2022 Consumer Confidence Report Anderson Union High School BECEIVED ### **Anderson Union High School** MAY 1 2 2023 ENVIRONMENTALHEALTH Here at Anderson Union High School, we want you to understand the efforts we make to provide you with a safe and dependable drinking water supply. We continually monitor our drinking water quality and strive to protect our water resources. We regularly test our drinking water for many different constituents as required by State and Federal Regulations. This "Water Quality Report" includes those constituents that were *detected* in 2022 and may include earlier monitoring data. Our drinking water is supplied by one chlorinated groundwater well (Well 01), located on the campus between the track and gymnasium. This well serves approximately 650 staff and students. The campus also has a connection to the City of Anderson water service that can be activated during peak demand or in an emergency. In June, 2022, we failed to monitor for our monthly bacteriological testing as required by our approved monitoring schedule. The source was evaluated by the county in October 2001, to determine if there were possible contaminating activities that might compromise the quality of the water. At the time, there were no associated contaminants detected in the water supply, however the source was still considered vulnerable to nearby above-ground storage tanks, parking lots/shopping centers and historic waste dumps/landfills. A copy of the complete report is available upon request. The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity. Contaminants that may be present in source water include: Microbial contaminants, such as viruses and bacteria that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife. Inorganic contaminants, such as salts and metals that can be naturally-occurring or result from urban storm water runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming. Pesticides and herbicides that may come from a variety of sources such as agriculture, urban storm water runoff, and residential uses. Organic chemical contaminants, including synthetic and volatile organic chemicals that are byproducts of industrial processes and petroleum production, and can also come from gas stations, urban storm water runoff, agricultural application, and septic systems. Radioactive contaminants that can be naturallyoccurring or be the result of oil and gas production and mining activities. In order to ensure that tap water is safe to drink, the US EPA and the State Water Resources Control Board prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. Board regulations also establish limits for contaminants in bottled water that must provide the same protection for public health. Please note that drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the U.S. EPA's Safe Drinking Water Hotline (1-800-426-4791). Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. USEPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Drinking Water Hotline (1-800-426-4791). Este informe contiene información muy importante sobre su agua beber. Favor de comunicarse Anderson High School a 530-365-2741 para asistirlo en español. For questions or concerns about your drinking water you may attend the board meeting held monthly or you may contact: Jake Stepp at 365-2741, ext 20040 ### TERMS USED IN THIS REPORT Maximum Contaminant Level (MCL): The highest level of a contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs (or MCLGs) as is economically and technologically feasible. Secondary MCLs are set to protect the odor, taste, and appearance of drinking water. Maximum Contaminant Level Goal (MCLG) or Public Health Goal (PHG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the USEPA. PHGs are set by the California EPA. Maximum Residual Disinfectant Level (MRDL): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants. Maximum Residual Disinfectant Level Goal (MRDLG): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants **Primary Drinking Water Standards (PDWS):** MCLs and MRDLs for contaminants that affect health along with their monitoring, reporting and water treatment requirements. Secondary Drinking Water Standards (SDWS): MCLs for contaminants that affect taste, odor or appearance of the drinking water. Contaminants with SDWSs do not affect the health at the MCL. **Treatment Technique (TT):** A required process intended to reduce the level of a contaminant in drinking water. Regulatory Action Level (AL): The concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow. Variances and Exemptions: Department permission to exceed an MCL or not comply with a treatment technique under certain conditions. Level 1 Assessment: A level 1 assessment is a study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system. Level 2 Assessment: A level 2 assessment is a very detailed study of the water system to identify potential problems and determine (if possible) why an E. coli MDL violation has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions. ND: not detectable at testing limit ppm: parts per million or milligrams per liter (mg/L) ppb: parts per billion or micrograms per liter (ug/L) ppt: parts per trillion or nanograms per liter (ng/L) ppq: parts per quadrillion or pictogram per liter (pg/L) pCi/L: picocuries per liter (a measure of radiation) These tables show only the drinking water contaminants that were *detected* during the most recent sampling for each constituent. The State Water Resources Control Board allows us to monitor for certain contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of the data, though representative of the water quality, are more than one year old. Any violation of an AL, MCL, MRDL, or TT is asterisked and explained below. | | INDEE 3. ON | IPLING RESULT | 15 SHOWING | THE | LILUIN | IN OF COLIFOR | IIVI DACTERIA | |---|---|--|-------------------------------------|------------------------|-----------------------------------|---|---| | Microbiological
Contaminants | Highest No. of detections | No. of months
in violation | | MCL | | MCLG | Typical Source of Bacteria | | E. coli | (in the year)
0 | 0 | (a) | | | 0 | Human and animal fecal waste | | (a) Routine and reproved routine sample | peat samples are to
or system fails to a | otal coliform-positi
analyze total colifo | ve and either is
rm-positive rep | E. coli-po
eat samp | ositive, or
le for <i>E. c</i> | system fails to tak
oli. | e repeat samples following E. coli-position | | | TABLE 2 - SAI | MPLING RESUL | TS SHOWIN | G THE | DETECT | ON OF LEAD A | ND COPPER | | Lead and Copper | No. of
samples
collected | 90th percentile
level detected | No. sites
exceeding
AL | AL | PHG | No. of schools
requesting
lead sampling | Typical Source of Contaminant | | | | | | | | *************************************** | Internal correction of baycahold water | | Lead and Copper | No. of samples collected | 90th percentile
level detected | No. sites
exceeding
AL | AL | PHG | No. of schools
requesting
lead sampling | Typical Source of Contaminant | |--------------------------|--------------------------|-----------------------------------|------------------------------|-----|-----|---|---| | Lead (ppb)
07/06/20 | 10 | 8.0 | None | 15 | 0.2 | None | Internal corrosion of household water plumbing systems; discharges from industrial manufacturers; erosion of natural deposits | | Copper (ppm)
07/06/20 | 10 | 0.795 | None | 1.3 | 0.3 | Not Applicable | Internal corrosion of household
plumbing systems; erosion of natural
deposits; leaching from wood
preservatives | If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Anderson High School is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline (1-800-426-4701) or at http://www.epa.gov/lead. | | TABLE | 3 - SAMPLING F | RESULTS FOR | SODIUM A | ND HARDNE | SS | |--|----------------|----------------|------------------------|---------------|--------------------------|--| | Chemical or Constituent
(and reporting units) | Sample
Date | Level Detected | Range of
Detections | MCL | PHG
(MCLG) | Typical Source of Contaminant | | Sodium (ppm) | 06/10/16 | 13 | | none | none | Salt present in the water and is generally naturally occurring | | Hardness (ppm) | 01/09/17 | 103 | | none | none | Sum of polyvalent cations present in the
water, generally magnesium and calcium,
and are usually naturally occurring | | TABLE 4 | 4 - DETECTION | OF CONTAMIN | ANTS WITH A | PRIMARY D | RINKING W | ATER STANDARD | | Chemical or Constituent
(and reporting units) | Sample Date | Level Detected | Range of
Detections | MCL
[MRDL] | PHG
(MCLG)
[MRDLG] | Typical Source of Contaminant | | Nitrate as N (ppm) | 10/19/22 | 1.6 | | 10 | 10 | Runoff and leaching from fertilizer use;
leaching from septic tanks and sewage;
erosion of natural deposits | | Perchlorate (µg/L) | 2021 | 0.3 | ND - 0.6 | 6 | 1 | Perchlorate is an inorganic chemical user in solid rocket propellant, fireworks, explosives, flares, matches, and a variety of industries. It usually gets into drinking water as a result of environmental contamination from historic aerospace or other industrial operations that used or use, store, or dispose of perchlorate and its salts. | | Fluoride (ppm) | 08/20/19 | 0.1 | | 2.0 | 1 | Erosion of natural deposits; water additive which promotes strong teeth; discharge from fertilizer and aluminum factories | | TABLE 5 - | DETECTION O | F CONTAMINAN | NTS WITH A <u>S</u> | ECONDARY | DRINKING V | VATER STANDARD | | Chemical or Constituent (and reporting units) | Sample Date | Level Detected | Range of
Detections | SMCL | PHG
(MCLG) | Typical Source of Contaminant | # 2022 Consumer Confidence Report North Valley High School DEPT OF RESOURCE MGMT RECEIVED MAY 1 2 2023 Here at North Valley High School, we want you to understand the efforts we make to provide you with a safe and dependable drinking water supply. We continually monitor our drinking water quality and strive to protect our water resources. We regularly test our drinking water for many different constituents as required by State and Federal Regulations. This "Water Quality Report" includes those constituents that were *detected* in 2022 and may include earlier monitoring data. Our drinking water is supplied by one treated groundwater well (Well 02), located east of the school buildings. This well also serves approximately 110 staff and students as including those in Oakview School, Community Day School and Head Start. The campus has a connection to the City of Anderson water service that can be activated during peak demand or in an emergency. The source was evaluated by the county in October 2001, to determine if there were possible contaminating activities that might compromise the quality of the water. At the time, there were no associated contaminants detected in the water supply, however the source was still considered vulnerable to historic waste dumps and landfills in the area. A copy of the complete report is available upon request. The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity. Contaminants that may be present in source water include: Microbial contaminants, such as viruses and bacteria that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife. Inorganic contaminants, such as salts and metals that can be naturally-occurring or result from urban storm water runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming. Pesticides and herbicides that may come from a variety of sources such as agriculture, urban storm water runoff, and residential uses. Organic chemical contaminants, including synthetic and volatile organic chemicals that are byproducts of industrial processes and petroleum production, and can also come from gas stations, urban storm water runoff, agricultural application, and septic systems. Radioactive contaminants that can be naturallyoccurring or be the result of oil and gas production and mining activities. In order to ensure that tap water is safe to drink, the US EPA and the State Water Resources Control Board prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. Board regulations also establish limits for contaminants in bottled water that must provide the same protection for public health. Please note that drinking water, including bottled water. The may reasonably be expected to contain at least small amounts on of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the U.S. EPA's Safe Drinking Water Hotline (1-800-426-4791). Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. USEPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Drinking Water Hotline (1-800-426-4791). Este informe contiene información muy importante sobre su agua beber. Favor de comunicarse Anderson High School a 530-365-2741 para asistirlo en español. For questions or concerns about your drinking water you may attend the board meeting held monthly or you may contact: ### Jake Stepp at 365-2741, ext 20040 ### TERMS USED IN THIS REPORT Maximum Contaminant Level (MCL): The highest level of a contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs (or MCLGs) as is economically and technologically feasible. Secondary MCLs are set to protect the odor, taste, and appearance of drinking water. Maximum Contaminant Level Goal (MCLG) or Public Health Goal (PHG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the USEPA. PHGs are set by the California EPA. Maximum Residual Disinfectant Level (MRDL): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants. Maximum Residual Disinfectant Level Goal (MRDLG): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants. **Primary Drinking Water Standards (PDWS):** MCLs and MRDLs for contaminants that affect health along with their monitoring, reporting and water treatment requirements. Secondary Drinking Water Standards (SDWS): MCLs for contaminants that affect taste, odor or appearance of the drinking water. Contaminants with SDWSs do not affect the health at the MCL. Regulatory Action Level (AL): The concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow. Variances and Exemptions: Department permission to exceed an MCL or not comply with a treatment technique under certain conditions. Level 1 Assessment: A level 1 assessment is a study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system. Level 2 Assessment: A level 2 assessment is a very detailed study of the water system to identify potential problems and determine (if possible) why an *E. coli* MDL violation has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions. ND: not detectable at testing limit ppm: parts per million or milligrams per liter (mg/L) ppb: parts per billion or micrograms per liter (ug/L) ppt: parts per trillion or nanograms per liter (ng/L) ppq: parts per quadrillion or pictogram per liter (pg/L) pCi/L: picocuries per liter (a measure of radiation) These tables show only the drinking water contaminants that were *detected* during the most recent sampling for each constituent. The State Water Resources Control Board allows us to monitor for certain contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of the data, though representative of the water quality, are more than one year old. Any violation of an AL, MCL, MRDL, or TT is asterisked and explained below. | | TABLE 1 - SAM | IPLING RESULT | s showing | THE D | ETECTIO | ON OF COLIFOR | M BACTERIA | | |---|---------------------------|-----------------------------------|------------------------------|-------|---------|---|---------------------------------------|--| | Microbiological
Contaminants | Highest No. of detections | No. of months
in violation | MCL I | | | MCLG | Typical Source of Bacteria | | | E. coli | (in the year) | 0 | (a) | | | 0 | Human and animal fecal waste | | | (a) Routine and repeat samples are total coliform-positive and either is E. coli-positive, or system fails to take repeat samples following E. coli-positive routine sample or system fails to analyze total coliform-positive repeat sample for E. coli. | | | | | | | | | | TABLE 2 - SAMPLING RESULTS SHOWING THE DETECTION OF LEAD AND COPPER | | | | | | | | | | Lead and Copper | No. of samples collected | 90th percentile
level detected | No. sites
exceeding
AL | AL | PHG | No. of schools requesting lead sampling | Typical Source of Contaminant | | | | | | T | | | | Internal serregion of household water | | Internal corrosion of household water Lead (ppb) plumbing systems; discharges from 10 8.0 None 15 0.2 None 07/06/20 industrial manufacturers; erosion of natural deposits Internal corrosion of household Copper (ppm) plumbing systems; erosion of natural deposits; leaching from wood 10 0.795 None 1.3 0.3 Not Applicable 07/06/20 preservatives If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. North Valley High School is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline (1-800-426-4701) or at http://www.epa.gov/lead. | TABLE 3 - SAMPLING RESULTS FOR SODIUM AND HARDNESS | | | | | | | | | |---|----------------|----------------|------------------------|---------------|--------------------------|--|--|--| | Chemical or Constituent
(and reporting units) | Sample
Date | Level Detected | Range of
Detections | MCL | PHG
(MCLG) | Typical Source of Contaminant | | | | Sodium (ppm) | 07/20/16 | 14 | | none | none | Salt present in the water and is generally
naturally occurring | | | | Hardness (ppm) | 07/20/16 | 113 | | none | none | Sum of polyvalent cations present in the
water, generally magnesium and calcium,
and are usually naturally occurring | | | | TABLE 4 - DETECTION OF CONTAMINANTS WITH A PRIMARY DRINKING WATER STANDARD | | | | | | | | | | Chemical or Constituent
(and reporting units) | Sample Date | Level Detected | Range of
Detections | MCL
[MRDL] | PHG
(MCLG)
[MRDLG] | Typical Source of Contaminant | | | | Nitrate as N (ppm) | 10/19/22 | 2.1 | | 10 | 10 | Runoff and leaching from fertilizer use;
leaching from septic tanks and sewage;
erosion of natural deposits | | | | TABLE 5 - DETECTION OF CONTAMINANTS WITH A <u>SECONDARY</u> DRINKING WATER STANDARD | | | | | | | | | | Chemical or Constituent
(and reporting units) | Sample Date | Level Detected | Range of
Detections | SMCL | PHG
(MCLG) | Typical Source of Contaminant | | | | | | | | | | AAS | | |