WATER QUALITY REPORT 2021

SCOTTS VALLEY WATER QUALITY MAKES THE GRADE

This annual Consumer Confidence Report on water quality shows that last year, as in years past, the District's water met all State and Federal primary drinking water standards. Included in the report is information about the source water quality and treated water quality. It also explains how the water is treated and tested to ensure that it is always safe and refreshing to drink.

Start with a Local Water Supply

Drinking water comes from six wells pumping from the Lompico and Butano aquifers, which are part of the Santa Margarita Groundwater Basin.

Treat to Provide High-Quality Water

The Lompico and Butano aquifers are naturally high in iron and manganese. The District operates three treatment facilities that utilize oxidation and filtration to reduce these constituents and produce safe, high-quality water.

Test to Ensure Quality

The District's state-certified water operators monitor the water system 24 hours a day, 7 days a week, to ensure the reliability and safety of our water. Depending on the constituent, the District conducts numerous tests on a daily, weekly, monthly, quarterly and annual basis.

Providing Customers with Safe, Reliable, High-Quality Water is the District's Top Priority

Este informe contiene información muy importante sobre su agua potable. Tradúzcalo o hable con alguien que lo entienda bien.

Scotts Valley Water District is a public agency providing water service to over 4,000 accounts within six square miles, including most of the City of Scotts Valley and portions of the unincorporated areas north of the city limits. The District serves as a leader in sustainable water management practices, embraces innovation and is a trusted source of water-related information in the community. The community of Scotts Valley places a high value on livability, innovation and planning for the future, and the District is proud to play a vital role in supporting those efforts by providing a reliable, highquality water supply.

Source Water

Sources of drinking water (both tap and bottled water) include rivers, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Source water contaminants that may be present include:

- Microbial contaminants, such as viruses and bacteria, that may come from wastewater treatment plants, septic systems, agricultural livestock operations, and wildlife.
- Pesticides and herbicides that may come from a variety of sources such as agriculture, urban storm water runoff, and residential uses.
- Organic chemical contaminants, including synthetic and volatile organic chemicals, that are by-products of industrial processes and petroleum production and can also come from gas stations, urban storm water runoff, agricultural applications, and septic systems.

Source Water Assessment

In 2018, the District updated its 2001 Source Water Assessment of District wells that provide source water. These wells are considered most vulnerable to the activities associated with contaminants detected in the water supply from dry-cleaning, gasoline storage and distribution, and manufacturing. In addition, these wells are susceptible to negative impacts from

- Radioactive contaminants that can be naturally occurring or from oil and gas production and mining activities.
- Inorganic contaminants, such as salts and metals, that can be naturally occurring or result from urban storm water runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some constituents. The presence of constituents does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained

by visiting <u>epa.gov/safewater</u> or calling the U.S. EPA's Safe Drinking Water Hotline at (800) 426-4791.

abandoned water and monitoring wells, septic systems, transportation corridors, commercial parking lots, and sewer collection systems.

The complete assessment is available at the District Office – 2 Civic Center Drive, Scotts Valley – or by e-mail at <u>contact@svwd.org</u>.

Water Quality Regulations

In order to ensure that tap water is safe to drink, the U.S. Environmental Protection Agency (USEPA) and the State Water Resources Control Board (State Board) prescribe regulations that limit the amount of certain constituents in water provided by public water systems. State Board regulations also establish limits for constituents allowed in bottled water to provide protection for public health.

When to Seek Health Care Advice

Some people may be more vulnerable to constituents in drinking water than the general population. Immunocompromised populations such as persons undergoing chemotherapy, persons who have undergone organ transplants, persons with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk for infections. These people should seek advice about drinking water from their health care providers. USEPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Drinking Water Hotline at (800) 426-4791.

HOW CONSTITUENTS **ARE MEASURED**

MILLIGRAMS per liter (mg/L) or parts per MILLION (ppm)

One drop in 14 gallons

One second in 11.5 days

MICROGRAMS per liter (ug/L) or parts per BILLION (ppb)

One drop in 14,000 gallons

One second in nearly 32 years

NANOGRAMS per liter (ng/L) or parts per TRILLION (ppt)

One drop in 14,000,000 gallons

One second in nearly 32,000 years

WATER TEST RESULTS

This table lists all of the drinking water contaminants and other constituents detected between January I and December 31. Secondary standards relate to aesthetic aspects of water. Scotts Valley Water District water quality met or surpassed all State and Federal criteria for public health protection.

Primary Health Standards	MCL or MRDL	PHG or MCLG	Range	Average	Violation	Typical Sources of Constituents
Arsenic (ppb)	10	0.004	ND - 5.4	2.2	No	Naturally occurring minerals
Fluoride from natural source (ppm)	2	I	0.14 - 0.40	0.33	No	Naturally occurring minerals
Nitrate as N (ppm)	10	10	ND	ND	No	Naturally occurring minerals
Gross alpha particle activity (pCi/L) ¹	15	None	ND - 4.6	2.3	No	Naturally occurring minerals; last sampled in 2010 and 2011; a new source was added and tested in 2018, 2019, and 2021
Disinfection By-Products & Disinfection Residual	MCL or MRDL	PHG or MCLG	Range	Average	Violation	Typical Sources of Constituents
Total Trihalomethanes (ppb)	80	None	ND - 39	13.9	No	By-product of drinking water chlorination
Haloacetic Acids as HAA5 (ppb)	60	None	ND - 6.1	1.34	No	By-product of drinking water chlorination
Chlorine Residual (ppm)	4	4	0.11 - 1.29	0.68	No	Drinking water disinfectant added for treatment
Residential Tap Monitoring	MCL	PHG or MCLG	Sites Sampled	90th Percentile	Sites Exceeding Action Level	Typical Sources of Constituents
Lead (ppb)	15	0	30	2.3	0	Internal corrosion of household plumbing; erosion of natural deposits
Copper (ppm)	1.3	0.3	30	0.170	0	Internal corrosion of household plumbing; erosion of natural deposits
Lead Sampling of Drinking Water in California Schools (AB746/HSC-116277)		Year Tested	Schools Tested	Typical Sources of Constituents		
Lead		2017	3	Internal corrosion of household plumbing; erosion of natural deposits		
		-		Typical Sources of Constituents		
Secondary Aesthetic Standards	Secondary MCL	Range	Average	Typical Sources	of Constituents	
Secondary Aesthetic Standards Aluminum (ppm)	0.2	ND	Average ND	Ivpical Sources Erosion of natu treatment proc	of Constituents iral deposits; res cesses	sidual from some surface water
Secondary Aesthetic Standards Aluminum (ppm) Chloride (ppm)	0.2 500	ND 24-56	Average ND 40	Erosion of natu treatment proc Naturally occur	of Constituents iral deposits; res cesses rring minerals	sidual from some surface water
Secondary Aesthetic Standards Aluminum (ppm) Chloride (ppm) Iron (ppb)	0.2 500 300	Kange ND 24-56 ND - 62	Average ND 40 9	Erosion of natu treatment proo Naturally occur Naturally occur	of Constituents ural deposits; res cesses rring minerals rring minerals	sidual from some surface water
Secondary Aesthetic Standards Aluminum (ppm) Chloride (ppm) Iron (ppb) Manganese (ppb)	Secondary MCL 0.2 500 300 50	Kange ND 24-56 ND - 62 ND - 7.8	Average ND 40 9 1.1	Erosion of natu treatment prod Naturally occur Naturally occur Naturally occur	of Constituents aral deposits; res cesses rring minerals rring minerals rring minerals	sidual from some surface water
Secondary Aesthetic Standards Aluminum (ppm) Chloride (ppm) Iron (ppb) Manganese (ppb) Odor Threshold @ 60 C (TON)	Secondary MCL 0.2 500 300 50 3	Range ND 24-56 ND - 62 ND - 7.8 ND	Average ND 40 9 1.1 ND	Erosion of natu treatment prod Naturally occur Naturally occur Naturally occur Naturally occur	of Constituents aral deposits; res cesses rring minerals rring minerals rring minerals rring minerals	sidual from some surface water
Secondary Aesthetic Standards Aluminum (ppm) Chloride (ppm) Iron (ppb) Manganese (ppb) Odor Threshold @ 60 C (TON) Specific Conductance (MHOS/CM)	Secondary MCL 0.2 500 300 50 3 1,600	Kange ND 24-56 ND - 62 ND - 7.8 ND 440 - 800	Average ND 40 9 1.1 ND 637	Erosion of natu treatment prod Naturally occur Naturally occur Naturally occur Naturally occur Naturally occur	of Constituents aral deposits; res cesses rring minerals rring minerals rring minerals rring minerals rring substance th	sidual from some surface water
Secondary Aesthetic Standards Aluminum (ppm) Chloride (ppm) Iron (ppb) Manganese (ppb) Odor Threshold @ 60 C (TON) Specific Conductance (MHOS/CM) Sulfate (ppm)	Secondary MCL 0.2 500 300 50 3 1,600 500	Range ND 24-56 ND - 62 ND - 7.8 ND 440 - 800 82 - 94	Average ND 40 9 1.1 ND 637 87	Erosion of natu treatment proc Naturally occur Naturally occur Naturally occur Naturally occur Naturally occur Naturally occur	of Constituents aral deposits; res cesses rring minerals rring minerals rring minerals rring minerals rring substance th rring minerals	sidual from some surface water
Secondary Aesthetic Standards Aluminum (ppm) Chloride (ppm) Iron (ppb) Manganese (ppb) Odor Threshold @ 60 C (TON) Specific Conductance (MHOS/CM) Sulfate (ppm) Turbidity (NTU)	Secondary MCL 0.2 500 300 50 3 1,600 500 5	Range ND 24-56 ND - 62 ND - 7.8 ND 440 - 800 82 - 94 <0.1 - 0.25	Average ND 40 9 1.1 ND 637 87 0.12	Erosion of natu treatment prod Naturally occur Naturally occur Naturally occur Naturally occur Naturally occur Naturally occur Naturally occur	of Constituents aral deposits; res cesses rring minerals rring minerals rring minerals rring substance the rring minerals rring minerals	sidual from some surface water
Secondary Aesthetic Standards Aluminum (ppm) Chloride (ppm) Iron (ppb) Manganese (ppb) Odor Threshold @ 60 C (TON) Specific Conductance (MHOS/CM) Sulfate (ppm) Turbidity (NTU) Total Dissolved Solids (ppm)	Secondary MCL 0.2 500 300 50 3 1,600 50 5 1,000	Range ND 24-56 ND - 62 ND - 7.8 ND 440 - 800 82 - 94 <0.1 - 0.25	Average ND 40 9 1.1 ND 637 87 0.12 407	Iypical Sources Erosion of natu treatment proof Naturally occur Naturally occur Naturally occur Naturally occur Naturally occur Naturally occur Naturally occur Naturally occur	of Constituents aral deposits; res cesses rring minerals rring minerals rring minerals rring substance the rring minerals rring minerals rring minerals	sidual from some surface water
Secondary Aesthetic Standards Aluminum (ppm) Chloride (ppm) Iron (ppb) Manganese (ppb) Odor Threshold @ 60 C (TON) Specific Conductance (MHOS/CM) Sulfate (ppm) Turbidity (NTU) Total Dissolved Solids (ppm) Other Monitoring Results	Secondary MCL 0.2 500 300 50 3 1,600 500 5 1,000	Range ND 24-56 ND - 62 ND - 7.8 ND 440 - 800 82 - 94 <0.1 - 0.25	Average ND 40 9 1.1 ND 637 87 0.12 407 Average	Iypical Sources Erosion of natu treatment proof Naturally occur Naturally occur Naturally occur Naturally occur Naturally occur Naturally occur Naturally occur	of Constituents aral deposits; res cesses rring minerals rring minerals rring minerals rring substance the rring minerals rring minerals rring minerals	sidual from some surface water
Secondary Aesthetic Standards Aluminum (ppm) Chloride (ppm) Iron (ppb) Manganese (ppb) Odor Threshold @ 60 C (TON) Specific Conductance (MHOS/CM) Sulfate (ppm) Turbidity (NTU) Total Dissolved Solids (ppm) Other Monitoring Results pH (UNITS)	Secondary MCL 0.2 500 300 50 3 1,600 500 5 1,000	Range ND 24-56 ND - 62 ND - 7.8 ND 440 - 800 82 - 94 <0.1 - 0.25	Average ND 40 9 1.1 ND 637 87 0.12 407 Average 7.7	Iypical Sources Erosion of natu treatment prod Naturally occur Naturally occur Naturally occur Naturally occur Naturally occur Naturally occur Naturally occur Naturally occur	of Constituents ural deposits; res cesses rring minerals rring minerals rring minerals rring substance th rring minerals rring minerals rring minerals	sidual from some surface water
Secondary Aesthetic Standards Aluminum (ppm) Chloride (ppm) Iron (ppb) Manganese (ppb) Odor Threshold @ 60 C (TON) Specific Conductance (MHOS/CM) Sulfate (ppm) Turbidity (NTU) Total Dissolved Solids (ppm) Other Monitoring Results pH (UNITS) Sodium (ppm)	Secondary MCL 0.2 500 300 50 3 1,600 500 5 1,000	Range ND 24-56 ND - 62 ND - 7.8 ND 440 - 800 82 - 94 <0.1 - 0.25	Average ND 40 9 1.1 ND 637 87 0.12 407 Average 7.7 47	Erosion of natu treatment prod Naturally occur Naturally occur Naturally occur Naturally occur Naturally occur Naturally occur Naturally occur Naturally occur Naturally occur Naturally occur	of Constituents aral deposits; res cesses rring minerals rring minerals rring minerals rring substance the rring minerals rring minerals rring minerals rring minerals	sidual from some surface water nat forms ions in water samples for this report were collected nts, the water distribution system, and
Secondary Aesthetic Standards Aluminum (ppm) Chloride (ppm) Iron (ppb) Manganese (ppb) Odor Threshold @ 60 C (TON) Specific Conductance (MHOS/CM) Sulfate (ppm) Turbidity (NTU) Total Dissolved Solids (ppm) Other Monitoring Results pH (UNITS) Sodium (ppm) Total Hardness ² as CaCO ₃ (ppm)	Secondary MCL 0.2 500 300 50 3 1,600 500 5 1,000	Range ND 24-56 ND - 62 ND - 7.8 ND 440 - 800 82 - 94 <0.1 - 0.25	Average ND 40 9 1.1 ND 637 87 0.12 407 Average 7.7 47 282	Erosion of natu treatment prod Naturally occur Naturally occur	of Constituents ural deposits; res cesses rring minerals rring minerals rring minerals rring minerals rring minerals rring minerals rring minerals rring minerals	sidual from some surface water nat forms ions in water samples for this report were collected nts, the water distribution system, and at the 2021 calendar year.
Secondary Aesthetic Standards Aluminum (ppm) Chloride (ppm) Iron (ppb) Manganese (ppb) Odor Threshold @ 60 C (TON) Specific Conductance (MHOS/CM) Sulfate (ppm) Turbidity (NTU) Total Dissolved Solids (ppm) Other Monitoring Results pH (UNITS) Sodium (ppm) Total Hardness ² as CaCO ₃ (ppm) Calcium (ppm)	Secondary MCL 0.2 500 300 50 3 1,600 5 1,000	Range ND 24-56 ND - 62 ND - 7.8 ND 440 - 800 82 - 94 <0.1 - 0.25	Average ND 40 9 1.1 ND 637 87 0.12 407 Average 7.7 47 282 61	Iypical Sources Erosion of natu treatment proof Naturally occur Naturally occur	of Constituents ural deposits; res cesses rring minerals rring minerals rring minerals rring substance the rring minerals rring minerals rring minerals rring minerals rring minerals rring minerals rring minerals rring minerals rring minerals	sidual from some surface water nat forms ions in water samples for this report were collected nts, the water distribution system, and ut the 2021 calendar year. ffectively remove concentrations of iron, and reduce other constituents inherent
Secondary Aesthetic Standards Aluminum (ppm) Chloride (ppm) Iron (ppb) Manganese (ppb) Odor Threshold @ 60 C (TON) Specific Conductance (MHOS/CM) Sulfate (ppm) Turbidity (NTU) Total Dissolved Solids (ppm) Other Monitoring Results pH (UNITS) Sodium (ppm) Total Hardness ² as CaCO ₃ (ppm) Calcium (ppm) Carbonate as CO ₃ (ppm)	Secondary MCL 0.2 500 300 50 3 1,600 500 5 1,000	Range ND 24-56 ND - 62 ND - 7.8 ND 440 - 800 82 - 94 <0.1 - 0.25	Average ND 40 9 1.1 ND 637 87 0.12 407 Average 7.7 47 282 61 3.1	Erosion of natu treatment prod Naturally occur Naturally occur	of Constituents ural deposits; res cesses rring minerals rring minerals experience of the set of the se	sidual from some surface water nat forms ions in water samples for this report were collected nts, the water distribution system, and It the 2021 calendar year. Ifectively remove concentrations of iron, and reduce other constituents inherent
Secondary Aesthetic Standards Aluminum (ppm) Chloride (ppm) Iron (ppb) Manganese (ppb) Odor Threshold @ 60 C (TON) Specific Conductance (MHOS/CM) Sulfate (ppm) Turbidity (NTU) Total Dissolved Solids (ppm) Other Monitoring Results pH (UNITS) Sodium (ppm) Total Hardness ² as CaCO ₃ (ppm) Calcium (ppm) Carbonate as CO ₃ (ppm) Magnesium (ppm)	Secondary MCL 0.2 500 300 50 3 1,600 500 5 1,000	Range ND 24-56 ND - 62 ND - 7.8 ND 440 - 800 82 - 94 <0.1 - 0.25	Average ND 40 9 1.1 ND 637 87 0.12 407 Average 7.7 47 282 61 3.1 23.3	Iypical Sources Erosion of natu treatment proof Naturally occur Naturally occur	of Constituents ural deposits; res cesses rring minerals rring minerals entry minerals rring minerals	sidual from some surface water inat forms ions in water samples for this report were collected its, the water distribution system, and it the 2021 calendar year. ffectively remove concentrations of iron, and reduce other constituents inherent itor for some contaminants less than concentrations of these contaminants
Secondary Aesthetic Standards Aluminum (ppm) Chloride (ppm) Iron (ppb) Manganese (ppb) Odor Threshold @ 60 C (TON) Specific Conductance (MHOS/CM) Sulfate (ppm) Turbidity (NTU) Total Dissolved Solids (ppm) Other Monitoring Results pH (UNITS) Sodium (ppm) Total Hardness ² as CaCO ₃ (ppm) Calcium (ppm) Carbonate as CO ₃ (ppm) Magnesium (ppm)	Secondary MCL 0.2 500 300 50 3 1,600 5 1,000	Range ND 24-56 ND - 62 ND - 7.8 ND 440 - 800 82 - 94 <0.1 - 0.25	Average ND 40 9 1.1 ND 637 87 0.12 407 Average 7.7 47 282 61 3.1 23.3 1.9	Iypical Sources Erosion of natu treatment proof Naturally occur Naturally occur	of Constituents ural deposits; res cesses rring minerals rring minerals entry processes effective se, arsenic, sulfide, oundwater supply, e allows us to mon year because the gange.	sidual from some surface water nat forms ions in water samples for this report were collected nts, the water distribution system, and it the 2021 calendar year. ffectively remove concentrations of iron, and reduce other constituents inherent itor for some contaminants less than concentrations of these contaminants
Secondary Aesthetic Standards Aluminum (ppm) Chloride (ppm) Iron (ppb) Manganese (ppb) Odor Threshold @ 60 C (TON) Specific Conductance (MHOS/CM) Sulfate (ppm) Turbidity (NTU) Total Dissolved Solids (ppm) Other Monitoring Results pH (UNITS) Sodium (ppm) Total Hardness ² as CaCO ₃ (ppm) Carbonate as CO ₃ (ppm) Magnesium (ppm) Potassium (ppm) Total Alkalinity (ppm)	Secondary MCL 0.2 500 300 50 3 1,600 500 5 1,000	Range ND 24-56 ND - 62 ND - 7.8 ND 440 - 800 82 - 94 <0.1 - 0.25	Average ND 40 9 1.1 ND 637 87 0.12 407 Average 7.7 47 282 61 3.1 23.3 1.9 287	Iypical Sources Erosion of natu treatment proof Naturally occur Naturally occu	of Constituents ural deposits; res cesses rring minerals rring minerals expenses effective se, arsenic, sulfide, pundwater supply. e allows us to mon year because the of ange.	sidual from some surface water samples for this report were collected nts, the water distribution system, and ut the 2021 calendar year. ffectively remove concentrations of iron, and reduce other constituents inherent itor for some contaminants less than concentrations of these contaminants s on next page.

Definitions

Constituents: Chemical and physical elements contained in water.

Grains per Gallon: A unit of hardness where 17.1 parts per million equals 1 grain per gallon.

Turbidity: A physical characteristic of water that makes the water appear cloudy. The condition is caused by the presence of suspended matter. It's monitored because it is a good indicator of the effectiveness of the filtration system.

MCLG: Maximum Contaminant Level Goal: The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the U.S. Environmental Protection Agency.

MCL: Maximum Contaminant Level: The highest level of a contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs or MCLGs as is economically and technologically feasible. Secondary MCLs are set to protect the odor, taste, and appearance of drinking water. **MHOS/CM:** Micromhos per Centimeter: An indicator of dissolved minerals in the water.

MRDL: Maximum Residual Disinfectant Level. The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

NA: Not applicable.

ND: Not detected at testing limit.

NTU: Nephelometric turbidity unit, indicating the clarity of the water.

pCi/L: Picocuries per liter is a measure of radio-activity.

PDWS: Primary Drinking Water Standards: MCLs and MRDLs for contaminants that affect health along with their monitoring and reporting requirements, and water treatment requirements.

ppb: Parts per billion or micrograms per liter. I ppb equals 0.001 ppm and is equivalent to about one drop in 14,000 gallons of water.

ppm: Parts per million or milligrams per liter. I ppm equals 1,000 ppb and is equivalent to about one drop in 14 gallons of water.

PHG: Public Health Goal: The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California Environmental Protection Agency.

Total Dissolved Solids: An indicator of dissolved minerals in the water.

TON: Threshold Odor Number: The unit of odor.

90TH Percentile: The third highest sample result of 20 sample results.

FOOTNOTES

¹ All testing is from 2021, except where noted. Radiological constituents were drawn from treatment plants in September 2010 and 2011, January 2019, and September 2021. ² Average Total Hardness for 2021 was 16.5 grains per gallon.

Got Questions?

Contact Operations Manager David McNair at (831) 600-1903.

How to Get Involved

Customers are invited to attend monthly board meetings on the second Thursday of every month at 7 pm at the District Office, 2 Civic Center Drive, Scotts Valley.

Download this report at: www.svwd.org/media/reports/CCR2021.pdf

