

2018 Annual Water Quality Report

Rural North Vacaville Water District welcomes this yearly opportunity to communicate our commitment to delivering quality water to our customers. Your ground water is supplied from two wells (one of which is reserved for emergency use only) in your local area. Board meetings are held at 4135 Cantelow Road, Vacaville, on the second Tuesday of every month at 7 pm. Additional information provided on the district website at www.RNVWD.COM

This report tells you that after testing for over 100 different constituents, your drinking water supply meets all health related standards established by the State Water Resources Control Board – Division of Drinking Water, and the U.S. Environmental Protection Agency.

All source waters used for drinking water are required to be assessed for the vulnerability to possible contaminants. A Source Water Assessment for the well was completed in 2002. The sources are considered most vulnerable to the following activities not associated with any detected contaminants: Agricultural drainage, septic tanks, and improperly abandoned wells. A summary of the assessment can be obtained by contacting the District office.

For more information, contact Sue Murphy, Water Quality Specialist 707-455-4021

Este informe contiene información muy importante sobre su agua potable.

Tradúzcalo ó hable con alguien que lo entienda bien. TERMS USED IN THIS REPORT:

level of a contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs (or MCLGs) as is economically and technologically feasible. Secondary MCLs are set to protect the odor, taste, and appearance of drinking water.

Maximum Contaminant Level Goal (MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the U.S. Environmental Protection Agency (USEPA).

Public Health Goal (PHG): The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California Environmental Protection Agency.

Maximum Residual Disinfectant Level (MRDL): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Maximum Residual Disinfectant Level Goal (MRDLG): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

Maximum Contaminant Level (MCL): The highest Primary Drinking Water Standards (PDWS): MCLs or MRDLs for contaminants that affect health along with their monitoring and reporting requirements, and water treatment requirements.

> Secondary Drinking Water Standards (SDWS): MCLs for contaminants that affect taste, odor, or appearance of the drinking water. Contaminants with SDWSs do not affect health at the MCL levels.

> Action Level (AL): The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

> Notification Level (NL): Health based advisory level set by the Department for constituents with no MCL. This is not an enforceable standard, although requirements and recommendations may apply if detected above this level.

NA: not applicable

pCi/L: picocuries per liter

µS/cm: microsiemens per centimeter

ppb: parts per billion or micrograms per liter (ug/L)

ppm: parts per million or milligrams per liter (mg/L)

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include:

- *Microbial contaminants*, such as viruses and bacteria that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- *Inorganic contaminants*, such as salts and metals, that can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- *Pesticides and herbicides*, which may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses.
- Organic chemical contaminants, including synthetic and volatile organic chemicals that are byproducts of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, agricultural application, and septic systems.
- *Radioactive contaminants*, which can be naturally-occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, USEPA and the State Water Resources Control Board – Division of Drinking Water (DDW) prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. DDW regulations also establish limits for contaminants in bottled water that must provide the same protection for public health.

The tables below list all of the drinking water contaminants that were detected during the most recent sampling for the constituent. The presence of these contaminants in the water does not necessarily indicate that the water poses a health risk. DDW allows systems to monitor for certain contaminants less than once per year because the concentrations of these contaminants do not change frequently.

TABI	LE 1 - SAMP	LING RES	SULTS SHOW	ING THE DI	ETECTION	N OF BACTERIA
Microbiological Constituents	Highest No. of detections	Months in violation	MCL		MCLG	Typical Source of Bacteria
Total Coliform Bacteria	(In a mo.) 0	0	More than 1 sample in a month with a detection		0	Naturally present in the environment
E. Coli	(In the year) 0	0	A routine sample and a repeat sample detect total coliform and either sample also detects E. coli		0	Human and animal fecal waste
TAB	LE 2 – CUST	COMER TA	AP SAMPLING	RESULTS	FOR LEA	D AND COPPER
Lead and Copper (reporting units)	No. of samples collected	90 th percentile level detected	No. of sites exceeding AL	AL	PHG	Typical Source of Constituent
Lead (ppb) 7/22/2018	10	ND	0	15	0.2	Internal corrosion of household water plumbing systems
Copper (ppm) 7/22/2018	10	0.086	0	1.3	0.30	Internal corrosion of household water plumbing systems
	TABLE 3 -	SAMPLIN	NG RESULTS I	FOR SODIU	M AND H	ARDNESS
Constituent (reporting units)	Sample Date	Average Level Detected	Range of Detections	MCL	PHG (MCLG)	Typical Source of Constituent
Sodium (ppm)	10/3/2016	67	67	none	none	Generally found in ground & surface water
Hardness (ppm)	10/3/2016	120	120	none	none	Generally found in ground & surface water

TABLE 4 - DET	TECTION OF	CONSTIT	UENTS WITI	H A <u>PRIMA</u>	<u>.RY</u> DRINKI	NG WATER STANDARD
Constituent (reporting units)	Sample Date	Average Level Detected	Range of Detections	MCL [MRDL]	PHG (MCLG) [MRDLG]	Typical Source of Constituent
Arsenic (ppb)	Quarterly 2018	5.6	4.4-7.2	10	0.004	Erosion of natural deposits; runoff from orchards; glass and electronic production wastes
Barium (ppm)	10/3/2016	0.006	0.006	1	2	Runoff/leaching from natural deposits
Fluoride (ppm)	10/3/2016	0.35	0.35	2.0	1	Erosion of natural deposits
Hexavalent Chromium (ppb)	11/16/2018	4.0	4.0	10	0.02	Erosion of natural deposits
Nitrate, as N (ppm)	8/16/2018	0.93	0.93	10	10	Runoff and leaching from fertilizer use; leaching from septic tanks and sewage; erosion of natural deposits
Disinfection Byproducts, Disi	infectant Resid	uals, and Disi	nfection Bypro	duct Precurs	ors in Distribu	tion System
Total Trihalomethanes (ppb)	8/16/2018	16	16	80	NA	By-product of drinking water chlorination
Haloacetic Acids (ppb)	8/16/2018	2.6	2.6	60	NA	By-product of drinking water chlorination
Chlorine (ppm)	Monthly 2018	1.02	1.02	[4.0]	[4]	Drinking water disinfectant added for treatment
TABLE 5 – DETH	ECTION OF	CONSTITU	ENTS WITH	A SECONE	DARY DRINI	KING WATER STANDARD
Constituent (reporting units)	Sample Date	Average Level Detected	Range of Detections	MCL	PHG (MCLG)	Typical Source of Constituent
Chloride (ppm)	10/3/2016	9.1	9.1	500	NA	Runoff/leaching from natural deposits
Specific Conductance (µS/cm)	10/3/2016	490	490	1600	NA	Substances that form ions when in water
Sulfate (ppm)	10/3/2016	30	30	500	NA	Runoff/leaching from natural deposits
Total Dissolved Solids (ppm)	10/3/2016	360	360	1000	NA	Runoff/leaching from natural deposits
Turbidity (units)	10/3/2016	0.11	0.11	5	NA	Runoff/leaching from natural deposits

Additional General Information on Drinking Water

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk.

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. More information about contaminants, potential health effects, and reducing risks can be obtained by calling the USEPA's Safe Drinking Water Hotline 1-800-426-4791.

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Rural North Vacaville Water District is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water is sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you my wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://epa.gov/safewater/lead .