2020 Consumer Confidence Report

Water System Name: MORTON'S WARM SPRINGS (PUC) Report Date: 3/1/2021
We test the drinking water quality for many constituents as required by state and federal regulations. This report show the results of our monitoring for the period of January 1 - December 31, 2020 and may include earlier monitoring data.
Este informe contiene información muy importante sobre su agua potable. Tradúzcalo ó hable con alguien que le entienda bien.
Type of water source(s) in use: Ground Water (Well)
Name & general location of source(s): Well is located on property
Drinking Water Source Assessment information:
Time and place of regularly scheduled board meetings for public participation: NA
For more information, contact: Troy Bathke (Water Operator) Phone: (707) 536-5474
TERMS USED IN THIS REPORT
Maximum Contaminant Level (MCL): The highest level of a contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs (or monitoring and reporting requirements, and water treatment

taste, and appearance of drinking water. Maximum Contaminant Level Goal (MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the U.S. Environmental Protection Agency

MCLGs) as is economically and technologically

feasible. Secondary MCLs are set to protect the odor,

Public Health Goal (PHG): The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California Environmental Protection Agency.

(USEPA).

Maximum Residual Disinfectant Level (MRDL): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants

Maximum Residual Disinfectant Level Goal (MRDLG): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

monitoring and reporting requirements, and water treatment requirements.

Secondary Drinking Water Standards (SDWS): MCLs for contaminants that affect taste, odor, or appearance of the drinking water. Contaminants with SDWSs do not affect the health at the MCL levels.

Treatment Technique (TT): A required process intended to reduce the level of a contaminant in drinking water.

Regulatory Action Level (AL): The concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow.

Variances and Exemptions: Department permission to exceed an MCL or not comply with a treatment technique under certain conditions.

ND: not detectable at testing limit

ppm: parts per million or milligrams per liter (mg/L)

ppb: parts per billion or micrograms per liter (μg/L)

ppt: parts per trillion or nanograms per liter (ng/L)

ppq: parts per quadrillion or picogram per liter (pg/L)

pCi/L: picocuries per liter (a measure of radiation)

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include:

Revised Jan 2014 2013 SWS CCR Form

- *Microbial contaminants*, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- *Inorganic contaminants*, such as salts and metals, that can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- Pesticides and herbicides, that may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses.
- Organic chemical contaminants, including synthetic and volatile organic chemicals, that are by-products of industrial
 processes and petroleum production, and can also come from gas stations, urban stormwater runoff, agricultural
 application, and septic systems.
- Radioactive contaminants, that can be naturally-occurring or be the result of oil and gas production and mining activities

In order to ensure that tap water is safe to drink, the USEPA and the California Department of Public Health (Department) prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. Department regulations also establish limits for contaminants in bottled water that provide the same protection for public health.

Tables 1, 2, 3, 4, 5, 7, and 8 list all of the drinking water contaminants that were detected during the most recent sampling for the constituent. The presence of these contaminants in the water does not necessarily indicate that the water poses a health risk. The Department allows us to monitor for certain contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of the data, though representative of the water quality, are more than one year old.

TABLE 1 –	SAMPLING	RESULT	S SHOW	ING THE DI	ETECTION	OF COLIF	FORM BACTERIA
Microbiological Contaminants (complete if bacteria detected)	Highest No. of Detections	No. of months in violation		МС	MCL		Typical Source of Bacteria
Total Coliform Bacteria	(In a mo.)				More than 1 sample in a month with a detection		Naturally present in the environment
Fecal Coliform or E. coli	(In the year)	0		A routine sample and a repeat sample detect total coliform and either sample also detects fecal coliform or <i>E. coli</i>		0	Human and animal fecal waste
TABLE 2	- SAMPLIN	G RESUL	TS SHO	WING THE	DETECTIO	ON OF LEA	D AND COPPER
Lead and Copper (complete if lead or copper detected in the last sample set)	Sample Date	No. of samples collected	90 th percentile level detected	exceeding	AL	PHG	Typical Source of Contaminant
Lead (ppb)	9-8-19	5	<5.00	0	15	0.2	Internal corrosion of household water plumbing systems; discharges from industrial manufacturers; erosion of natural deposits
Copper (ppm)	9-8-19	5	<50.000	0	1.3	0.3	Internal corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives
	TABLE 3	- SAMPL	ING RES	SULTS FOR	SODIUM A	ND HARDI	NESS
Chemical or Constituent (and reporting units)	Sample Date		Level F Detected D		MCL	PHG (MCLG)	Typical Source of Contaminant
Sodium (ppm)	1/6/2020	100.00	100.000		none	none	Salt present in the water and is generally naturally occurring
Hardness (ppm)	1/6/2020	85.00	0		none	none	Sum of polyvalent cations present in the water, generally magnesium and calcium, and are usually

^{*}Any violation of an MCL or AL is asterisked. Additional information regarding the violation is provided later in this report.

TABLE 4 – DETECTION OF CONTAMINANTS WITH A <u>PRIMARY</u> DRINKING WATER STANDARD

naturally occurring

Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	MCL [MRDL]	PHG (MCLG) [MRDLG]	Typical Source of Contaminant
Aluminum	1/6/2020	<50.000		1000		Erosion of natural deposits; residue from some surface water treatment processes
Antimony	1/6/2020	<6.000		6		Discharge from petroleum refineries; fire retardants; ceramics; electronics; solder
Arsenic	1/6/2020	<2.000		10		Erosion of natural deposits; runoff from orchards; glass and electronics production wastes
Asbestos	1/12/09	.000		7 MFL		Internal corrosion of asbestos cement water mains; erosion of natural deposits
Barium	1/6/2020	<100.000		1000		Discharge of oil drilling wastes and from metal refineries; erosion of natural deposits
Beryllium	1/6/2020	<1.000		4		Discharge from metal refineries, coal-burning factories, and electrical, aerospace, and defense industries
Cadmium	1/6/2020	<1.000		5		Internal corrosion of galvanized pipes; erosion of natural deposits; discharge from electroplating and industrial chemical factories, and metal refineries; runoff from waste batteries and paints
Chromium HEXAVALENT	12/31/14	<.000		10		Discharge from steel and pulp mills and chrome plating; erosion of natural deposits
Chromium	1/6/2020	<1.000		50		Discharge from steel and pulp mills and chrome plating; erosion of natural deposits
Fluoride	1/6/2020	.96		2		Erosion of natural deposits; water additive which promotes strong teeth; discharge from fertilizer and aluminum factories
Mercury	1/6/2020	<1.000		2		Erosion of natural deposits; discharge from refineries and factories; runoff from landfills and cropland
Nickel	1/6/2020	<10.000		100		Erosion of natural deposits; discharge from metal factories
Perchlorate	8/31/18	<4.000		6		Perchlorate is an inorganic chemical used in solid rocket propellant, fireworks, explosives, flares, matches, and a variety of industries. It usually gets into drinking water as a result of environmental contamination from historic aerospace or other industrial operations that used or use, store, or dispose of perchlorate

						and its salts.
Selenium	1/6/2020	<5.000		50		Discharge from petroleum, glass, and metal refineries; erosion of natural deposits; discharge from mines and chemical manufacturers; runoff from livestock lots (feed additive)
Thallium	1/6/2020	<1.000		2		Leaching from ore-processing sites; discharge from electronics, glass, and drug factories
Nitrate	1/6/2020	< .4		45		Runoff and leaching from fertilizer use; leaching from septic tanks and sewage; erosion of natural deposits
Nitrite	1/6/2020	< .40		1000		Runoff and leaching from fertilizer use; leaching from septic tanks and sewage; erosion of natural deposits
TABLE 5 – DETE	ECTION OF (CONTAMINA	NTS WITH A SI	ECONDAR	Y DRINKIN	G WATER STANDARD
Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	MCL	PHG (MCLG)	Typical Source of Contaminant
Bicarbonate	1/6/2020	320				
Calcium	1/6/2020	20				
Carbonate	1/6/2020	< 1.00				
Chloride	1/6/2020	68		500		Runoff/leaching from natural deposits; seawater influence
Color	1/6/2020	5		15		Naturally-occurring organic materials
Copper	1/6/2020	< 50.0		1000		Internal corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives
Foaming Agents (MBAS)	1/6/2020	< .05		0.50		Municipal and industrial waste discharges
Hydroxide	1/6/2020	< 1.000				
Iron	12/29/20	140		300		Leaching from natural deposits; industrial wastes
Magnesium	1/6/2020	8.5				Leaching from natural deposits
Manganese	12/29/20	120		50		Leaching from natural deposits

Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	Notification Level	Health Effects Language
				LATED CONTAMINA	ANTS
Zinc	1/6/2020	<50.0		5000	Runoff/leaching from natural deposits; industrial wastes
Turbidity	1/6/2020	.15		5	Soil runoff
Total Hardness	1/6/2020	85			
Total Dissolved Solids	1/6/2020	500		1000	Runoff/leaching from natural deposits
Sulfate	1/6/2020	1.7		500	Runoff/leaching from natural deposits; industrial wastes
Specific Conductance	1/6/2020	740		1600	Substances that form ions when in water
Sodium	1/6/2020	100.000			
Silver	1/6/2020	< 10.000		100	Industrial discharges
Odor	1/6/2020	4.0		3	Naturally-occurring organic materials

^{*}Any violation of an MCL, MRDL, or TT is asterisked. Additional information regarding the violation is provided later in this report.

Additional General Information on Drinking Water

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the USEPA's Safe Drinking Water Hotline (1-800-426-4791).

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. USEPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* and other microbial contaminants are available from the Safe Drinking Water Hotline (1-800-426-4791).

Lead-Specific Language for Community Water Systems: If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. [INSERT NAME OF UTILITY] is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead.

Summary Information for Violation of a MCL, MRDL, AL, TT, or Monitoring and Reporting Requirement

VIOLATION OF A MCL, MRDL, AL, TT, OR MONITORING AND REPORTING REQUIREMENT							
Violation	Explanation	Duration	Actions Taken to Correct the Violation	Health Effects Language			

For Water Systems Providing Ground Water as a Source of Drinking Water

TABLE 7 – SAMPLING RESULTS SHOWING FECAL INDICATOR-POSITIVE GROUND WATER SOURCE SAMPLES							
Microbiological Contaminants (complete if fecal-indicator detected) Total No. of Detections Sample MCL [MRDL] [MRDL] Typical Source of Contam [MRDLG]							
E. coli	(In the year)		0	(0)	Human and animal fecal waste		
Enterococci	(In the year)		TT	n/a	Human and animal fecal waste		
Coliphage	(In the year)		TT	n/a	Human and animal fecal waste		

Summary Information for Fecal Indicator-Positive Ground Water Source Samples, Uncorrected Significant Deficiencies, or Ground Water TT

SPECIAL	NOTICE OF FECAL INI	DICATOR-POSITIVE G	ROUND WATER SOURCE	SAMPLE
	SPECIAL NOTICE FOR	UNCORRECTED SIGN	NIFICANT DEFICIENCIES	
	VIOLA	TION OF GROUND W.	ATER TT	
TT Violation	Explanation	Duration	Actions Taken to Correct the Violation	Health Effects Language

Consumer Confidence Re	port			Page 7 of 8	
For	Systems Providing S	Surface Water as a	a Source of Drinking Wa	ater	
TABLE 8 -	SAMPLING RESULTS S	SHOWING TREATME	ENT OF SURFACE WATER S	SOURCES	
Treatment Technique (a) (Type of approved filtration	n technology used)				
(Type of approved minute)	ii teemology usea)	Turbidity of the f	îltered water must:		
Turbidity Performance State (that must be met through the state of the	ndards ^(b) the water treatment process)	2 – Not exceed _	or equal to NTU in 95% of me NTU for more than eight conse NTU at any time.		
Lowest monthly percentage Performance Standard No.	e of samples that met Turbidity 1.				
Highest single turbidity me					
Number of violations of an requirements	y surface water treatment				
	•	TION OF A SURFACE			
TT Violation	Explanation	Duration	Actions Taken to Correct the Violation	ect Health Effects Language	
Sum	mary Information fo	or Operating Und	er a Variance or Exemp	tion	
-	-				