our water provider, the Suisun-Solano Water Authority, welcomes this yearly opportunity to communicate our commitment to delivering quality water to our customers through this Annual Water Quality Report. The water system is a partnership between the City of Suisun City and Solano Irrigation District, a special purpose public agency. There are currently over 8,686 service connections, and the system delivered over 926 Million Gallons of water in 2019. A Drinking Water Source Assessment for the Putah South Canal was completed in 2001. The source water is considered most vulnerable to illegal activities such as unauthorized dumping, and herbicide application. No chemicals associated with these activities have been detected. You may request a summary of the assessment at 707-455-4021. Public involvement in water quality decisions is welcomed. The public is encouraged to attend meetings. If you wish to do so, please call City Hall at 707-421-7300, and ask them to place your name on the mailing list for Board meetings. Este informe contiene información muy importante sobre su agua potable. Tradúzcalo ó hable con alguien que lo entienda bien. SUISUN-SOLANO WATER AUTHORITY #### SSWA Increases Water Storage and Water Quality in 2019! In late 2019, the Suisun-Solano Water Authority (SSWA) completed construction and commissioned a new 2-million gallon water storage tank, bringing the system's overall storage capacity to almost 9-million gallons. Or, equivalent to the maximum-day demand for the SSWA drinking water system. There are several goals achieved by maintaining large treated water storage reserves for SSWA. Chief among them are: availability for fire flow demands, peak-day water demand in the summer, and flexibility during maintenance and repairs. The additional storage helps alleviate capacity concerns when canal cleaning and maintenance is occurring along the 33-miles of Putah South Canal (Suisun City's water source). At times, cities have to rely on alternate sources or their stored water for a day or two when the canal is de-watered and cleaned to ensure its sustained and problem-free operation. Furthermore, state-of-the-art aeration systems were installed in the tank to further, and more rapidly, reduce disinfection byproducts before the drinking water even leaves the water treatment plant. # Suisun-Solano Water Authority Drinking Water Quality Report 2019 Only Tap Water Delivers - Public Health Protection Fire Protection • - Support for the Economy Quality of Life • Your Drinking Water Meets and Exceeds All EPA and California Health Standards #### **Your Water Source and Supply Facilities** The water source for this system is surface water from Lake Berryessa. The Putah South Canal transports this water to the Cement Hill Water Treatment Plant where it is treated to drinking water standards before distribution to our customers. The water distribution system includes five above ground tanks. Collectively, these tanks can store up to 8.5 million gallons of water. The Cement Hill Water Treatment Plant is designed with emergency diesel powered back-up generators that provide electricity for the pumps in the event of a power outage. #### **Water Treatment** The Cement Hill Water Treatment Plant can process up to 10 million gallons of water per day. The facility includes three clarifiers, for coagulation, flocculation, and sedimentation processes, followed by ten dual-media pressure filters that clean the water to meet strict standards of clarity. Throughout the processes, chemical additions help with coagulation, sedimentation, and filtering of the water supply. Chlorine is added to your water to meet surface water treatment and water quality regulations. ### **Water Quality our Commitment our Profession!** Drinking Water is a highly regulated industry, with extensive Federal EPA and CA Division of Drinking Water regulations. Water Systems are required to test the water and submit reports for different parameters daily, weekly, monthly, annually, and additional frequencies. There are regulations on public notification like this annual report of detected constituents, or within 24 hour notification about urgent concerns. Our staff have high level Operator Certifications with required continuing education to stay current on changing advances in Distribution, and Treatment. We have staff available 24 hours a day/7 days a week/365 days a year. You can sign up for additional alerts of repairs and information at our website: www.sidwater.org Please let us know if you have questions about your drinking water, want to report a leak, or reach our conservation hotline. We care about our Customers! ## A Message from the Environmental Protection Agency The sources of all drinking water (both tap water and bottled water) may include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, can pick up substances resulting from the presence of animals or from human activity. Contaminants that may be present in source water include: *Microbial contaminants*, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife. *Inorganic contaminants*, such as salts and metals, that can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming. *Pesticides and herbicides,* that may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses. Organic chemical contaminants, including synthetic and volatile organic chemicals, that are byproducts of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, and septic systems. Radioactive contaminants, that can be naturally occurring or be the result of oil and gas production and mining activities. In order to ensure that tap water is safe to drink, USEPA and the California Department of Public Health prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. Regulations also establish limits for contaminants in bottled water that must provide the same protection for public health. Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. Some people may be more vulnerable to contaminants in drinking water than the general population. Immunocompromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. More information about contaminants and potential health effects can be continues If you have any questions about this report or the quality of the water delivered by Suisun-Solano Water Authority, please contact Sue Murphy, Water Quality Specialist at 707-455-4021 obtained by calling the **Environmental Protection Agency's Safe Drinking Water Hotline 1-800-426-4791.**You may also want to access the EPA's drinking water web site **www.epa.gov/safewater**. If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. SSWA is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water is sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you my wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://epa.gov/safewater/lead. # **Terms Used in This Report** ## AL-Action Level: The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow. # MCL-Maximum Contaminant Level: The highest level of a contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs (or MCLGs) as is economically and technologically feasible. Secondary MCLs are set to protect the odor, taste, and appearance of drinking water. # MCLG-Maximum Contaminant Level Goal: The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the U.S. Environmental Protection Agency (USEPA). # MRDL-Maximum Residual Disinfectant Level: The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants. # MRDLG-Maximum Residual Disinfectant Level Goal: The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants. μS/cm: Microsiemens per Centimeter NA: not applicable ND: not detectable at testing limit # NL-Notification Level: Health-based advisory level set by the Department for constituents with no MCL. This is not an enforceable standard, although requirements and recommendations may apply if detected above this level. NTU -Nephelometric Turbidity Units: The standard unit for turbidity measurements. # PHG-Public Health Goal: The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California Environmental Protection Agency. ppb: parts per billion or micrograms per liter (ug/L) ppm: parts per million or milligrams per liter (mg/L) # TT-Treatment Technique: A required process intended to reduce the level of a contaminant in drinking water. **Evaluating Your Drinking Water** – The tables below list all of the drinking water constituents that were detected during the most recent sampling. The presence of these constituents in the water does not necessarily indicate that the water poses a health risk. The Health Department allows systems to monitor for certain constituents less than once per year because the concentrations of these constituents do not change frequently. ## TABLE 1 - SAMPLING RESULTS SHOWING THE DETECTION OF BACTERIA | Microbiological
Constituents | Highest No.
of detections | No. of months in violation | MCL | MCLG | Typical Source of Bacteria | |---------------------------------|------------------------------|----------------------------|---|------|--------------------------------------| | Total Coliform Bacteria | (In a mo.)
0 | 0 | More than 1 sample in a month with a detection | 0 | Naturally present in the environment | | E. coli | (In the year) | 0 | A routine sample and a repeat sample
detect total coliform and either sample
also detects E. coli | 0 | Human and animal fecal waste | ## TABLE 2 – CUSTOMER TAP SAMPLING RESULTS FOR LEAD AND COPPER | Lead and Copper (reporting units) | No. of samples collected | 90th percentile level detected | No. of sites exceeding AL | AL | PHG | Typical Source of
Constituent | |-----------------------------------|--------------------------|--------------------------------|---------------------------|-----|------|--| | Lead (ppb) 8/20/2017 | 20 | ND | 0 | 15 | 2 | Corrosion of household
water plumbing systems;
erosion of natural deposits | | Copper (ppm) 8/20/2017 | 20 | 0.11 | 0 | 1.3 | 0.30 | Corrosion of household water plumbing systems; erosion of natural deposits | ### TABLE 3 - SAMPLING RESULTS FOR SODIUM AND HARDNESS | Constituent (reporting units) | Sample Date | Average Level
Detected | Range of Detections | MCL | PHG (MCLG) | Typical Source of
Constituent | |-------------------------------|-------------|---------------------------|---------------------|------|------------|--| | Sodium (ppm) | 3/12/2019 | 11 | 11 | none | none | Generally found in ground
& surface water | | Hardness (ppm) | 3/12/2019 | 150 | 150 | none | none | Generally found in ground
& surface water | ## TABLE 4 - DETECTION OF CONSTITUENTS WITH A <u>PRIMARY</u> DRINKING WATER STANDARD | Constituent (reporting units) | Sample Date | Average Level
Detected | Range of Detections | MCL [MRDL] | PHG (MCLG) [MRDLG] | Typical Source of
Constituent | |---|----------------|---------------------------|---------------------|------------|--------------------|--| | Copper (ppm) | 3/12/2019 | 0.017 | 0.017 | AL=1.3 | 0.3 | Internal corrosion of
household plumbing
systems | | Disinfection Byproducts, Disinfectant Residuals, and Disinfection Byproduct Precursors in Distribution System | | | | | | | | Total Trihalomethanes (ppb) | Quarterly 2019 | 57 | 31.0-72.0 | 80 | NA | By-product of drinking water chlorination | | Haloacetic Acids (ppb) | Quarterly 2019 | 36 | 20.0-37.0 | 60 | NA | By-product of drinking water chlorination | | Chlorine (ppm) | Weekly 2019 | 0.80 | 0.58-1.14 | [4.0] | [4] | Drinking water disinfectant added for treatment | | Total Organic Carbon (ppm) | Monthly 2019 | 2.32 | 1.9-3.1 | TT | NA | Various natural and manmade sources | # TABLE 5 – DETECTION OF CONSTITUENTS WITH A <u>SECONDARY</u> DRINKING WATER STANDARD | Constituent (reporting units) | Sample Date | Average Level
Detected | Range of Detections | MCL | PHG (MCLG) | Typical Source of
Constituent | |-------------------------------|-------------|---------------------------|---------------------|------|------------|---| | Chloride (ppm) | 3/12/2019 | 11 | 11 | 500 | NA | Runoff/leaching from
natural deposits; seawater
influence | | Copper (ppm) | 3/12/2019 | 0.017 | 0.017 | 1.0 | NA | Internal corrosion of
household plumbing
systems | | Sulfate (ppm) | 3/12/2019 | 20 | 20 | 500 | NA | Runoff/leaching from
natural deposits; industrial
wastes | | Specific Conductance (µS/cm) | 3/12/2019 | 330 | 330 | 1600 | NA | Substances that form ions
when in water; seawater
influence | | Total Dissolved Solids (ppm) | 3/12/2019 | 180 | 180 | 1000 | NA | Runoff/leaching from
natural deposits | | Turbidity (NTU) | 3/12/2019 | 0.10 | 0.10 | 5 | NA | Soil runoff | # TABLE 6 - SAMPLING RESULTS SHOWING TREATMENT OF SURFACE WATER SOURCES | TABLE 0-SAMPLING RESULTS SHOWING TREATMENT OF SURFACE WATER SOURCES | | | | | | | |--|---|--|--|--|--|--| | Treatment Technique (a)
(Type of approved filtration technology used) | Conventional Filtration | | | | | | | Turbidity Performance Standards (b)
(must be met through the water treatment process) | Turbidity of the filtered water must: 1 — Be less than or equal to 0.3 NTU in 95% of measurements in a month. 2 — Not exceed 5.0 NTU at any time. | | | | | | | Lowest monthly percentage of samples that met Turbidity Performance Standard No. 1. | 100 % | | | | | | | Highest single turbidity measurement during the year | 0.277 NTU | | | | | | | Number of violations of any surface water treatment requirements | 0 | | | | | | - (1) Compliance is based on a running annual average (RAA) of distribution samples collected in 4 quarters. - (a) A required process intended to reduce the level of a contaminant in drinking water. - (b) Turbidity (measured in NTU) is a measurement of the cloudiness of water and is a good indicator of water quality and filtration performance. Turbidity results which meet performance standards are considered to be in compliance with filtration requirements.