2024 Consumer Confidence Report

Water System Information

Water System Name: Cathedral Hills Mutual Water Company, Inc

Report Date: June 29, 2025

Type of Water Source(s) in Use: Groundwater

Name and General Location of Source(s): Newell Well (near 2388 /2385 Newell Drive) and Redwood Well (Near 2700 Redwood Drive)

Drinking Water Source Assessment Information: On file with county Environmental Health, and also in progress of re-assessment.

Time and Place of Regularly Scheduled Board Meetings for Public Participation: August or September 2025, Contact Peter Goetz at 831-688-8096

For More Information, Contact: Peter Goetz at 831-688-8096 Or Adam Wachtel (Operator) 831-596-2952 WEConsulting.CA@gmail.com

About This Report

We test the drinking water quality for many constituents as required by state and federal regulations. This report shows the results of our monitoring for the period of January 1 to December 31, 2024, and may include earlier monitoring data.

Importance of This Report Statement in Five Non-English Languages (Spanish, Mandarin, Tagalog, Vietnamese, and Hmong)

Language in Spanish: Este informe contiene información muy importante sobre su agua para beber. Favor de comunicarse [Enter Water System's Name] a [Enter Water System's Address or Phone Number] para asistirlo en español.

Language in Mandarin: 这份报告含有关于您的饮用水的重要讯息。请用以下地址和电话联系 [Enter Water System Name]以获得中文的帮助: [Enter Water System's Address][Enter Water System's Phone Number].

Language in Tagalog: Ang pag-uulat na ito ay naglalaman ng mahalagang impormasyon tungkol sa inyong inuming tubig. Mangyaring makipag-ugnayan sa [Enter Water System's Name and Address] o tumawag sa [Enter Water System's Phone Number] para matulungan sa wikang Tagalog.

Language in Vietnamese: Báo cáo này chứa thông tin quan trọng về nước uống của bạn. Xin vui lòng liên hệ [Enter Water System's Name] tại [Enter Water System's Address or Phone Number] để được hỗ trợ giúp bằng tiếng Việt.

Language in Hmong: Tsab ntawv no muaj cov ntsiab lus tseem ceeb txog koj cov dej haus. Thov hu rau [Enter Water System's Name] ntawm [Enter Water System's Address or Phone Number] rau kev pab hauv lus Askiv.

Terms	Used	in T	his	Report
-------	------	------	-----	--------

Term	Definition
Level 1 Assessment	A Level 1 assessment is a study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system.
Level 2 Assessment	A Level 2 assessment is a very detailed study of the water system to identify potential problems and determine (if possible) why an <i>E. coli</i> MCL violation has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions.
Maximum Contaminant Level (MCL)	The highest level of a contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs (or MCLGs) as is economically and technologically feasible. Secondary MCLs are set to protect the odor, taste, and appearance of drinking water.
Maximum Contaminant Level Goal (MCLG)	The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the U.S. Environmental Protection Agency (U.S. EPA).
Maximum Residual Disinfectant Level (MRDL)	The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.
Maximum Residual Disinfectant Level Goal (MRDLG)	The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.
Primary Drinking Water Standards (PDWS)	MCLs and MRDLs for contaminants that affect health along with their monitoring and reporting requirements, and water treatment requirements.
Public Health Goal (PHG)	The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California Environmental Protection Agency.
Regulatory Action Level (AL)	The concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow.
Secondary Drinking Water Standards (SDWS)	MCLs for contaminants that affect taste, odor, or appearance of the drinking water. Contaminants with SDWSs do not affect the health at the MCL levels.
Treatment Technique (TT)	A required process intended to reduce the level of a contaminant in drinking water.
Variances and Exemptions	Permissions from the State Water Resources Control Board (State Board) to exceed an MCL or not comply with a treatment technique under certain conditions.
ND	Not detectable at testing limit.
ppm	parts per million or milligrams per liter (mg/L)
ррb	parts per billion or micrograms per liter (µg/L)
ppt	parts per trillion or nanograms per liter (ng/L)
ррд	parts per quadrillion or picogram per liter (pg/L)
pCi/L	picocuries per liter (a measure of radiation)

Sources of Drinking Water and Contaminants that May Be Present in Source Water

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include:

- Microbial contaminants, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- Inorganic contaminants, such as salts and metals, that can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- Pesticides and herbicides, that may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses.
- Organic chemical contaminants, including synthetic and volatile organic chemicals, that are byproducts of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, agricultural application, and septic systems.
- Radioactive contaminants, that can be naturally-occurring or be the result of oil and gas production and mining activities.

Regulation of Drinking Water and Bottled Water Quality

In order to ensure that tap water is safe to drink, the U.S. EPA and the State Board prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. The U.S. Food and Drug Administration regulations and California law also establish limits for contaminants in bottled water that provide the same protection for public health.

About Your Drinking Water Quality

Drinking Water Contaminants Detected

Tables 1, 2, 3, 4, 5, 6, and 8 list all of the drinking water contaminants that were detected during the most recent sampling for the constituent. The presence of these contaminants in the water does not necessarily indicate that the water poses a health risk. The State Board allows us to monitor for certain contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of the data, though representative of the water quality, are more than one year old. Any violation of an AL, MCL, MRDL, or TT is asterisked. Additional information regarding the violation is provided later in this report.

Introductory statement to the data:

We test the drinking water quality for many constituents as required by state and federal regulations. This report shows the results of our monitoring for the period of January 1 to December 31, 2024 and may include earlier or later monitoring data. The Cathedral Hills Mutual Water Company has its' own water system. The water system is classified as a "community water system." As such, we are required to provide this Water Quality / Consumer Confidence Report to you, the water user. In 2024, water from the system was tested and compared to the EPA and State drinking water health standards. This document reviews 2024's water quality. Included are details about where your water comes from, what it contains, and how it compares to State standards.

Your water comes from two water production wells. The primary well is located at the top of Newell Drive and is drilled approximately 1,000-feet underground into a deep source of groundwater. The water is pumped to a nearby 22,000-gallon storage tank. The second well is located on Redwood Drive and acts as a back-up source for the 22,000-gallon storage tank. The back-up well had been out of service previously, was brought back online in November of 2019, and again is currently out of service. The back-up well provides support for the primary well during high usage periods when more water is used than the primary well can supply. The height of the storage tank provides gravity pressure throughout the water system, though some residents utilize private pressure pumps. Please see the notes below regarding drinking water quality.

Table 4	Compline	Deculto	Chaudina	4 ha	Detection	~ f	Californ	Destaria
I able I	. Samping	nesuns	Showing	uie	Detection	UI	Comorni	Daciena

Microbiological Contaminants	Highest No. of Detections	No. of Months in Violation	MCL	MCLG	Typical Source of Bacteria
E. coli	0 (Zero)	NONE	(a)	0	Human and animal fecal waste

(a) Routine and repeat samples are total coliform-positive and either is *E. coli*-positive or system fails to take repeat samples following *E. coli*-positive routine sample or system fails to analyze total coliform-positive repeat sample for *E. coli*.

 Table 2. Sampling Results Showing the Detection of Lead and Copper

Lead and Copper	Sample Date	No. of Samples Collected	90 th Percentile Level Detected	No. Sites Exceeding AL	AL	ЭНС	Typical Source of Contaminant
Lead (ppb)	8/25/22 , 9/26/22	5	0 (Zero)	0 (Zero)	15	0.2	Internal corrosion of household water plumbing systems; discharges from industrial manufacturers; erosion of natural deposits
Copper (ppm)	8/25/20 22, 9/26/20 22]	5	0.0366	0 (Zero)	1.3	0.3	Internal corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives

Table 3. Sampling Results for Sodium and Hardness

(Redwood Well results in *italics*)

Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	MCL	PHG (MCLG)	Typical Source of Contaminant
Sodium (ppm)	2/12/21, 2/13/24, 11/04/19	40 , 25	39-41, 25	None	None	Salt present in the water and is generally naturally occurring
Hardness (ppm)	2/12/21, 2/13/24, 11/04/19	295, 280	290-300, <i>280</i>	None	None	Sum of polyvalent cations present in the water, generally magnesium and calcium, and are usually naturally occurring

Table 4. Detection of Contaminants with a Primary Drinking Water Standard

PART 1 PRIMARY INORGANICS

For any Primary Inorganic that has a result of ND (Non-Detect) as defined in the definitions on page 2, the detection limit is shown with the "less than" symbol. This is the lowest level detectable by the required analytical method.

Analyte Name (Chemical, Element, or Constituent Name)	Unit of measure for analysis	Source (Well Name)	Sampling Date(s)	D De	etec or ra etect	ted Level ange of ed Levels	MCL	PHG	Typical Source of Contaminant				
		Newell	2/12/21										
		Newell	2/13/24	- <2 (ND)				Frosion of natural deposits: runoff					
arsenic	ppb	Redwood	11/18/22			10	0.004	from orchards, runoff from glass and electronics production wastes					
		Newell	2/12/21	-	<10	0 (אס)							
		Newell	2/13/24	-	<100 (ND)		1000	2000	Discharge of drilling wastes; discharge from metal refineries;				
barium	ppb	Redwood	11/18/22						erosion of natural deposits				
		Newell	2/12/2021, 2/13/2024	<	1	(ND)	5	4	Corrosion of galvanized pipes; erosion of natural deposits:				
							_		discharge from metal refineries; runoff from waste batteries and				
cadmium	ppb	Redwood	11/18/22	<	1	(ND)	5	4	paints				
		Newell	2/12/21	<	10	(ND)	50	25	Discharge from steel and pulp				
		Newell	2/13/24	<	10	(ND)	50	25	mills; erosion of natural deposits. (Note: the PHG is currently				
total chromium	ppb	Redwood	11/18/22	<	10	(ND)	50	25	withdrawn by the State and is under review).				
Hexavalent chromium	dad	Newell	12/28/14	<	1	0.59 (ND)	10	0.02	Erosion of natural deposits; transformation of naturally occurring trivalent chromium to hexavalent chromium by natural processes and human activities such as discharges from electroplating factories, leather tanneries, wood preservation, chemical synthesis, refractory production, and textile manufacturing facilities.				

Table 4, ContinuedDetection of Contaminants with a Primary Drinking Water StandardPART 1 PRIMARY INORGANICS, Continued

Analyte Name (Chemical, Element, or Constituent Name)	Unit of measure for analysis	Source (Well Name)	Sampling Date(s)	Detected Level or range of Detected Levels			MCL	РНG	Typical Source of Contaminant
		Newell	2/12/21	<	50	(ND)	150	150	Discharge from steel/metal
cyanide	ppb	Redwood	11/4/19	<	50	(ND)	150	150	factories; discharge from plastic and fertilizer factories
		Newell	2/12/2021, 2/13/2024	<	0.1	(ND)	2	1.0	Erosion of natural deposits; discharge from fertilizer and aluminum factories. (Some municipal water systems add
fluoride	nnm	Bedwood	11///10	6	0.1	(ND)	2	10	fluoride in concentrations of approximately 0.5mg/L [far below the MCL] to promote dental health. Cathedral Hills MWC does not add fluoride to the water)
	ppm	Newell	2/12/2021, 2/13/2024	<	50	(ND)	1000	1000	Erosion of natural deposits, mining of and manufacture of
copper	ppb	Redwood	11/4/19	<	50	(ND)	1000	1000	copper products
		Newell	2/12/2021, 2/13/2024	<	5	(ND)	<1/ N/A	0.20/Zero	Erosion of natural deposits, industry, mining, and former
			12-28-2014, 11-04-2019			0.26, 0.78	<1 / N/A	0.20/ Zero	Sites of spills of leaded fuel.
lead	ррb	Redwood		(Tl we de pp	he Re ere re _l etection b) sh	dwood Wel borted by th on limit, the ould be con	l results ne lab be se two v nsidered	interpreted as the goal being "zero," but Detection Limits are variable by rule. Lead at very low levels is a ubiquitous element in soil and food, etc.)	
		Newell	2/12/2021, 2/13/2024	<	1	(ND)	2	1.20	Erosion of natural deposits; discharge from refineries and
mercury	ppb	Redwood	11/18/2022	<	1	(ND)	2	1.20	and croplands.

Table 4, ContinuedDetection of Contaminants with a Primary Drinking Water StandardPART 1 PRIMARY INORGANICS, Continued

Analyte Name (Chemical, Element, or Constituent Name)	Unit of measure for analysis	Source (Well Name)	Sampling Date(s)	Detected Level or range of Detected Levels		Detected Level or range of Detected Levels		ected Level r range of Detected Levels		Detected Level or range of Detected Levels		Detected Level or range of Detected Levels		Detected Level or range of Detected Levels		Detected Level or range of Detected Levels		Detected Level or range of Detected Levels		Detected Level or range of Detected Levels		Detected Level or range of Detected Levels		Detected Level or range of Detected Levels		Detected Level or range of Detected Levels		Detected Level or range of Detected Levels		Detected Level or range of Detected Levels		Detected Level or range of Detected Levels		Detected Level or range of Detected Levels		Detected Level or range of Detected Levels		РНG	Typical Source of Contaminant
		Newell	Annually 2021-2025	<		(ND)	1	1	Runoff from fertilizer use; leaking and deposition from septic tanks or sewage																														
nitrite	ppb	Redwood	2019, 2022, 2024	<		(ND)	1	1	Runoff from fertilizer use; leaking and deposition from septic tanks or sewage																														
	ppm	Newell	Annually 2018-2025	<	0.4	(ND)	10	10																															
nitrate	ppm	Redwood	2019, 2021, 2022 2023, 2024	<	0.4	(ND)	10	10	Runoff from fertilizer use; leaking and deposition from septic tanks or sewage																														
		Newell	2/12/2021, 2/13/2024	<	10	(ND)	100	12																															
nickel	ppb	Redwood	11/04/2019, 11/18/2022	<	10	(ND)	100	12	Erosion of natural deposits; discharge from metal factories.																														
		Newell	4/17/18	<	4	(ND)	6	1	Perchlorate is an inorganic chemical used in solid rocket																														
		Newell	4/13/21	<	4	(ND)	6	1	flares, matches, and a variety of industries. It usually gets into																														
		Newell	4/11/24	<	1	(ND)	6	1	drinking water as a result of environmental contamination from historic aerospace or other																														
		Redwood	11/4/19	<	4	(ND)	6	1	industrial operations that used or																														
perchlorate	ppb	Redwood	10/18/22	<	4	(ND)	6	1	use, store, or dispose of perchlorate and its salts. (In 2019- 2020 the Federal EPA withdrew the MCL for Perchlorate, although the California MCL has remained in effect)																														
		Newell	2/12/2021, 2/13/2024	<	5	(ND)	50	30	Discharge from petroleum																														
selenium	ppb	Redwood	11-04-2019, 11-18-2022	<	5	(ND)	50	30	refineries; erosion of natural deposits; discharge from mines.																														

Table 4, ContinuedDetection of Contaminants with a Primary Drinking Water StandardPART 1 PRIMARY INORGANICS, Continued

Analyte Name (Chemical, Element, or Constituent Name)	Unit of measure for analysis	Source (Well Name)	Sampling Date(s)	Dete or Deteo	Detected Level or range of Detected Levels		MCL	PHG	Typical Source of Contaminant
		Newell	2/12/2021, 2/13/2024	<	6	(ND)	6	1	Discharge from petroleum
antimony	ppb	Redwood	11/04/2019, 11/18/2022	<	6	(ND)	6	1	refineries; fire retardants; ceramics; electronics; solder.
		Newell	2/12/2021, 2/13/2024	<	1	(ND)	4	1	Discharge from metal refineries and coal-burning factories;
beryllium	ppb	Redwood	11/04/2019, 11/18/2022	<	1	(ND)	4	1	discharge from electrical, aerospace, and defense industries.
		Newell	2/12/2021, 2/13/2024	<	0	(ND)	2	0.10	Leaching from ore-processing sites; discharge from electronics,
thallium	ppb	Redwood	11/04/2019, 11/18/2022	<	1	(ND)	2	0.10	glass, and drug factories /drug manufacturing
		Newell	2/12/2021, 2/13/2024	<	25	(ND)	1000	600	Erosion of natural deposits;
aluminum	ppb	Redwood	11/04/2019, 11/18/2022	29, <	25	(ND)	1000	600	treatment processes.

Table 4, part 2A and part 2B begin on the next page.

Organic Compounds Monitoring: Volatile Organic Compounds (VOC) and Synthetic Organic Compounds (SOC) (<u>All results meet standards</u>)

VOCs and SOCs have <u>not</u> been detected in any samples for Cathedral Hills MWC.

The source of Volatile Organic Compounds and Synthetic Organic Compounds is primarily from industrial discharges, agricultural runoff, and waste disposal. Common compounds include herbicides, insecticides, and solvents used on crops, livestock, and in industrial processes. Some originate from banned pesticides still present in soil, while others come from leaking storage tanks, landfills, and chemical manufacturing. Industrial solvents and contaminants such as TCE, PCE, [1,2,3 TCP], MTBE and their byproducts and breakdown products and parent products are also significant contaminants. Additional sources include wastewater treatment residues and materials used in water infrastructure. Sources may be from both historic and ongoing practices.

For a complete list of typical source of contaminants identified within California Code, refer to:

https://docs.google.com/document/d/1tj6Q9GvzPL9H7MtRmArSjuMlnBEKyPhLm5jTBgh2CS8/edit?usp=sharing For a complete list of PHGs (Public Health Goal levels), refer to

https://www.waterboards.ca.gov/drinking_water/certlic/drinkingwater/documents/mclreview/mcls_dlrs_phgs.pdf

Source					Source					Source	•				
Name		Sampling	Detected	MCL	Name		Sampling	Detected	MCL	Name			Sampling	Detected	MCL
(Well)	Analyte Name	Dates	Level	(ppb)	(Well)	Analyte Name	Dates	Level	(ppb)	(Well)		Analyte Name	Dates	Level	(ppb)
Newell	Benzene	04-17-2025	ND	1	Newell	1,2-Dichloropropane	04-17-2025	ND	5	Redwo	od	Methyl-tert -butyl ether (MTBE)	11-04-2019	ND	13
Newell	Benzene	02-04-2019	ND	1	Newell	1,2-Dichloropropane	02-04-2019	ND	5	Newell		Methyl-tert -butyl ether (MTBE)	04-17-2025	ND	13
Newell	Benzene	07-12-2017	ND	1	Newell	1,2-Dichloropropane	07-12-2017	ND	5	Newell		Methyl-tert -butyl ether (MTBE)	02-04-2019	ND	13
Redwood	Benzene	11-04-2019	ND	1	Redwood	1,2-Dichloropropane	11-04-2019	ND	5	Newell		Methyl-tert -butyl ether (MTBE)	07-12-2017	ND	13
Newell	Carbon Tetrachloride	04-17-2025	ND	.5	Newell	1,3-Dichloropropene	04-17-2025	ND	.5	Newell		1,2,4-Trichlorobenzene	04-17-2025	ND	5
Newell	Carbon Tetrachloride	02-04-2019	ND	.5	Newell	1,3-Dichloropropene	02-04-2019	ND	.5	Newell		1,2,4-Trichlorobenzene	02-04-2019	ND	5
Newell	Carbon Tetrachloride	07-12-2017	ND	.5	Newell	1,3-Dichloropropene	07-12-2017	ND	.5	Newell		1,2,4-Trichlorobenzene	07-12-2017	ND	5
Redwood	Carbon Tetrachloride	11-04-2019	ND	.5	Redwood	1,3-Dichloropropene	11-04-2019	ND	.5	Redwo	od	1,2,4-Trichlorobenzene	11-04-2019	ND	5
Newell	1,2-Dichloroethane	04-17-2025	ND	.5	Newell	Ethylbenzene	04-17-2025	ND	300	Newell		1,1,1-Trichloroethane	04-17-2025	ND	200
Newell	1,2-Dichloroethane	02-04-2019	ND	.5	Newell	Ethylbenzene	02-04-2019	ND	300	Newell		1,1,1-Trichloroethane	02-04-2019	ND	200
Newell	1,2-Dichloroethane	07-12-2017	ND	.5	Newell	Ethylbenzene	07-12-2017	ND	300	Newell		1,1,1-Trichloroethane	07-12-2017	ND	200
Redwood	1,2-Dichloroethane	11-04-2019	ND	.5	Redwood	Ethylbenzene	11-04-2019	ND	300	Redwo	od	1,1,1-Trichloroethane	11-04-2019	ND	200
Newell	1,1-Dichloroethane	04-17-2025	ND	5	Newell	Styrene	04-17-2025	ND	100	Newell		1,1,2-Trichloroethane	04-17-2025	ND	5
Newell	1,1-Dichloroethane	02-04-2019	ND	5	Newell	Styrene	02-04-2019	ND	100	Newell		1,1,2-Trichloroethane	02-04-2019	ND	5
Newell	1,1Dichloroethane	07-12-2017	ND	5	Newell	Styrene	07-12-2017	ND	100	Newell		1,1,2-Trichloroethane	07-12-2017	ND	5
Redwood	1,1-Dichloroethane	11-04-2019	ND	5	Redwood	Styrene	11-04-2019	ND	100	Redwo	od	1,1,2-Trichloroethane	11-04-2019	ND	5
Newell	1,1-Dichloroethylene	04-17-2025	ND	6	Newell	Tetrachloroethane	04-17-2025	ND	1	Newell		Trichloroethylene	04-17-2025	ND	5
Newell	1,1-Dichloroethylene	02-04-2019	ND	6	Newell	Tetrachloroethane	02-04-2019	ND	1	Newell		Trichloroethylene	02-04-2019	ND	5
Newell	1,1-Dichloroethylene	07-12-2017	ND	6	Newell	Tetrachloroethane	07-12-2017	ND	1	Newell		Trichloroethylene	07-12-2017	ND	5
Redwood	1,1-Dichloroethylene	11-04-2019	ND	6	Redwood	Tetrachloroethane	11-04-2019	ND	1	Redwo	od	Trichloroethylene	11-04-2019	ND	5
Newell	cis-1,2-Dichloroethylene	04-17-2025	ND	6	Newell	Tetrachloroethylene	04-17-2025	ND	5	Newell		Trichlorofluoromethane	04-17-2025	ND	150
Newell	cis-1,2-Dichloroethylene	02-04-2019	ND	6	Newell	Tetrachloroethylene	02-04-2019	ND	5	Newell		Trichlorofluoromethane	02-04-2019	ND	150
Newell	cis-1,2-Dichloroethylene	07-12-2017	ND	6	Newell	Tetrachloroethylene	07-12-2017	ND	5	Newell		Trichlorofluoromethane	07-12-2017	ND	150
Redwood	cis-1,2-Dichloroethylene	11-04-2019	ND	6	Redwood	Tetrachloroethylene	11-04-2019	ND	5	Redwo	od	Trichlorofluoromethane	11-04-2019	ND	150
Newell	trans-1,2-Dichloroethylene	04-17-2025	ND	10	Newell	Toluene	04-17-2025	ND	150	Newell		Vinyl Chloride	04-17-2025	ND	.5
Newell	trans-1,2-Dichloroethylene	02-04-2019	ND	10	Newell	Toluene	02-04-2019	ND	150	Newell		Vinyl Chloride	02-04-2019	ND	.5
Newell	trans-1,2-Dichloroethylene	07-12-2017	ND	10	Newell	Toluene	07-12-2017	ND	150	Newell		Vinyl Chloride	07-12-2017	ND	.5
Redwood	trans-1,2-Dichloroethylene	11-04-2019	ND	10	Redwood	Toluene	11-04-2019	ND	150	Redwo	od	Vinyl Chloride	11-04-2019	ND	.5
Newell	Dichloromethane	04-17-2025	ND	5	Newell	(Monochlorobenzene)	04-17-2025	ND	70	Newell		Xylenes (Total)	04-17-2025	ND	1750
Newell	Dichloromethane	02-04-2019	ND	5	Newell	(Monochlorobenzene)	02-04-2019	ND	70	Newell		Xylenes (Total)	02-04-2019	ND	1750
Newell	Dichloromethane	07-12-2017	ND	5	Newell	(Monochlorobenzene)	07-12-2017	ND	70	Newell		Xylenes (Total)	07-12-2017	ND	1750
Redwood	Dichloromethane	11-04-2019	ND	5	Redwood	(Monochlorobenzene)	11-04-2019	ND	70	Redwo	od	Xylenes (Total)	11-04-2019	ND	1750
Newell	1,4-Dichlorobenzene	04-17-2025	ND	600	Newell	1,2-Dichlorobenzene	04-17-2025	ND	600	Newell		Trichlorotrifluoroethane	04-17-2025	ND	1200
Newell	1,4-Dichlorobenzene	02-04-2019	ND	600	Newell	1,2-Dichlorobenzene	02-04-2019	ND	600	Newell		Trichlorotrifluoroethane	02-04-2019	ND	1200
Newell	1,4-Dichlorobenzene	07-12-2017	ND	600	Newell	1,2-Dichlorobenzene	07-12-2017	ND	600	Newell		Trichlorotrifluoroethane	07-12-2017	ND	1200
Redwood	1,4-Dichlorobenzene	11-04-2019	ND	600	Redwood	1,2-Dichlorobenzene	11-04-2019	ND	600	Redwo	od	Trichlorotrifluoroethane	11-04-2019	ND	1200

Source Name (Well)	Analyte Name	Sampling Dates	Detected Level	MCL (ppb)	Source Name (Well)	Analyte Name	Sampling Dates	Detected Level	MCL (ppb)	Source Name (Well)	Analyte Name	Sampling Dates	Detected Level	MCL (ppb)
	51/0 0/4/			2		HEXACHLORO			50		0.744.0%			5.0
Redwood	ENDRIN	11-04-2019	ND	2	Newell	CYCLOPENTADIENE	07-07-2020	ND	50	Redwood	OXAMYL	11-04-2019	ND	50
Redwood	BHC-GAMMA (LINDANE)	11-04-2019	ND	.2	Redwood	HEXACHLORO CYCLOPENTADIENE	11-04-2019	ND	50	Newell	SIMAZINE	07-07-2020	ND	4
						ALDICARB								
Redwood	METHOXYCHLOR	11-04-2019	ND	30	Newell	SULFOXIDE	07-07-2020	ND	N/A	Newell	SIMAZINE	07-12-2017	ND	4
						ALDICARB					3-HYDROXY			
Redwood	TOXAPHENE	11-04-2019	ND	3	Newell	SULFOXIDE	07-12-2017	ND	N/A	Newell	CARBOFURAN	07-07-2020	ND	N/A
	6400401					ALDICARB					3-HYDROXY	07 40 0047		
Newell	CARBARYL	07-07-2020	ND	N/A	Redwood	SULFOXIDE	11-04-2019	ND	N/A	Newell	CARBOFURAN	07-12-2017	ND	N/A
Navaall	CARRADY"	07 12 2017	ND	NI (A	Neurall		07 07 2020	ND	N1/A	De duis e d	3-HYDROXY	11 04 2010	ND	N1 / A
Newell	CARBARYL	07-12-2017	ND	N/A	Newell	ALDICARB SULFONE	07-07-2020	ND	N/A	Redwood	CARBOFURAN	11-04-2019	ND	N/A
Kedwood	CAKBARYL	11-04-2019	ND	N/A	Newell	ALDICARB SULFONE	07-12-2017	ND	N/A	Redwood	SIIVIAZINE	11-04-2019	ND	4
1											DI(2-ETHYLHEXYL)			
Newell	METHOMYL	07-07-2020	ND	N/A	Redwood	ALDICARB SULFONE	11-04-2019	ND	N/A	Newell	PHTHALATE	07-07-2020	ND	4
											DI(2-ETHYLHEXYL)			
Newell	METHOMYL	07-12-2017	ND	N/A	Newell	CARBOFURAN	07-07-2020	ND	18	Redwood	PHTHALATE	11-04-2019	ND	4
Redwood	METHOMYL	11-04-2019	ND	, N/A	Newell	CARBOFURAN	07-12-2017	ND	18	Newell	PICLORAM	07-07-2020	ND	500
Newell	DALAPON	07-07-2020	ND	200	Redwood	CARBOFURAN	11-04-2019	ND	18	Newell	PICLORAM	07-12-2017	ND	500
Newell	DALAPON	07-12-2017	ND	200	Newell	ALDICARB	07-07-2020	ND	N/A	Redwood	PICLORAM	11-04-2019	ND	500
Redwood	DALAPON	11-04-2019	ND	200	Newell	ALDICARB	07-12-2017	ND	N/A	Newell	2.4.5-TP	07-07-2020	ND	50
Newell	DIOUAT	07-07-2020	ND	20	Redwood	ALDICARB	11-04-2019	ND	N/A	Newell	2.4.5-TP	07-12-2017	ND	50
Newell	DIQUAT	07-12-2017	ND	20	Newell	ATRAZINE	07-07-2020	ND	1	Redwood	2,4,5-TP	11-04-2019	ND	50
Redwood	ΠΟΠΑΤ	11-04-2019	ND	20	Newell	ATRAZINE	07-12-2017	ND	1		1.1-			
Redwood	ENDOTHALL	11-04-2019	ND	100	Redwood	ATRAZINE	11-04-2019	ND	1					
Redwood	GLYPHOSATE	11-04-2019	ND	700	Newell	LASSO (ALACHLOR)	07-07-2020	ND	2		1.2.3 Trichloror	ropane		
	DI(2-ETHYLHEXYL)									Source		Sampling	Detected	MCL
Newell	ADIPATE	07-07-2020	ND	400	Newell	LASSO (ALACHLOR)	07-12-2017	ND	2	Name (Well)	Analyte Name	Dates	Level	(ppb)
	DI(2-ETHYLHEXYL)													
Redwood	ADIPATE	11-04-2019	ND	400	Redwood	LASSO (ALACHLOR)	11-04-2019	ND	2	Newell	1,2,3-TCP	11-18-2021	ND	0.01
Newell	OXAMYL	07-07-2020	ND	50	Redwood	2,3,7,8-TCDD	11-04-2019	ND	0.03	Newell	1,2,3-TCP	11-05-2018	ND	0.01
						HEPTACHLOR								
Newell	2,4,5-T	07-12-2017	ND	N/A	Redwood	EPOXIDE	11-04-2019	ND	.01	Newell	1,2,3-TCP	09-25-2018	ND	0.01
	POLYCHLORINATED													
Redwood	BIPHENYLS (PCB)	11-04-2019	ND	.5	Newell	DINOSEB	07-07-2020	ND	7	Newell	1,2,3-TCP	06-21-2018	ND	0.01
Newell	BENTAZON	07-07-2020	ND	18	Newell	DINOSEB	07-12-2017	ND	7	Newell	1,2,3-TCP	03-27-2018	ND	0.01
Newell	BENTAZON	07-12-2017	ND	18	Redwood	DINOSEB	11-04-2019	ND	7	Redwood	1,2,3-TCP	10-18-2022	ND	0.01
Redwood	BENTAZON	11-04-2019	ND	18	Newell	2,4-D	07-07-2020	ND	70	Redwood	1,2,3-TCP	11/4/19	ND	0.01
Newell	MOLINATE	07-07-2020	ND	20	Newell	2,4-D	07-12-2017	ND	70	Newell	1,2,3-TCP	04-11-2024	ND	0.01
Redwood	MOLINATE	11-04-2019	ND	20	Redwood	2,4-D	11-04-2019	ND	70					
Redwood	ETHYLENE DIBROMIDE	11-04-2019	ND	.05	Newell	2,4,5-TP	07-07-2020	ND	50					
Redwood	CHLORDANE	11-04-2019	ND	.1	Newell	2,4,5-TP	07-12-2017	ND	50					
Newell	DICAMBA	07-12-2017	ND		Redwood	2,4,5-TP	11-04-2019	ND	50					
	THIOBENCARB													
Newell	(BOLERO)	07-07-2020	ND	70										
1	THIOBENCARB													
Redwood	(BOLERO)	11-04-2019	ND	70										

Table 5. Detection of Contaminants with a Secondary Drinking Water Standard

Part 1: Contaminants and parameters with established Consumer Acceptance Contaminant Levels

Chemical,					
Parameter Name	Source			SMCL	Source of chemical,
and units of	Name	Sampling	Detected Level or range of	or	constituent, or
measure	(Well)	Date(s)	levels detected	MCLG	parameter
		2/12/21,			Erosion of natural
	Newell	2/13/24	ND	1000	deposits; leaching
copper (from					from wood
source) (ppb)	Redwood	11/4/19	ND	1000	preservatives
		2/12/21,			
	Newell	2/13/24	ND	.5	Municipal and
foaming agents					industrial waste
(surfactants) (ppm)	Redwood	11/4/19	ND	.5	discharges
		2/6/2018,			
		2/12/21,			
	Newell	2/13/24	74-100	300	Leaching from natural
			51 to		deposits; industrial
Iron (ppb)	Redwood	11/4/19	320*	300	wastes

		2/12/21,						
	Newell	2/13/24		41 to 43			None	
								Naturally occurring
Magnesium (ppm)	Redwood	11/4/19		48			None	mineral
		2/12/21,				to		
	Newell	2/13/24		<	10	11	50	
					(source			Leaching from natural
Manganese (nnh)	Redwood	11/4/19		570*	offline)		50	denosits
Wanganese (ppb)	neuwoou	2/12/21		570	onnicj		50	
	Newell	2/12/24			ND		3	Naturally-occurring
	Newen	2/15/24			ND			organic materials (or
Odor (TON/ Odor								breakdown thereof, e.g.
Threshold)	Redwood	11/4/19			ND		3	sulfide)
		2/12/21,						
	Newell	2/13/24			ND		100	
Silver (ppb)	Redwood	11/4/19			ND		100	Industrial Discharges
		2/12/21,						
	Newell	2/13/24	0.7	to	1.1		5	
Turbidity (NTU)	Redwood	11/4/19			1.5		5	Soil runoff

Chemical, Constituent, or Parameter Name and units of measure	Source Name (Well)	Sampling Date(s)	Detected Level or range of levels detected	SMCL or MCLG	Source of chemical, constituent, or parameter
	Newell	2/12/21, 2/13/24	78 to 110	5000	Runoff/leaching from natural deposits;
Zinc (ppb)	Redwood	11/4/19	76	5000	industrial wastes.
Aluminum (ppb)	Newell Redwood	2/12/21, 2/13/24 11/4/19, 11/18/22	ND <25 to 29	1000	Erosion of natural deposits; residual from some surface water treatment processes
	Newell	2/12/21, 2/13/24	ND	15	Naturally-occurring organic materials and some minerals (e.g. Iron, oxides)
Color (N/A – Color Units)	Redwood	11/4/19	ND		

Table 10, Continued: Detection of Contaminants with a Secondary Drinking Water Standard

Part 2: Contaminants with established Consumer Acceptance Contaminant Levels (tiered limits)

Analyte Name and unit of measure	Source Name (well)	Sampling Date(s)	Detected Level or range of levels detected	SMCL	PHG (MCLG) Recommended Limit	PHG (MCLG) Upper Limit	Source of chemical, constituent, or parameter
TDS (Total Dissolved Solids) (ppm)	Newell	2/6/18, 2/12/21, 2/13/24,	450 to 470	1000	500	1000	Runoff/leaching from natural deposits
	Redwood	11/4/19	360	1000			
Specific Conductance (Conductivity @ 25 Celsius) [umho/cm]	Newell	2/6/18, 2/12/21, 2/13/24	700 to 740	1600	900	1600	Substances that form ions when in water;
	Redwood	11/4/19	600	600 1600			seawater influence

Table 11, Continued: Detection of Contaminants with a Secondary Drinking Water Standard

Part 2: Contaminants with established	Consumer Acceptance Contam	inant Levels (tiered limits)
---------------------------------------	----------------------------	------------------------------

Analyte Name and unit of measure	Source Name (well)	Sampling Date(s)	Detected Level or range of levels detected	SMCL	PHG (MCLG) Recommen ded Limit	PHG (MCLG) Upper Limit	Source of chemical, constituent, or parameter
Sulfate	Newell	2/6/18, 2/12/21, 2/13/24	160 to 170	500	250	500	Runoff/leaching from natural deposits; industrial wastes
	Redwood	11/4/19	95	500	250	500	Runoff/leaching from natural deposits; industrial wastes
Chloride	Newell	2/6/18, 2/12/21, 2/13/24	32 to 33	500	250	500	Runoff/leaching from natural deposits; seawater influence
	Redwood	11/4/19	34	500	250	500	Runoff/leaching from natural deposits; seawater influence

Table 9, Continued: Detection of Contaminants with a Secondary Drinking Water Standard

Part 3: Other secondary standards used for general interest, determine corrosivity, and treatment efficiency

Analyte Name and unit of	Source Name		Detected Level or
measure	(Well)	Sampling Date(s)	range of levels detected
		2/6/18, 2/12/21,	
	Newell	2/13/24	170 to 180
Alkalinity, total (ppm)	Redwood	11/4/19	200
		2/6/18, 2/12/21,	
	Newell	2/13/24	170 to 220
Alkalinity, bicarbonate (ppm)	Redwood	11/4/19	240
		2/6/18, 2/12/21,	
	Newell	2/13/24	ND
Alkalinity, carbonate (ppm)	Redwood	11/4/19	ND
		2/6/18, 2/12/21,	
	Newell	2/13/24	ND
Alkalinity -hydroxide (ppm)	Redwood	11/4/19	ND
		2/6/18, 2/12/21,	
	Newell	2/13/24	48 to 50 ,
Calcium	Redwood	11/4/19	33
	Newell	2011 to 2024	7.9 to 8.2
рН	Redwood	2011 to 2024	8.0

Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	Notification Level
Boron (ppm)	2018,2021	ND	ND	1ppm

Table 10. Detection of Unregulated Contaminants

Additional General Information on Drinking Water

Drinking water, including *bottled water*, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the U.S. EPA's Safe Drinking Water Hotline (1-800-426-4791).

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. U.S. EPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* and other microbial contaminants are available from the Safe Drinking Water Hotline (1-800-426-4791).

Lead-Specific Language: Lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. **Cathedral Hills MWC** is responsible for providing high quality drinking water and removing lead pipes, but cannot control the variety of materials used in plumbing components in your home. You share the responsibility for protecting yourself and your family from the lead in your home plumbing. You can take responsibility by identifying and removing lead materials within your home plumbing and taking steps to reduce your family's risk. Before drinking tap water, flush your pipes for several minutes by running your tap, taking a shower, doing laundry or a load of dishes. You can also use a filter certified by an American National Standards Institute accredited certifier to reduce lead in drinking water. If you are concerned about lead in your water and wish to have your water tested, contact Adam Wachtel, Operator, 831-596-2952 <u>WEConsulting.CA@gmail.com</u> Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available at <u>http://www.epa.gov/safewater/lead</u>.

Summary Information for Violation of a MCL, MRDL, AL, TT, or Monitoring and Reporting Requirement

Violation	Explanation	Duration	Actions Taken to Correct Violation	Health Effects Language
None	No Violations	N/A	N/A	N/A

Table 7. Violation of a MCL, MRDL, AL, TT or Monitoring Reporting Requirement

For Water Systems Providing Groundwater as a Source of Drinking Water

 Table 8. Sampling Results Showing Fecal Indicator-Positive Groundwater Source Samples

Microbiological Contaminants (complete if fecal- indicator detected)	Total No. of Detections	Sample Dates	MCL [MRDL]	PHG (MCLG) [MRDLG]	Typical Source of Contaminant
E. coli	0 (None)	N/A	0	(0)	Human and animal fecal waste
Enterococci	0 (None	N/A	TT	N/A	Human and animal fecal waste
Coliphage	0 (None	N/A	TT	N/A	Human and animal fecal waste

Table 9. Violation of Groundwater TT

Violation	Explanation	Duration	Actions Taken to Correct Violation	Health Effects Language
None	No violations	N/A	N/A	N/A