## **2021 Consumer Confidence Report** #### Water System Information Water System Name: Campbell Soup Supply Company, L.L.C. Report Date: 6/10/2022 Type of Water Source(s) in Use: Groundwater Name and General Location of Source(s): Domestic Well, at 8380 Pedrick Rd., Dixon, CA 95620 Drinking Water Source Assessment Information: A source assessment for the Domestic Well was completed in November of 2002. The water source is considered most vulnerable to contamination from food processing activities, machine shop operations, or improperly operated or abandoned water wells. No contaminants associated with these activities have been detected. To obtain a copy of the assessment, contact the SWRCB-DDW District 4 office at (510) 620-3474. Time and Place of Regularly Scheduled Board Meetings for Public Participation: Private system, no meetings are held. For More Information, Contact: David Kiehn – Director Agriculture Operations, (707) 678-4406 ext. 5517 #### **About This Report** We test the drinking water quality for many constituents as required by state and federal regulations. This report shows the results of our monitoring for the period of January 1 to December 31, 2021 and may include earlier monitoring data. # Importance of This Report Statement in Five Non-English Languages (Spanish, Mandarin, Tagalog, Vietnamese, and Hmong) Language in Spanish: Este informe contiene información muy importante sobre su agua para beber. Favor de comunicarse Campbell Soup Supply Company, L.L.C. a 8380 Pedrick Rd., Dixon, CA 95620, (707) 678-4406 para asistirlo en español. Language in Mandarin: 这份报告含有关于您的饮用水的重要讯息。请用以下地址和电话联 Campbell Soup Supply Company, L.L.C. 以获得中文的帮助: 8380 Pedrick Rd., Dixon, CA 95620, (707) 678-4406. Language in Tagalog: Ang pag-uulat na ito ay naglalaman ng mahalagang impormasyon tungkol sa inyong inuming tubig. Mangyaring makipag-ugnayan sa Campbell Soup Supply Company, L.L.C. 8380 Pedrick Rd., Dixon, CA 95620 o tumawag sa (707) 678-4406 para matulungan sa wikang Tagalog. Language in Vietnamese: Báo cáo này chứa thông tin quan trọng về nước uống của bạn. Xin vui lòng liên hệ Campbell Soup Supply Company, L.L.C. tại 8380 Pedrick Rd., Dixon, CA 95620, (707) 678-4406 để được hỗ trợ giúp bằng tiếng Việt. Language in Hmong: Tsab ntawv no muaj cov ntsiab lus tseem ceeb txog koj cov dej haus. Thov hu rau Campbell Soup Supply Company, L.L.C. ntawm 8380 Pedrick Rd., Dixon, CA 95620, (707) 678-4406 rau kev pab hauv lus Askiv. ### **Terms Used in This Report** | Term | Definition | |--------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Level 1 Assessment | A Level 1 assessment is a study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system. | | Level 2 Assessment | A Level 2 assessment is a very detailed study of the water system to identify potential problems and determine (if possible) why an <i>E. coli</i> MCL violation has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions. | | Maximum Contaminant<br>Level (MCL) | The highest level of a contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs (or MCLGs) as is economically and technologically feasible. Secondary MCLs are set to protect the odor, taste, and appearance of drinking water. | | Maximum Contaminant<br>Level Goal (MCLG) | The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the U.S. Environmental Protection Agency (U.S. EPA). | | Maximum Residual<br>Disinfectant Level<br>(MRDL) | The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants. | | Maximum Residual<br>Disinfectant Level Goal<br>(MRDLG) | The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants. | | Primary Drinking Water Standards (PDWS) | MCLs and MRDLs for contaminants that affect health along with their monitoring and reporting requirements, and water treatment requirements. | | Public Health Goal<br>(PHG) | The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California Environmental Protection Agency. | | Regulatory Action Level (AL) | The concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow. | | Secondary Drinking<br>Water Standards<br>(SDWS) | MCLs for contaminants that affect taste, odor, or appearance of the drinking water. Contaminants with SDWSs do not affect the health at the MCL levels. | | Treatment Technique (TT) | A required process intended to reduce the level of a contaminant in drinking water. | | Variances and Exemptions | Permissions from the State Water Resources Control Board (State Board) to exceed an MCL or not comply with a treatment technique under certain conditions. | | ND | Not detectable at testing limit. | | ppm | parts per million or milligrams per liter (mg/L) | | ppb | parts per billion or micrograms per liter (µg/L) | | Term | Definition | | |-------|----------------------------------------------------|--| | ppt | parts per trillion or nanograms per liter (ng/L) | | | ppq | parts per quadrillion or picogram per liter (pg/L) | | | pCi/L | picocuries per liter (a measure of radiation) | | ## Sources of Drinking Water and Contaminants that May Be Present in Source Water The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity. Contaminants that may be present in source water include: - Microbial contaminants, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife. - Inorganic contaminants, such as salts and metals, that can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming. - Pesticides and herbicides, that may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses. - Organic chemical contaminants, including synthetic and volatile organic chemicals, that are byproducts of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, agricultural application, and septic systems. - Radioactive contaminants, that can be naturally-occurring or be the result of oil and gas production and mining activities. ## **Regulation of Drinking Water and Bottled Water Quality** In order to ensure that tap water is safe to drink, the U.S. EPA and the State Board prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. The U.S. Food and Drug Administration regulations and California law also establish limits for contaminants in bottled water that provide the same protection for public health. ## **About Your Drinking Water Quality** #### **Drinking Water Contaminants Detected** Tables 1, 2, 3, 4, 5, 6, and 8 list all of the drinking water contaminants that were detected during the most recent sampling for the constituent. The presence of these contaminants in the water does not necessarily indicate that the water poses a health risk. The State Board allows us to monitor for certain contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of the data, though representative of the water quality, are more than one year old. Any violation of an AL, MCL, MRDL, or TT is asterisked. Additional information regarding the violation is provided later in this report. Table 1. Sampling Results Showing the Detection of Coliform Bacteria Complete if bacteria are detected. | Microbiological<br>Contaminants | Highest No.<br>of<br>Detections | No. of<br>Months in<br>Violation | MCL | MCLG | Typical Source of Bacteria | |---------------------------------|---------------------------------|----------------------------------|-----|------|------------------------------| | E. coli | (In the year)<br>0 | 0 | (a) | 0 | Human and animal fecal waste | (a) Routine and repeat samples are total coliform-positive and either is *E. coli*-positive or system fails to take repeat samples following *E. coli*-positive routine sample or system fails to analyze total coliform-positive repeat sample for *E. coli*. Table 1.A. Compliance with Total Coliform MCL between January 1, 2021 and June 30, 2021 (inclusive) | Microbiological<br>Contaminants | Highest No.<br>of<br>Detections | No. of<br>Months in<br>Violation | MCL | MCLG | Typical Source of Bacteria | |-----------------------------------|---------------------------------|----------------------------------|-------------------------------|------|--------------------------------------| | Total Coliform<br>Bacteria | (In a month)<br>0 | 0 | 1 positive monthly sample (a) | 0 | Naturally present in the environment | | Fecal Coliform and <i>E. coli</i> | (in the year)<br>0 | 0 | 0 | None | Human and animal fecal waste | <sup>(</sup>a) For systems collecting fewer than 40 samples per month: two or more positively monthly samples is a violation of the total coliform MCL Table 2. Sampling Results Showing the Detection of Lead and Copper Complete if lead or copper is detected in the last sample set. | Lead and<br>Copper | Sample Date | No. of Samples<br>Collected | 90 <sup>th</sup> Percentile<br>Level Detected | No. Sites<br>Exceeding AL | AL | PHG | No. of Schools<br>Requesting<br>Lead Sampling | Typical Source<br>of<br>Contaminant | |--------------------|-------------|-----------------------------|-----------------------------------------------|---------------------------|----|-----|-----------------------------------------------|-------------------------------------------------------------------------| | Lead<br>(ppb) | 7/18/19 | 5 | ND | 0 | 15 | 0.2 | N/A | Internal corrosion of household water plumbing systems; discharges from | | Lead and<br>Copper | Sample Date | No. of Samples<br>Collected | 90 <sup>th</sup> Percentile<br>Level Detected | No. Sites<br>Exceeding AL | AL | PHG | No. of Schools<br>Requesting<br>Lead Sampling | Typical Source<br>of<br>Contaminant | |--------------------|-------------|-----------------------------|-----------------------------------------------|---------------------------|-----|-----|-----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------| | | | | | | | | | industrial manufacturers; erosion of natural deposits | | Copper (ppm) | 7/18/19 | 5 | .29 | 0 | 1.3 | 0.3 | N/A | Internal corrosion of<br>household plumbing<br>systems; erosion of natural<br>deposits; leaching from<br>wood preservatives | Table 3. Sampling Results for Sodium and Hardness | Chemical or<br>Constituent (and<br>reporting units) | Sample<br>Date | Level<br>Detected | Range of Detections | MCL | PHG<br>(MCLG) | Typical Source of Contaminant | |-----------------------------------------------------|----------------|-------------------|---------------------|------|---------------|----------------------------------------------------------------------------------------------------------------------| | Sodium (ppm) | 6/7/12 | 33 | | None | None | Salt present in the water and is generally naturally occurring | | Hardness (ppm) | 6/7/12 | 280 | | None | None | Sum of polyvalent cations present in the water, generally magnesium and calcium, and are usually naturally occurring | Table 4. Detection of Contaminants with a Primary Drinking Water Standard | Chemical or<br>Constituent<br>(and reporting<br>units) | Sample<br>Date | Level<br>Detected | Range of<br>Detections | MCL<br>[MRDL] | PHG<br>(MCLG)<br>[MRDLG] | Typical Source<br>of<br>Contaminant | |--------------------------------------------------------|-------------------------------------------|-------------------|------------------------|---------------|--------------------------|--------------------------------------------------------------| | Gross Alpha Particle<br>Activity (pCi/L) | Sampled 4x from 12/16/13 - 11/13/14 | | 1.29 – 3.97 | 15 | (0) | Erosion of natural deposits | | Total Radium (pCi/L) | Sampled twice on 12/16/13 & 3/6/14 | | 0.00 -0.75 | 5 | N/A | Erosion of natural deposits | | Uranium (pCi/L) | Sampled 4x<br>from 12/16/13 -<br>11/13/14 | | 0.676 – 1.3 | 20 | 0.43 | Erosion of natural deposits | | Arsenic (µg/L) | 7/16/21 | 2.1 | | 10 | 0.004 | Erosion of natural deposits; runoff from orchards; glass and | | | | | | | | electronics production wastes | |------------------------------------------------------------------|--------------------------|-------------------------|-------------|----------|-------|--------------------------------------------------------------------------------------------------------------------------------| | Barium (mg/L) | 7/16/21 | .25 | | 1 | 2 | Discharge of oil drilling wastes and from metal refineries; erosion of natural deposits | | Chromium (Total) (μg/L) | 7/16/21 | 23 | | 50 | (100) | Discharge from steel<br>and pulp mills and<br>chrome plating; erosion<br>of natural deposits | | Copper (mg/L) | 7/18/19 | 0.29 90 <sup>th</sup> % | 0.13 – 0.30 | (AL=1.3) | 0.3 | Internal corrosion of<br>household plumbing<br>systems; erosion of<br>natural deposits;<br>leaching from wood<br>preservatives | | Fluoride (mg/L) | 7/16/21 | .17 | | 2.0 | 1 | Erosion of natural deposits; water additive which promotes strong teeth; discharge from fertilizer and aluminum factories | | Nitrate (as nitrogen, N) (mg/L) See reference below <sup>1</sup> | Sampled twice<br>in 2021 | | 6.2 – 6.8 | 10 | 10 | Runoff and leaching<br>from fertilizer use;<br>leaching from septic<br>tanks and sewage;<br>erosion of natural<br>deposits | Table 5. Detection of Contaminants with a Secondary Drinking Water Standard | Chemical or<br>Constituent (and<br>reporting units) | Sample<br>Date | Level<br>Detected | Range of Detections | SMCL | PHG<br>(MCLG) | Typical Source<br>of<br>Contaminant | |-----------------------------------------------------|----------------|-------------------------|---------------------|------|---------------|-----------------------------------------------------------------------------------------------------------------| | Total Dissolved Solids (TDS) (mg/L) | 6/7/12 | 360 | | 1000 | N/A | Runoff/leaching from natural deposits | | Specific Conductance<br>(μS/cm) | 6/7/12 | 630 | | 1600 | N/A | Substances that form ions when in water; seawater influence | | Chloride (mg/L) | 6/7/12 | 12 | | 500 | N/A | Runoff/leaching from<br>natural deposits; seawater<br>influence | | Sulfate (mg/L) | 6/7/12 | 32 | | 500 | N/A | Runoff/leaching from<br>natural deposits; industrial<br>wastes | | Copper (mg/L) | 7/18/19 | 0.29 90 <sup>th</sup> % | 0.13 - 0.30 | 1.0 | N/A | Internal corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives | **Table 6. Detection of Unregulated Contaminants** | Chemical or<br>Constituent (and<br>reporting units) | Sample<br>Date | Level<br>Detected | Range of Detections | Notification<br>Level | Health Effects | |-----------------------------------------------------|----------------|-------------------|---------------------|-----------------------|---------------------------------------------------------------------------------------------| | Boron (mg/L) | 7/16/21 | .62 | | 1 | Boron exposures resulted in decreased fetal weight (developmental effects) in newborn rats. | | Vanadium (μg/L) | 7/16/21 | 7.4 | | 50 | Vanadium exposures resulted in developmental and reproductive effects in rats. | <sup>&</sup>lt;sup>1</sup> Nitrate in drinking water at levels above 10 mg/L is a health risk for infants of less than six months of age. Such nitrate levels in drinking water can interfere with the capacity of the infant's blood to carry oxygen, resulting in serious illness; symptoms include shortness of breath and blueness of the skin. Nitrate levels above 10 mg/L may also affect the ability of the blood to carry oxygen in other individuals, such as pregnant women and those with specific enzyme deficiencies. If you are caring for an infant, or you are pregnant, you should ask advice from your health care provider. #### **Additional General Information on Drinking Water** Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the U.S. EPA's Safe Drinking Water Hotline (1-800-426-4791). Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. U.S. EPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* and other microbial contaminants are available from the Safe Drinking Water Hotline (1-800-426-4791). State Revised Total Coliform Rule (RTCR): This Consumer Confidence Report (CCR) reflects changes in drinking water regulatory requirements during 2021. These revisions add the requirements of the federal Revised Total Coliform Rule, effective since April 1, 2016, to the existing state Total Coliform Rule. The revised rule maintains the purpose to protect public health by ensuring the integrity of the drinking water distribution system and monitoring for the presence of microbials (i.e., total coliform and E. coli bacteria). The U.S. EPA anticipates greater public health protection as the rule requires water systems that are vulnerable to microbial contamination to identify and fix problems. Water systems that exceed a specified frequency of total coliform occurrences are required to conduct an assessment to determine if any sanitary defects exist. If found, these must be corrected by the water system. The state Revised Total Coliform Rule became effective July 1, 2021. [Enter Additional Information Described in Instructions for SWS CCR Document] #### For Water Systems Providing Groundwater as a Source of Drinking Water Table 8. Sampling Results Showing Fecal Indicator-Positive Groundwater Source Samples | Microbiological Contaminants (complete if fecal- indicator detected) | Total No. of<br>Detections | Sample<br>Dates | MCL<br>[MRDL] | PHG<br>(MCLG)<br>[MRDLG] | Typical Source of<br>Contaminant | |----------------------------------------------------------------------|----------------------------|-----------------|---------------|--------------------------|----------------------------------| | E. coli | (In the year)<br>0 | N/A | 0 | (0) | Human and animal fecal waste | | Enterococci | (In the year)<br>0 | N/A | TT | N/A | Human and animal fecal waste | | Coliphage | (In the year)<br>0 | N/A | TT | N/A | Human and animal fecal waste |