hotline (1-800-426-4791).

Lead-Specific Language: If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. [Enter Water System's Name] is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. [Optional: If you do so, you may wish to collect the flushed water and reuse it for another beneficial purpose, such as watering plants.] If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline (1-800-426-4791) or at http://www.epa.gov/lead.

Additional Special Language for Nitrate, Arsenic, Lead, Radon, and *Cryptosporidium*: [Enter Additional Information Described in Instructions for SWS CCR Document]

Federal Revised Total Coliform Rule (RTCR): [Enter Additional Information Described in Instructions for SWS CCR Document]

Summary Information for Violation of a MCL, MRDL, AL, TT, or Monitoring and Reporting Requirement

Table 7. Violation of a MCL, MRDL, AL, TT or Monitoring Reporting Requirement

Vio	lation	Explanation	Duration	Actions Taken to Correct Violation	Health Effects Language
-----	--------	-------------	----------	------------------------------------	----------------------------

Violation of Arsenic MCL	Levels are above 10 ug/l directly from well	1/1/2020-	We have implemented Arsenic removal systems throughout the winery in order to bring arsenic levels to safe drinking water standards.	While your drinking water meets the federal and state standard for arsenic, it does contain low levels of arsenic. The arsenic standard balances the current understanding of arsenic's possible health effects against the cost of removing arsenic from drinking water. The U.S. Environmental Protection Agency continues to research the health effects of low levels of arsenic, which is a mineral known to cause cancer in humans at high concentrations and is linked to other health effects such as skin damage and circulatory problems.
--------------------------	---	-----------	--	---

For Water Systems Providing Groundwater as a Source of Drinking Water

Table 8. Sampling Results Showing Fecal Indicator-Positive Groundwater Source Samples

Microbiological Contaminants (complete if fecal- indicator detected)	Total No. of Detections	Sample Dates	MCL [MRDL]	PHG (MCLG) [MRDLG]	Typical Source of Contaminant
E. coli	(In the year) [Enter No.]	[Enter Dates]	0	(0)	Human and animal fecal waste
Enterococci	(In the year) [Enter No.]	[Enter Dates]	TT	N/A	Human and animal fecal waste
Coliphage	(In the year) [Enter No.]	[Enter Dates]	TT	N/A	Human and animal fecal waste

Summary Information for Fecal Indicator-Positive Groundwater Source Samples, Uncorrected Significant Deficiencies, or Violation of a Groundwater TT

Special Notice of Fecal Indicator-Positive Groundwater Source Sample: [Enter Special Notice of Fecal Indicator-Positive Groundwater Source Sample]

Special Notice for Uncorrected Significant Deficiencies: [Enter Special Notice for Uncorrected Significant Deficiencies]

Table 9. Violation of Groundwater TT

Violation	Explanation	Duration	Actions Taken to Correct Violation	Health Effects Language
[Enter Violation]	[Enter Explanation]	[Enter Duration]	[Enter Actions]	[Enter Language]
[Enter Violation]	[Enter Explanation]	[Enter Duration]	[Enter Actions]	[Enter Language]

For Systems Providing Surface Water as a Source of Drinking Water

Table 10. Sampling Results Showing Treatment of Surface Water Sources

Treatment Technique (a) (Type of approved filtration technology used)	[Enter Treatment Technique]	
Turbidity Performance Standards (b)	Turbidity of the filtered water must:	
(that must be met through the water treatment process)	1 – Be less than or equal to [Enter Turbidity Performance Standard to Be Less Than or Equal to 95% of Measurements in a Month] NTU in 95% of measurements in a month.	
	2 – Not exceed [Enter Turbidity Performance Standard Not to Be Exceeded for More Than Eight Consecutive Hours] NTU for more than eight consecutive hours.	
	3 – Not exceed [Enter Turbidity Performance Standard Not to Be Exceeded at Any Time] NTU at any time.	
Lowest monthly percentage of samples that met Turbidity Performance Standard No. 1.	[Enter No.]	
Highest single turbidity measurement during the year	[Enter No.]	
Number of violations of any surface water treatment requirements	[Enter No.]	

⁽a) A required process intended to reduce the level of a contaminant in drinking water.

⁽b) Turbidity (measured in NTU) is a measurement of the cloudiness of water and is a good indicator of water quality and filtration performance. Turbidity results which meet performance standards are considered to be in compliance with filtration requirements.

Summary Information for Violation of a Surface Water TT

Table 11. Violation of Surface Water TT

Violation	Explanation	Duration	Actions Taken to Correct Violation	Health Effects Language
[Enter Violation]	[Enter Explanation]	[Enter Duration]	[Enter Actions]	[Enter Language]
[Enter Violation]	[Enter Explanation]	[Enter Duration]	[Enter Actions]	[Enter Language]

Summary Information for Operating Under a Variance or Exemption

[Enter Additional Information Described in Instructions for SWS CCR Document]

Summary Information for Federal Revised Total Coliform Rule Level 1 and Level 2 Assessment Requirements

Level 1 or Level 2 Assessment Requirement not Due to an *E. coli* MCL Violation

Coliforms are bacteria that are naturally present in the environment and are used as an indicator that other, potentially harmful, waterborne pathogens may be present or that a potential pathway exists through which contamination may enter the drinking water distribution system. We found coliforms indicating the need to look for potential problems in water treatment or distribution. When this occurs, we are required to conduct assessment(s) to identify problems and to correct any problems that were found during these assessments.

During the past year we were required to conduct [Insert Number of Level 1 Assessments] Level 1 assessment(s). [Insert Number of Level 1 Assessments] Level 1 assessment(s) were completed. In addition, we were required to take [Insert Number of Corrective Actions] corrective actions and we completed [Insert Number of Corrective Actions] of these actions.

During the past year [Insert Number of Level 2 Assessment] Level 2 assessments were required to be completed for our water system. [Insert Number of Level 2 Assessments] Level 2 assessments were completed. In addition, we were required to take [Insert Number of Corrective Actions] corrective actions and we completed [Insert Number of Corrective Actions] of these actions.

[For Violation of the Total Coliform Bacteria TT Requirement, Enter Additional Information Described in Instructions for SWS CCR Document]

Level 2 Assessment Requirement Due to an E. coli MCL Violation

E. coli are bacteria whose presence indicates that the water may be contaminated with human or animal wastes. Human pathogens in these wastes can cause short-term effects, such as diarrhea, cramps, nausea, headaches, or other symptoms. They may pose a greater health risk for infants, young children, the elderly, and people with severely-compromised immune systems. We found *E. coli* bacteria, indicating the need to look for potential problems in water treatment or distribution. When this occurs, we are required to conduct assessment(s) identify problems and to correct any problems that were found during these assessments.

We were required to complete a Level 2 assessment because we found *E. coli* in our water system. In addition, we were required to take [Insert Number of Corrective Actions] corrective actions and we completed [Insert Number of Corrective Actions] of these actions.

[For Violation of the *E. coli* TT Requirement, Enter Additional Information Described in Instructions for SWS CCR Document]