2018 Consumer Confidence Report

Water System Name: Ridge Mutual Water Company Report Date: June 2019

We test the drinking water quality for many constituents as required by state and federal regulations. This report shows the results of our monitoring for the period of January 1 - December 31, 2018 and may include earlier monitoring data.

Este informe contiene información muy importante sobre su agua potable. Tradúzcalo ó hable con alguien que lo entienda bien.

Type of water source(s): The Ridge Mutual Water Company's drinking water in 2018 came

exclusively from San Jose Water Company (via the Montevina pipeline).

(Our well source was offline during 2018.) See SJWC CCR at

https://www.sjwater.com/sites/default/files/2019-04/CCR-2018.pdf?q=ccr - for

San Jose Water's testing results. ("Mountain Surface Water")

Name & location of source(s): San Jose Water Company, Montevina Treatment Plant-Los Gatos, Santa

Clara County, CA

Ridge Mutual Well: 80' Road Well on Old Ranch Road, Santa Cruz County, CA

Drinking Water Source Assessment information: Ridge Mutual Water Company's testing has not

discovered any contaminant vulnerability

For more information, contact Patrick Mantey at 408-353-2759 or email pmantey@yahoo.com Members receive due notice of date and time of annual meeting, with the annual letter on system status.

TERMS USED IN THIS REPORT:

Maximum Contaminant Level (MCL): The highest level of a contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs (or MCLGs) as is economically and technologically feasible. Secondary MCLs are set to protect the odor, taste, and appearance of drinking water.

Maximum Contaminant Level Goal (MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the U.S. Environmental Protection Agency (U.S. EPA).

Public Health Goal (PHG): The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California Environmental Protection Agency.

Maximum Residual Disinfectant Level (MRDL): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Maximum Residual Disinfectant Level Goal (MRDLG): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

Primary Drinking Water Standards (PDWS): MCLs and MRDLs for contaminants that affect health along with their monitoring and reporting requirements, and water treatment requirements.

Secondary Drinking Water Standards (SDWS): MCLs for contaminants that affect taste, odor, or appearance of the drinking water. Contaminants with SDWSs do not affect the health at the MCL levels.

Treatment Technique (TT): A required process intended to reduce the level of a contaminant in drinking water.

Regulatory Action Level (AL): The concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow.

Variances and Exemptions: State Board permission to exceed an MCL or not comply with a treatment technique under certain conditions.

Level 1 Assessment: A Level 1 assessment is a study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system.

Level 2 Assessment: A Level 2 assessment is a very detailed study of the water system to identify potential problems and determine (if possible) why an *E. coli* MCL violation has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions.

ND: not detectable at testing limit

ppm: parts per million or milligrams per liter (mg/L)

ppb: parts per billion or micrograms per liter (µg/L)

ppt: parts per trillion or nanograms per liter (ng/L)

ppq: parts per quadrillion or picogram per liter (pg/L)

pCi/L: picocuries per liter (a measure of radiation)

Notes

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include:

- Microbial contaminants, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- Inorganic contaminants, such as salts and metals, that can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- Pesticides and herbicides, that may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses.
- Organic chemical contaminants, including synthetic and volatile organic chemicals, that are byproducts of industrial
 processes and petroleum production, and can also come from gas stations, urban stormwater runoff, agricultural
 application, and septic systems.
- Radioactive contaminants, that can be naturally-occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, the U.S. EPA and the State Water Resources Control Board (State Board) prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. State Board regulations also establish limits for contaminants in bottled water that provide the same protection for public health.

Tables 1, 2, 3, 4, and 5 drinking water contaminants that were detected during the most recent sampling for the constituent. The presence of these contaminants in the water does not necessarily indicate that the water poses a health risk.

5/22/2017

Gross Alpha

0.000

15

Tested on well source

The State Board allows us to monitor for certain contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of the data, though representative of the water quality, are more than one year old. Any violation of an AL, MCL. MRDL. or TT is asterisked. Additional information regarding the violation is provided later in this report.

MCL, MRDL, or TT is as														
Microbiological Contaminants (to be completed if bacteria detected)	Highest detect	Highest No. of Notes that the detections with the detections of the detections of the detection of the detec			No. of months in violation				MCL			ORM BACTERIA Typical Source of Bacteria		
Total Coliform Bacteria	(In a n	(In a mo.) 0			1 positive monthly sample				le	0		Naturally present in the environment		
Fecal Coliform or E. coli (state Total Coliform Rule)	(In the year) 0			A routine sample and a repeat sample are total coliform positive, and one of these is also fecal coliform or <i>E. coli</i> positive				e is	0		Human and animal fecal waste			
E. coli (federal Revised Total Coliform Rule)	(In the <u>)</u>	year)			Routine and repeat samples are total				Human and animal fecal waste					
TABLE 2	- SAMPL	ING R	ESUL	TS SH	owi	NG TH	ΕD	ETEC	TIO	N OI	LI	EAD AND COPPER		
Lead and Copper (complete if lead or copper detected in the last sample set)	Sample Date	No. Samp Collec	les	90 th Percent Level Detecte	l	No. Site Exceedi AL		AL	PH			Typical Source of Contaminant		
Lead (ppb)	9/12/2011	5		.002		0		15	0.2	2 p ir n	Internal corrosion of household water plumbing systems; discharges from industrial manufacturers; erosion of natural deposits			
Copper (ppm)	9/12/2011	5		.065		0	1.3 0.3 systems; erosion of natural			nal corrosion of household plumbing ems; erosion of natural deposits; ning from wood preservatives				
TABL	E 3 - SAMI	PLING	RES	ULTS I	FOR	SODIU	M A	AND E	IARI	DNES	SS (WELL SOURCE)		
Chemical or Constituent (and reporting units)	Sample	Date		evel ected		nge of ections		MCL		PH (MCL		Typical Source of Contaminant		
Sodium (ppm)	3/16/2	016		20				none		nor	ne	Generally found in ground and surface water		
Hardness (ppm)	3/16/2	016	2	270				none		nor	ne	Generally found in ground and surface water		
TABLE 4 - DET	TECTION	OF CC	NTA	MINA	NTS	WITH .	A P	RIMA	RY I	DRIN	KI	NG WATER STANDARD		
Chemical or Constituent (and reporting units)	Sample	Date	_	evel ected		nge of ections		MCL		PHG (MCLG)		Typical Source of Contaminant		
Lead (ppm)	7/21/2	013	٨	ND				.05		N/A		Pumps and well plumbing (test on well sources)		
Trihalomethanes (TTHM ppb)	9/19/2	9/19/2018 13		13			80			N/A		Byproduct of Drinking Water Chlorination (SJWC source) *SJWC range 1.3 – 58. – see below		
Haloacetic Acids (THAA ppb)	9/19/2	018	:	21			60			N/A		Byproduct of Drinking Water Chlorination *SJWC range ND – 32.1– see below		
Chloroform (TCM ppb)	9/19/2	018	7	7.5				included in THM)				Byproduct of Drinking Water Chlorination (SJWC)		
Nitrate as N	9/27/2	018		lone tected			10				Tested on well source			
Perchlorate	6/29/2	017		lone tected			6					Tested on well source		

TABLE 5 DETECTION OF CONT.	ANATALANTE WITH A CECONID	ARY DRINKING WATER STANDARD
1 A B 1 B 3 - 11B 1 B C 1 1 C IN C 1 B C C IN I	A VIII A N I S VV I I H A SHI I I N I J	ARY DRINKING WATER STANDARD

Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	MCL	PHG (MCLG)	Typical Source of Contaminant
Chloride (ppm)	3/16/2016	13		500	N/A	Runoff/leaching from natural deposits; seawater influence
Sulfate (ppm)	3/16/2016	150		500	N/A	Runoff/ leaching from natural deposits; industrial waste.

TABLE 6 - DETECTION OF UNREGULATED CONTAMINANTS (WELL SOURCE)

Chemical or Constituent (and reporting units)			Action Level	Health Effects Language			
Boron (ppm)	4/1/2010	None Detected	1 ppm	Some men who drink water containing boron in excess of the action level over many years may experience reproductive effects, based on studies in dogs.			

Additional General Information on Drinking Water

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the U.S. EPA's Safe Drinking Water Hotline (1-800-426-4791).

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. U.S. EPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* and other microbial contaminants are available from the Safe Drinking Water Hotline (1-800-426-4791).

Lead-Specific Language for Community Water Systems: If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Ridge Mutual_is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline (1-800-426-4701) or at http://www.epa.gov/lead.

Other Web Sites / References on Drinking Water

California Safe Drinking Water Act & Related Laws: http://www.cdph.ca.gov/certlic/drinkingwater/pages/lawbook.aspx

California Drinking Water Standards: http://www.dhs.ca.gov/ps/ddwem/chemicals/MCL/mclindex.htm

California Regulated Contaminants: http://www.cdph.ca.gov/certlic/drinkingwater/Pages/Chemicalcontaminants.aspx

EPA Ground Water & Drinking Water - Current Standards: http://www.epa.gov/safewater/contaminants/index.html

The 2018 SJWC Annual Water Quality Report is available (with accompanying notes and explanations) from the San Jose Water Company web site. See: https://www.sjwater.com/sites/default/files/2019-04/CCR-2018.pdf?q=ccr

The tables on the next page are from that report. Their report indicates that water supplied to us is **Mountain Surface Water** since SJW started operation of the Montevina Treatment plant in May And before that, as best we are able to learn, it was **Groundwater**.

2018 SJW Annual Water Quality Report

SJW tests our water supplies for over 200 possible parameters. Only those parameters that were detected in any of our water sources appear in this table. Primary standards relate to public health, while secondary standards relate to aesthetic qualities

such as taste, odor, and color. The state Division of Drinking Water allows us to monitor for some parameters less often than yearly because the concentrations do not change frequently. Some of our data, though representative, are more than a year old

UNITS	MCL.	PHG OR	GROUNDWATER		MOUNTAIN SURFACE WATER		SCV SURFACE	WD E WATER	SFPUC SURFACE WATER		TYPICAL	
orars.	1-102	(MCLG)	AVERAGE	RANGE	AVERAGE	RANGE	AVERAGE	RANGE	AVERAGE	RANGE	SOURCE	
LS												
ppm	1	0,6	ND	ND-0.081	ND	ND	ND	80	ND	ND	1.4	
ppm	1	2	0.16	ND-0-29	ND	ND	ND	ND	ND	ND	8, 10	
ppb	N/A*	0,02	2.6	ND-45	NA	NA	ND"	ND"	0.068	0.031-0.1	8, 10	
ppm	2	1	ND	ND-0.13	ND-0.14	ND-0.17	ND	ND-0.11	0.20	ND-0.7	1	
ppm	10	10	3.2	0.61-6.5	ND	ND-0.56	ND	0.7	ND	ND	1, 2	
for hexavalent chromi	um. The previous MCL of	of 0,010 mg/L v	vas withdrawn or	n September 11.	2017 . SJW is or	ontinuing to rep	port the informat	tion collected	for informational	l purposes,		
pCi/l	15	None	ND	ND-3	ND	ND	ND	ND	ND	ND	1	
											1	
		*****	,,,,,	1100 000			110	110	146	110		
	200	1	ND	ND-11	ND	ND	ND	ND	ND	ND	8	
											8	
ppo	0	0.01	ND	145-0,04				1 100	ND	ND	0	
ATMENIT											TYPICAL	
AIMENI			GROUNDWATER						SFPUC SURFACE WATER Filtered Unfiltered		SOURCES	
NTU	TT = 5 NTU	-	N	NA		NA		NA		NA 1.8		
NTU	TT - 1 NTU	-	NA		0.05		0.24		1	NA	11	
NTU	TT - 95% of sam− ples ≤ 0.3 NTU	-	NA		100%		100%		99.96%	0.3-0.8		
DUCTS	MCL	PHG	AVERAGE	RANGE	AVERAGE	RANGE	AVERAGE	RANGE	AVERAGE	RANGE		
ppb	10	0.1	ND	ND	ND	ND	2	ND-4	ND	ND	9	
AMPLES COLLECT	ED PRIOR TO TREAT	MENT:										
TREATMENT			GROUNDWATER		MOUNTAIN SURFACE WATER		SCVWD SURFACE WATER		SFPUC SURFACE WATER		TYPICAL	
			AVERAGE	RANGE	AVERAGE	RANGE	AVERAGE	RANGE	AVERAGE	RANGE	SOUNCE	
oocysts/L	TT	(0)	NA	NA	0.056	ND - 2	ND	ND-0.1	ND	ND	10	
cysts/L	TT	(0)	NA	NA	0.278	ND=2	ND	ND-0.1	0.03	0-0-24	10	
YSTEM SAMPLES												
	MRDL	MRDLG			RU	JNNING ANI	NUAL AVERAG	àΕ			TYPICAL	
ppm	4.0 as Cl₂	4 as Cl₂									SOURCE	
DUCTS					HIGH	EST SITE AVI	ERAGE		RANGE			
ppb						50			ND-67		9	
ppb			ignated Sar	mple Points:		20				ND-19		
ONTAMINANTS	MCL	PHG				AVERAGE %		RANGE				
%	> 5% of monthly samples positive	(0)		lected at Des- mple Points:	0.10%				0.47%		10	
					SAM	PLES COLLE	CTED	N.	IUMBER DETE	CTED		
	MCL	PHG										
	MCL Detection in conjunction with second coliform positive	PHG (o)	Samples Coll ignated Sar	lected at Des- mple Points:		4769			1***		15	
sted, the water system is	Detection in conjunction with second coliform	(0)									15	
sted, the water system is	Detection in conjunction with second coliform positive	(0)						s			15	
cted, the water system is	Detection in conjunction with second coliform positive	(0) coli MCL	ignated Sar			4769		s	1***		1, 14	
	ppm ppm ppm ppm ppm ppm ppm ppm ppm pci/L pci/L pci/L pci/L themicals ppb ppb ATMENT NTU NTU NTU NTU NTU NTU NTU SOUCTS ppb AMPLES COLLECT TREATMENT cocysts/L cysts/L tySTEM SAMPLES ppb ppb	ppm	ppm	Description Description	Description	Description	Description	Page	Ppm	Description	Point 1	

Secondary Standards-Aesthetic Standards

PARAMETER	UN I TS	SMCL	GROUNDWATER		MOUNTAIN SURFACE WATER		SCVWD SURFACE WATER		SFPUC SURFACE WATER		TYPICAL
			AVERAGE	RANGE	AVERAGE	RANGE	AVERAGE	RANGE	AVERAGE	RANGE	SOURCES*
Aluminum	ppm	200	ND	ND-81	ND	ND	ND	ND-80	ND	ND	1.4
Color	CU	15	0.26	ND-5	ND	ND	ND	ND	<5	<5-7	11, 12
Chloride	ppm	500	56	21-86	24	15-30	63	36-80	4.9	<3-9.7	3, 6
Conductivity	µmho/cm	1600	743	470-1000	475	420-530	450	280-533	125	29-221	6.13
Hardness (as CaCO₃)	ppm	NA	314	152-456	198	176-220	91	51-126	ND	ND	1
ron	ppb	300	ND	ND-500	ND	ND	ND	ND	ND	ND	3, 5
Mangangese	ppb	50	ND	ND-32	ND	ND	ND	ND-35	ND	ND	3
Odor - Threshold @ 60°C	TON	3	ND	ND	ND	ND	1	1-1	ND	ND	12
Sodium	ppm	NA	31	18-54	23	19-27	49	31-65	ND	ND	1
Sulfate	ppm	500	58	39-120	41	24-52	52	25-80	15	0.9-29	3.5
Total Dissolved Solids	ppm	1000	454	200-630	300	280-320	261	192-292	72	<20-144	1
Turbidity	NTU	5	0.46	ND-1.1	0,11	0.11-0.12	0.4	0.01-0.24	0.2	ND-0.3	11
Zinc	ppm	5	ND	ND=0.13	ND	ND	ND	ND	ND	ND	1

From: https://www.sjwater.com/sites/default/files/2019-04/CCR-2018.pdf?q=ccr