2023 Consumer Confidence Report

Water System Information

Water System Name: Bracken Brae Country Club

Report Date: June 26, 2024

Type of Water Source(s) in Use: Groundwater supplied from Big Basin Water Co, and Surface water from the San Lorenzo Valley Water District (SLVWD)

Name and General Location of Source(s) **See attached CCR from Big Basin Water Co. and the San Lorenzo Valley Water District.**

Drinking Water Source Assessment Information: Big Basin Water Co.

Time and Place of Regularly Scheduled Board Meetings for Public Participation: Contact Nicole Launder at 831-331-3431

For More Information, Contact: Nicole Launder Water Commissioner 831-331-3431

About This Report

We test the drinking water quality for many constituents as required by state and federal regulations. This report shows the results of our monitoring for the period of January 1 to December 31, 2022 and may include earlier monitoring data.

Importance of This Report Statement in Spanish

Language in Spanish: Este informe contiene información muy importante sobre su agua para beber. Favor de comunicarse Bracken Brae Country Club a P.O. Box 21 Boulder Creek Ca 831-334-3431 asistirlo en español.

Terms Used in This Report

Term	Definition
Level 1 Assessment	A Level 1 assessment is a study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system.
Level 2 Assessment	A Level 2 assessment is a very detailed study of the water system to identify potential problems and determine (if possible) why an <i>E. coli</i> MCL violation has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions.
Maximum Contaminant Level (MCL)	The highest level of a contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs (or MCLGs) as is economically and technologically feasible. Secondary MCLs are set to protect the odor, taste, and appearance of drinking water.

Term	Definition
Maximum Contaminant Level Goal (MCLG)	The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the U.S. Environmental Protection Agency (U.S. EPA).
Maximum Residual Disinfectant Level (MRDL)	The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.
Maximum Residual Disinfectant Level Goal (MRDLG)	The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.
Primary Drinking Water Standards (PDWS)	MCLs and MRDLs for contaminants that affect health along with their monitoring and reporting requirements, and water treatment requirements.
Public Health Goal (PHG)	The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California Environmental Protection Agency.
Regulatory Action Level (AL)	The concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow.
Secondary Drinking Water Standards (SDWS)	MCLs for contaminants that affect taste, odor, or appearance of the drinking water. Contaminants with SDWSs do not affect the health at the MCL levels.
Treatment Technique (TT)	A required process intended to reduce the level of a contaminant in drinking water.
Variances and Exemptions	Permissions from the State Water Resources Control Board (State Board) to exceed an MCL or not comply with a treatment technique under certain conditions.
ND	Not detectable at testing limit.
ppm	parts per million or milligrams per liter (mg/L)
ppb	parts per billion or micrograms per liter (µg/L)
ppt	parts per trillion or nanograms per liter (ng/L)
ppq	parts per quadrillion or picogram per liter (pg/L)
pCi/L	picocuries per liter (a measure of radiation)

Sources of Drinking Water and Contaminants that May Be Present in Source Water

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include:

• Microbial contaminants, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.

- Inorganic contaminants, such as salts and metals, that can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- Pesticides and herbicides, that may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses.
- Organic chemical contaminants, including synthetic and volatile organic chemicals, that are byproducts of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, agricultural application, and septic systems.
- Radioactive contaminants, that can be naturally-occurring or be the result of oil and gas production and mining activities.

Regulation of Drinking Water and Bottled Water Quality

In order to ensure that tap water is safe to drink, the U.S. EPA and the State Board prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. The U.S. Food and Drug Administration regulations and California law also establish limits for contaminants in bottled water that provide the same protection for public health.

About Your Drinking Water Quality

Drinking Water Contaminants Detected

Tables 1, 2, 3, 4, 5, 6, and 8 list all of the drinking water contaminants that were detected during the most recent sampling for the constituent. The presence of these contaminants in the water does not necessarily indicate that the water poses a health risk. The State Board allows us to monitor for certain contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of the data, though representative of the water quality, are more than one year old. Any violation of an AL, MCL, MRDL, or TT is asterisked. Additional information regarding the violation is provided later in this report.

Table 1. Sampling Results Showing the Detection of Coliform Bacteria

Complete if bacteria are detected.

Microbiological Contaminants	Highest No. of Detections	No. of Months in Violation	MCL	MCLG	Typical Source of Bacteria
E. coli	0	0	(a)	0	Human and animal fecal waste

⁽a) Routine and repeat samples are total coliform-positive and either is *E. coli*-positive or system fails to take repeat samples following *E. coli*-positive routine sample or system fails to analyze total coliform-positive repeat sample for *E. coli*.

Table 2. Sampling Results Showing the Detection of Lead and Copper

Complete if lead or copper is detected in the last sample set.

Lead and Copper	Sample Date	No. of Samples Collected	90 th Percentile Level Detected	No. Sites Exceeding AL	AL	PHG	Typical Source of Contaminant
Lead (ppb)	9/21/21	5	ND	ND	15	0.2	Internal corrosion of household water plumbing systems; discharges from industrial manufacturers; erosion of natural deposits
Copper (ppb)	9/21/21	5	460	0	1300	300	Internal corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives

Table 3. Sampling Results for Sodium and Hardness

Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	MCL	PHG (MCLG)	Typical Source of Contaminant
Sodium (ppm)	See attached Big Basin Water Co. and SLVWD CCR			None	None	Salt present in the water and is generally naturally occurring
Hardness (ppm)	See attached Big Basin Water Co.and SLVWD CCR			None	None	Sum of polyvalent cations present in the water, generally magnesium and calcium, and are usually naturally occurring

Table 4. Detection of Contaminants with a Primary Drinking Water Standard

Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	MCL [MRDL]	PHG (MCLG) [MRDLG]	Typical Source of Contaminant
Haloacetic Acids (ppb)	8/29/23	14	14	60	N/A	Byproduct of drinking water disinfection
Total Trihalomethanes (ppb)	8/29/23	N.D	N/A	80	N/A	Byproduct of drinking water disinfection
See attached Big Basin Water Co. And SLVWD CCR for more						

Table 5. Detection of Contaminants with a Secondary Drinking Water Standard

Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	SMCL	PHG (MCLG)	Typical Source of Contaminant
See attached Big Basin Water						
Co.and SLVWD CCR. for more						

Table 6. Detection of Unregulated Contaminants

Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	Notification Level	Health Effects
MEK (Butanone)	8/31/21	11	11	N/A	N/A
(ppb)					

Additional General Information on Drinking Water

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the U.S. EPA's Safe Drinking Water Hotline (1-800-426-4791).

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. U.S. EPA/Centers for Disease Control (CDC)

guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* and other microbial contaminants are available from the Safe Drinking Water Hotline (1-800-426-4791).

Lead-Specific Language: If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Bracken Brae Country Club is responsible for providing high quality drinking water but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline (1-800-426-4791) or at http://www.epa.gov/lead.

2023 Consumer Confidence Report

Water System Name: Big Basin Water Company (CA4410001) Report Date: June 14, 2024

We test the drinking water quality for many constituents as required by state and federal regulations. This report shows the results of our monitoring for the period of January 1 to December 31, 2023 and may include earlier monitoring data.

Este informe contiene información muy importante sobre su agua para beber. Favor de comunicarse Big Basin Water Company a 831-920-6796 para asistirlo en español.

Type of water source(s) in use: One groundwater well, one intertie with San Lorenzo Valley Water (SLVW)*.

Name & general location of source(s): Well 04 at 16575 Jamison Creek Road, Boulder Creek Road CA 95006. SLVW

intertie at Brook Lane.

*SLVW water quality results are attached at the end of this document.

Drinking Water Source Assessment information: Available by request

Time and place of regularly scheduled board meetings for public participation: N/A

For more information, contact: Cypress Water Services, Inc. - (831)920-6796 - bigbasin@CypressWaterServices.com

TERMS USED IN THIS REPORT

Maximum Contaminant Level (MCL): The highest level of a contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs (or MCLGs) as is economically and technologically feasible. Secondary MCLs are set to protect the odor, taste, and appearance of drinking water.

Maximum Contaminant Level Goal (MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the U.S. Environmental Protection Agency (U.S. EPA).

Public Health Goal (PHG): The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California Environmental Protection Agency.

Maximum Residual Disinfectant Level (MRDL): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Maximum Residual Disinfectant Level Goal (MRDLG): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

Primary Drinking Water Standards (PDWS): MCLs and MRDLs for contaminants that affect health along with their monitoring and reporting requirements, and water treatment requirements.

Secondary Drinking Water Standards (SDWS): MCLs for contaminants that affect taste, odor, or appearance of the drinking water. Contaminants with SDWSs do not affect the health at the MCL levels.

Treatment Technique (TT): A required process intended to reduce the level of a contaminant in drinking water.

Regulatory Action Level (AL): The concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow.

Variances and Exemptions: Permissions from the State Water Resources Control Board (State Board) to exceed an MCL or not comply with a treatment technique under certain conditions.

Level 1 Assessment: A Level 1 assessment is a study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system.

Level 2 Assessment: A Level 2 assessment is a very detailed study of the water system to identify potential problems and determine (if possible) why an *E. coli* MCL violation has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions.

ND: not detectable at testing limit

ppm: parts per million or milligrams per liter (mg/L)

ppb: parts per billion or micrograms per liter (µg/L)

ppt: parts per trillion or nanograms per liter (ng/L)

ppq: parts per quadrillion or picogram per liter (pg/L)

pCi/L: picocuries per liter (a measure of radiation)

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include:

- *Microbial contaminants*, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- *Inorganic contaminants*, such as salts and metals, that can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- Pesticides and herbicides, that may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses.

- Organic chemical contaminants, including synthetic and volatile organic chemicals, that are byproducts of industrial processes
 and petroleum production, and can also come from gas stations, urban stormwater runoff, agricultural application, and septic
 systems.
- Radioactive contaminants, that can be naturally-occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, the U.S. EPA and the State Board prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. The U.S. Food and Drug Administration regulations and California law also establish limits for contaminants in bottled water that provide the same protection for public health.

Tables 1, 2, 3, 4, 5, and 6 list all of the drinking water contaminants that were detected during the most recent sampling for the constituent. The presence of these contaminants in the water does not necessarily indicate that the water poses a health risk. The State Board allows us to monitor for certain contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of the data, though representative of the water quality, are more than one year old. Any violation of an AL, MCL, MRDL, or TT is asterisked. Additional information regarding the violation is provided later in this report.

TABLE 1 – SAMPLING RESULTS SHOWING THE DETECTION OF COLIFORM BACTERIA											
Microbiological Contaminants	Highest # Detections	# Months in Violation	MCL	MCLG	Typical Source of Bacteria						
Total Coliform Bacteria (state Total Coliform Rule)	(In a month)	0	1 positive monthly sample	0	Naturally present in the environment						
Fecal Coliform or <i>E. coli</i> (state Total Coliform Rule)	(In the year)	0	A routine sample and a repeat sample are total coliform positive, and one of these is also fecal coliform or <i>E. coli</i> positive		Human and animal fecal waste						
E. coli (federal Revised Total Coliform Rule)	(In the year)	0	(a)	0	Human and animal fecal waste						

(a) Routine and repeat samples are total coliform-positive and either is *E. coli*-positive or system fails to take repeat samples following *E. coli*-positive routine sample or system fails to analyze total coliform-positive repeat sample for *E. coli*.

TABLE 2 – SAMPLING RESULTS SHOWING THE DETECTION OF LEAD AND COPPER

Lead and Copper	Sample Date	# Samples Collected	90 th Percentile Level Detected	# Sites Exceeding AL	AL	PHG	Typical Source of Contaminant
Lead (ppb)	09/2022	10	1.1	0	15	0.2	Internal corrosion of household water plumbing systems; discharges from industrial manufacturers; erosion of natural deposits
Copper (ppm)	09/2022	10	0.429	0	1.3	0.3	Internal corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives

TABLE 3 – SAMPLING RESULTS FOR SODIUM AND HARDNESS											
Chemical or Constituent (and reporting units) Sample Level Detected Range of Detections MCL PHG (MCLG) Typical Source of Contaminant											
Sodium (ppm)	1/2023	16	N/A	None	None	Salt present in the water and is generally naturally occurring					
Hardness (ppm)	1/2023	140	N/A	None	None	Sum of polyvalent cations present in the water, generally magnesium and calcium, and are usually naturally occurring					

TABLE 4 – DETECTION OF CONTAMINANTS WITH A PRIMARY DRINKING WATER STANDARD

Chemical or Constituent (and reporting units)	Sample Date	Average Level Detected	Range of Detections	MCL [MRDL]	PHG (MCLG) [MRDLG]	Typical Source of Contaminant
Antimony (ppb)	1/30/2023	0.6	N/A	6	1	Discharge from petroleum refineries; fire retardants; ceramics; electronics; solder
Arsenic (ppb)	1/30/2023	0.9	N/A	10	0.004	Erosion of natural deposits; runoff from orchards; glass and electronic production wastes
Barium (ppm)	1/30/2023	0.0126	N/A	1	2	Discharge of oil drilling wastes and from metal refineries; erosion of natural deposits
Gross Alpha (pCi/L)	12/2017	0.271±1.400	N/A	15	(0)	Erosion of natural deposits
Nickel (ppb)	1/30/2023	1.5	N/A	100	12	Erosion of natural deposits; discharge from metal factories

TAB	LE 5 – DETECTION OF CONT	AMINANTS WITH A SEC	CONDARY DRINKING WAT	ED STANDADD
A L M MA	DES DESECTION OF COME	CALVERIANCE IN THE PARTIES OF THE PA	CUMDANT DININING WAT	PAR THE PARTY OF THE REAL PROPERTY.

	DECEMBER DESCRIPTION OF THE PROPERTY OF THE PR								
Chemical or Constituent (and reporting units)	Sample Date	Average Level Detected	Range of Detections	SMCL	Typical Source of Contaminant				
Chloride (ppm)	1/2023	5	N/A	500	Runoff/leaching from natural deposits; seawater influence				
Iron (ppb)	1/2023	20	N/A	300	Leaching from natural deposits; industrial wastes				
Manganese (ppb)	1/2023 4/2023 5/2023 7/2023 12/2023	17.5	7 - 23	50	Leaching from natural deposits				
Odor (Threshold)	1/2023	1	N/A	3	Naturally-occurring organic materials				
Specific Conductance (μS/cm)	1/2023	342	N/A	1,600	Substances that form ions when in water; seawater influence				
Sulfate (ppm)	1/2023	39	N/A	500	Runoff/leaching from natural deposits; industrial wastes				
Total Dissolved Solids (ppm)	1/2023	190	N/A	1,000	Runoff/leaching from natural deposits				

TABLE 6 – DETECTION OF UNREGULATED CONTAMINANTS									
Chemical or Constituent (and reporting units)	Notification Level Health Effects anguage								
N/A N/A N/A N/A N/A									

Additional General Information on Drinking Water

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the U.S. EPA's Safe Drinking Water Hotline (1-800-426-4791).

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. U.S. EPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* and other microbial contaminants are available from the Safe Drinking Water Hotline (1-800-426-4791).

Lead-Specific Language: If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Big Basin Water Company is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. [*OPTIONAL*: If you do so, you may wish to collect the flushed water and reuse it for another beneficial purpose, such as watering plants.] If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline (1-800-426-4791) or at http://www.epa.gov/lead.

Summary Information for Violation of a MCL, MRDL, AL, TT, or Monitoring and Reporting Requirement

VIOLATION OF A MCL, MRDL, AL, TT, OR MONITORING AND REPORTING REQUIREMENT									
Violation	Explanation	Duration	Actions Taken to Correct the Violation	Health Effects Language					
Failure to test backflow devices annually.	Big Basin Water System contains 13 backflow prevention devices that are required to be tested for proper function annually. These devices were not tested from 2018 – 2022.	2018 - 2022	New operators have been hired and the backflow devices are being tested routinely moving forward.	Backflow prevention devices ensure water flows in only one direction through the water system. Properly maintained backflow devices are essential to preventing contamination of the water system from backflow. Since the devices were not properly maintained, we cannot be certain that they were functioning as intended.					

For Water Systems Providing Groundwater as a Source of Drinking Water

TABLE 7 – SAMPLING RESULTS SHOWING FECAL INDICATOR-POSITIVE GROUNDWATER SOURCE SAMPLES									
Microbiological Contaminants (complete if fecal-indicator detected)	Total No. of Detections	Sample Dates	MCL [MRDL]	PHG (MCLG) [MRDLG]	Typical Source of Contaminant				
E. coli	0	Taken Monthly	0	(0)	Human and animal fecal waste				
Enterococci	0	Taken Monthly	TT	N/A	Human and animal fecal waste				
Coliphage	0	-	TT	N/A	Human and animal fecal waste				

Summary Information for Fecal Indicator-Positive Groundwater Source Samples, Uncorrected Significant Deficiencies, or Groundwater TT

SPECIAL NOTICE OF FECAL INDICATOR-POSITIVE GROUNDWATER SOURCE SAMPLE

SPECIAL NOTICE FOR UNCORRECTED SIGNIFICANT DEFICIENCIES

VIOLATION OF GROUNDWATER TT

TT Violation	Explanation	Duration	Actions Taken to Correct the Violation	Health Effects Language
None	None	N/A	None	N/A

Summary Information for Federal Revised Total Coliform Rule Level 1 and Level 2 Assessment Requirements

Level 1 or Level 2 Assessment Requirement not Due to an E. coli MCL Violation

Coliforms are bacteria that are naturally present in the environment and are used as an indicator that other, potentially harmful, waterborne pathogens may be present or that a potential pathway exists through which contamination may enter the drinking water distribution system.

During the past year we were required to conduct 0 Level 1 assessment(s).

During the past year 0 Level 2 assessments were required to be completed for our water system.

Level 2 Assessment Requirement Due to an E. coli MCL Violation

E. coli are bacteria whose presence indicates that the water may be contaminated with human or animal wastes. Human pathogens in these wastes can cause short-term effects, such as diarrhea, cramps, nausea, headaches, or other symptoms. They may pose a greater health risk for infants, young children, the elderly, and people with severely-compromised immune systems.

We were NOT required to complete a Level 2 assessment because we DID NOT find *E. coli* in our water system. In addition, we were NOT required to take any corrective actions.

SLVWD System Water Quality Testing Results

Service area includes: Boulder Creek, Brookdale, Ben Lomond, Lompico, Zayante and the Scotts Valley areas of Lockewood Lane, Whispering Pines, Hidden Glenn and Manana Woods.

	Contaminants Regulated by a Primary Drinking Water Standard:								
	PHG or MCLG	MCL	Average	Range of Detection/ Highest Measurement	Sample Date	Typical Sources of Contamination			
Arsenic (ppb)²	0.6	10	<2.0	<2.0-5.1	2023	Erosion of natural deposits.			
Nitrate as Nitrogen (ppm)	10	10	0.7	<0.4-2.5	2023	Runoff/leaching from natural deposits.			
Turbidity (NTU)	N/A	TT=95% of samples ≤ 0.2 NTU	≤0.2 in 100% of samples	0.13	2023	Soil runoff.			

	Contaminants Regulated by a Secondary Drinking Water Standard:							
	PHG or MCLG	Secondary MCL	Average	Range of Detection	Sample Date	Typical Sources of Contamination		
Chloride (ppm)	N/A	500	7.4	6.0-9.1	2023	Runoff/leaching from natural deposits.		
Sulfate (ppm)	N/A	500	45	2-320	2023	Runoff/leaching from natural deposits.		
Total Dissolved Solids (ppm)	N/A	1000	206	76-730	2023	Runoff/leaching from natural deposits.		
Iron (ppb) 1	N/A	300	<100	<100-740	2023	Runoff/leaching from natural deposits.		
Manganese (ppb) ¹	N/A	50	28	<20-160	2023	Leaching from natural deposits.		

		Dis	infectio	n Residua	l and Disinfecti	ion By-Produ	cts:
	PHG o [MRDL		MCL or [MRDL]	AVARAC	ge Range of Detection	Sample Date	e Typical Sources of Contaminatio
Free Chlorine (ppm)	[4]		[4]	7	0.25-1.77	2023	Drinking water disinfectant added for treatment.
Total Trihalomethanes (ppb)	N/A		80	25	4.4-51	2023	By-product of drinking water disinfection.
Haloacetic Acids as HAA6 (ppb)	N/A		60	17	<1.0-31	2023	By-product of drinking water disinfection.
				Lead and	Copper Monito	oring:	
	PHG	AL		ber of Sites eeding AL	90th Percentile Level Detected	Sample Date	Typical Sources of Contamination
Lead (ppb)	0.2	15	Sa	of 44 amples ollected	<5.0	2023	Internal corrosion of household water plumbing systems; discharges from industrial manufacturers; erosion of natural deposits.
Copper (ppm)	0.3	1.3	Sa	of 44 amples ollected	0.08		Internal corrosion of household water plumbing systems; erosion of natural deposits; leaching from wood preservatives.
	Unre	egulat	ed Con	taminant	Monitoring Rule	e 5 Monitorin	g Results:
			NL	Average	Range of Detect	tion	Sample Date
Perfluorobutanes [PFBS] (p		cid	500	<3.0	<3.0-5.4		2023
Perfluorooctanes [PFOS] (p		cid	6.5	<4.0	<3.0-3.5		2023
Perfluorooctanoid (ppt) ³		DA]	5.1	<4.0	<2.0-2.4		2023
Perfluorohexane: [PFHxA] (p		cid	3	<3.0	<2.0-2.3		2023
Lithiur	n³		NA	<9.0	<9.0-32		2023
			3	Other M	Ionitoring Resu	lts:	
		Aver		Range of Detection	Sample Date	Туј	oical Source of Contamination
Hardness (p	pm)	77	9	42-520	2023	or po calcium	es is the sum of the major cations sitively charged ions, primarily and magnesium. The cations are usually naturally occurring.
Sodium (pp	em)	12	2	8-20	2023		n refers to the salt present in the Id is generally naturally occurring