2023 Consumer Confidence Report

Water System Information

Water System Name: Monterey Mushrooms

Report Date: June 25th, 2024

Type of Water Source(s) in Use: Groundwater

Name and General Location of Source(s): East and West Well

Drinking Water Source Assessment Information: CDPH Staff Assessment, August 2021

Time and Place of Regularly Scheduled Board Meetings for Public Participation: This water system only provides water to employees of Mushroom Farms during normal business hours. Therefore, no regularly scheduled meetings are currently held. Signs are posted should employees need to be notified of water issues.

For More Information, Contact: Matt Fuller 831 274 5545

About This Report

We test the drinking water quality for many constituents as required by state and federal regulations. This report shows the results of our monitoring for the period of January 1 to December 31, 2023 and may include earlier monitoring data.

Importance of This Report Statement in Five Non-English Languages (Spanish, Mandarin, Tagalog, Vietnamese, and Hmong)

Language in Spanish: Este informe contiene información muy importante sobre su agua para beber. Favor de comunicarse a Matt Fuller 831 274 5545 para asistirlo en español.

Language in Mandarin: 这份报告含有关于您的饮用水的重要讯息。请用以下地址和电话联系 Matt Fuller 以获得中文的帮助: 642 Hale Ave, 831 274 5545.

Language in Tagalog: Ang pag-uulat na ito ay naglalaman ng mahalagang impormasyon tungkol sa inyong inuming tubig. Mangyaring makipag-ugnayan sa matt Fuller o tumawag sa 831 274 5545 para matulungan sa wikang Tagalog.

Language in Vietnamese: Báo cáo này chứa thông tin quan trọng về nước uống của bạn. Xin vui lòng liên hệ Matt Fuller tại 831 274 5545 để được hỗ trợ giúp bằng tiếng Việt.

Language in Hmong: Tsab ntawv no muaj cov ntsiab lus tseem ceeb txog koj cov dej haus. Thov hu rau [Enter Water System's Name] ntawm [Enter Water System's Address or Phone Number] rau kev pab hauv lus Askiv.

Terms Used in This Report

Term	Definition
Level 1 Assessment	A Level 1 assessment is a study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system.
Level 2 Assessment	A Level 2 assessment is a very detailed study of the water system to identify potential problems and determine (if possible) why an <i>E. coli</i> MCL violation has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions.
Maximum Contaminant Level (MCL)	The highest level of a contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs (or MCLGs) as is economically and technologically feasible. Secondary MCLs are set to protect the odor, taste, and appearance of drinking water.
Maximum Contaminant Level Goal (MCLG)	The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the U.S. Environmental Protection Agency (U.S. EPA).
Maximum Residual Disinfectant Level (MRDL)	The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.
Maximum Residual Disinfectant Level Goal (MRDLG)	The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.
Primary Drinking Water Standards (PDWS)	MCLs and MRDLs for contaminants that affect health along with their monitoring and reporting requirements, and water treatment requirements.
Public Health Goal (PHG)	The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California Environmental Protection Agency.
Regulatory Action Level (AL)	The concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow.
Secondary Drinking Water Standards (SDWS)	MCLs for contaminants that affect taste, odor, or appearance of the drinking water. Contaminants with SDWSs do not affect the health at the MCL levels.
Treatment Technique (TT)	A required process intended to reduce the level of a contaminant in drinking water.
Variances and Exemptions	Permissions from the State Water Resources Control Board (State Board) to exceed an MCL or not comply with a treatment technique under certain conditions.
ND	Not detectable at testing limit.
ppm	parts per million or milligrams per liter (mg/L)
ppb	parts per billion or micrograms per liter (µg/L)
ppt	parts per trillion or nanograms per liter (ng/L)
ррд	parts per quadrillion or picogram per liter (pg/L)
pCi/L	picocuries per liter (a measure of radiation)

Sources of Drinking Water and Contaminants that May Be Present in Source Water

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include:

- Microbial contaminants, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- Inorganic contaminants, such as salts and metals, that can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- Pesticides and herbicides, that may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses.
- Organic chemical contaminants, including synthetic and volatile organic chemicals, that are byproducts of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, agricultural application, and septic systems.
- Radioactive contaminants, that can be naturally-occurring or be the result of oil and gas production and mining activities.

Regulation of Drinking Water and Bottled Water Quality

In order to ensure that tap water is safe to drink, the U.S. EPA and the State Board prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. The U.S. Food and Drug Administration regulations and California law also establish limits for contaminants in bottled water that provide the same protection for public health.

About Your Drinking Water Quality

Drinking Water Contaminants Detected

Tables 1, 2, 3, 4, 5, 6, and 8 list all of the drinking water contaminants that were detected during the most recent sampling for the constituent. The presence of these contaminants in the water does not necessarily indicate that the water poses a health risk. The State Board allows us to monitor for certain contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of the data, though representative of the water quality, are more than one year old. Any violation of an AL, MCL, MRDL, or TT is asterisked. Additional information regarding the violation is provided later in this report.

Table 1. Sampling Results Showing the Detection of Coliform Bacteria

Complete if bacteria are detected.

Microbiological Contaminants	Highest No. of Detections	No. of Months in Violation	MCL	MCLG	Typical Source of Bacteria
E. coli	1	1	(a)	0	Human and
Coliforms	6	5			animal fecal waste,

The bacteria positives are raw water samples from the wells, pre-chlorination. The distribution system has not had any positives. The facility is taking samples monthly and have not had any positives since April of 2023. The Coyote Valley has historically had these issues during large rainfalls and and the high volume of rain raised the water table affecting the wells.

(a) Routine and repeat samples are total coliform-positive and either is *E. coli*-positive or system fails to take repeat samples following *E. coli*-positive routine sample or system fails to analyze total coliform-positive repeat sample for *E. coli*.

Table 2. Sampling Results Showing the Detection of Lead and Copper

Lead and Copper	Sample Date	No. of Samples Collected	90 th Percentile Level Detected	No. Sites Exceeding AL	AL	БНС	Typical Source of Contaminant
Lead (ppb)	06-21-2023	10	ND	0	15	0.2	Internal corrosion of household water plumbing systems; discharges from industrial manufacturers; erosion of natural deposits
Copper (ppm)	06-21-2023	10	.082	0	1.3	0.3	Internal corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives

Complete if lead or copper is detected in the last sample set.

Table 3. Sampling Results for Sodium and Hardness

Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	MCL	PHG (MCLG)	Typical Source of Contaminant
Sodium (ppm)	6/15/2020	9.1	8.3-9.9	None	None	Salt present in the water and is generally naturally occurring

Table 4. Detection of Contaminants with a Primary Drinking Water Standard Inorganics

Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	MCL [MRDL]	PHG (MCLG) [MRDLG]	Typical Source of Contaminant
Aluminum ug/L	12-27-23	<50		1000	50	Erosion of natural deposits, residue from some surface water treatment
Antimony ug/L	12-27-23	<6		6	6	Discharge from petroleum refineries; fire retardants; ceramics; electronics; solder
Arsenic ug/L`	12-27-23	<2		10	2	Erosion of natural deposits; runoff from orchards, runoff from glass and electronics production wastes
Barium ug/L	12-27-23	130,100		1000	100	Discharge of drilling wastes; discharge from metal refineries; erosion of natural deposits
Beryllium ug/L	12-27-23	<1		4	1	Discharge from metal refineries and coal- burning factories;

Cadium ug/L	12/27/23	<1	5	1	
					Corrosion of galvanized pipes; erosion of natural deposits; discharge from metal refineries; runoff from waste batteries and paints
Chromium ug/L	12-27-23	<10	50	10	Discharge from steel and pulp mills; erosion of natural deposits
Cyanide ug/L	12-27-23	<1	150	100	Discharge from steel/metal factories; discharge from plastic and fertilizer factories
Flouride ug/L	12-27-23	.18,.13	2	1	Water additive which promotes strong teeth; erosion of natural deposits; discharge from fertilizer and aluminum factories
Mercury ug/L	12-27-23	<1	2	1	Erosion of natural deposits; discharge from refineries and factories; runoff from landfills and croplands

Nickel ug/L	12-27-23	<10		100	10	Erosion of natural deposits; discharge from refineries and factories
Percholate ug/L	12-27-23	1.4, .54		6	2	Inorganic compound from rocket, propellants, fireworks and aerospace
Selenium ug/L	12-27-23	<5		50	5	Discharge from petroleum refineries; erosion of natural deposits; discharge from mines
Thallium ug/L	12-27-23	<1		1	2	Leaching from ore processing site
Nitrate mg/L	3-12-23, 12-27-23 9-26-23 6-06-23	12,9.5,12 12,13,13	Nitrate sampling is taken from raw water. Monthly samples are taken post reverse osmosis and all are below the MCL of 10mg/L	10	.4	Runoff from fertilizer use; leaking from septic tanks, sewage; erosion of natural deposits
Nitrite mg/L	3-12-23, 12-27-23 9-26-23 6-06-23	<.1,		1	.4	Runoff from fertilizer use; leaking from septic tanks, sewage; erosion of

			natural
			deposits

Table 5. Detection of Disinfection Byproducts

Chemical or Constituent, Disinfection Byproducts	Sample Date	Level Detected	Range of Detections	SMCL	PHG (MCLG)	Typical Source of Contaminant
Bromodichloromet hane ug/L	06/23/2022	<.5			1	a flame retardant and fire extinguisher fluid, as well as a solvent
Bromoform ug/L	06/23/2022	<.5			1	It is used in making organic chemicals, as a solvent for waxes, greases and oils, and as a flotation agent in mineral separation.
Chloroform ug/L	06/23/2022	<.5			1	common organic solvent
Dibromoacetic Acid ug/L	06/23/2022	<.13			1	formed as a by- product during the disinfection of water by chlorination in the presence of organic matter and bromide
Dibromochloromet hane ug/L	06/23/2022	<.5			1	when chlorine is added to drinking water
Dichloroacetic Acid ug/L	6/23/2022	<.13			1	formed when chlorine or other disinfectants are used to treat drinking water
HAA5 ug/L	6/23/2022	<.13		60		types of disinfection byproducts.
Monobromoacetic Acid ug/L	6/23/2022	<.13			1	a disinfection by- product controlled in drinking water

Monochloroacetic Acid ug/L	6/23/2022	<.27		2	a disinfection by- product controlled in drinking water
TTHM ug/L	6/23/2022	<.5	80		a group of volatile and potentially toxic chemicals formed during water treatment with disinfectants, such as chlorine
Trichloroacetic Acid ug/L	6/23/2022	<.13		1	a disinfection by- product controlled in drinking water

Table 6. Detection of VOC Contaminants

Chemical or Constituent and Reporting Limits	Sample Date	Level Detected	SMCL	PHG (MCLG)	Typical Source of Contaminates
1,1,1- TRICHLOROETHANE ug/L	12-27-23	<.4	200	.5	Discharge from metal degreasing sites and other factories; manufacture of food wrapping.
1,1,2,2- TETRACHLOROETHAN ug/L	12-27-23	<.4	1	.5	Discharge from factories and dry cleaners
1,1,2- TRICHLOROETHANE ug/L	12-27-23	<.4	5	.5	Discharge from industrial chemical factories
1,1-DICHLOROETHANE ug/L	12-27-23	<.4	5	.5	Discharge from industrial chemical factories
1,1- Dichloroethylene ug/L	12-27-23	<.4	6	.5	Discharge from industrial chemical factories
1,2,4- Trichlorobenzene ug/L	12-27-23	<.4	5	.5	Discharge from textile finishing factories

O-DICHLOROBENZENE Ug/L	12-27-23	<.4	600	.5	Discharge from industrial chemical factories
1,2-DICHLOROETHANE ug/L	12-27-23	<.4	.5`	.5	Discharge from drug and chemical factories
1,2- DICHLOROPROPANE ug/L	12-27-23	<.4	5	.5	Discharge from drug and chemical factories
1,3- DICHLOROPROPENE ug/L	12-27-23	<.4	.5	.5	Discharge from drug and chemical factories
P-DICHLOROBENZENE ug/L	12-27-23	<.4	.5	.5	Discharge from drug and chemical factories
BENZENE ug/L	12-27-23	<.4	1	.5	Discharge from factories; leaching from gas storage tanks and landfills
CARBON TETRACHLORIDE ug/L	12-27-23	<.4	.5	.5	CARBON TETRACHLORIDE
CIS-1,2- DICHLOROETHYLENE ug/L	12-27-23	<.4	6	.5	Discharge from industrial chemical factories
DICHLOROMETHANE ug/L	12-27-23	<.4	5	.5	Discharge from drug and chemical factories
ETHYLBENZENE ug/L	12-27-23	<.4	300	.5	Discharge from petroleum refineries
METHYL TERT-BUTYL ETHER ug/L	12-27-23	<.4	13	3	Discharge from petroleum refineries
CHLOROBENZENE ug/L	12-27-23	<.4	70	.5	Discharge from chemical and agricultural chemical factories
STYRENE ug/L	12-27-23	<.4	100	.5	Discharge from rubber and plastic factories; leaching from landfills

TETRACHLOROETHYLE NE ug/L	12-27-23	<.4	5	.5	Discharge from factories and dry cleaners
TOLUENE ug/L	12-27-23	<.4	150	.5	Discharge from petroleum factories
TRANS-1,2- DICHLOROETHYLENE ug/L	12-27-23	<.4	10	.5	Discharge from industrial chemical factories
TRICHLOROETHYLENE ug/L	12-27-23	<.4	5	.5	Discharge from metal degreasing sites and other factories
TRICHLOROFLUOROM ETHANE ug/L	12-27-23	<.4	150	.5	Refrigerators, air conditioners, types of sprays, fire extinguishers,paints
TRICHLOROTRIFLUOR OETHANE ug/L	12-27-23	<.4	1200	10	Refrigerators, air conditioners, electrical solvent
VINYL CHLORIDE ug/L	12-27-23	<.4	.5	.5	Leaching from PVC pipes; discharge from plastic factories
XYLENES, TOTAL ug/L	12-27-23	<.4	1750	.5	Discharge from petroleum factories; discharge from chemical factories

Radiological Contaminates

Chemical or Constituent (and reporting units)	Sample Date	Level Detected	SMCL	PHG (MCLG)	Typical Source of Contaminates
Gross Alpha Particle Activity PCI/L	03-12-23	<2.75	15	3	Erosion of natural deposits of certain minerals that are radioactive and may emit a form of radiation known as alpha radiation

Additional General Information on Drinking Water

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the U.S. EPA's Safe Drinking Water Hotline (1-800-426-4791).

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. U.S. EPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* and other microbial contaminants are available from the Safe Drinking Water Hotline (1-800-426-4791).

Lead-Specific Language: If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. [Enter Water System's Name] is responsible for providing high quality drinking water but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. [Optional: If you do so, you may wish to collect the flushed water and reuse it for another beneficial purpose, such as watering plants.] If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline (1-800-426-4791) or at http://www.epa.gov/lead.

Special Language for Nitrate: Nitrate in drinking water at levels above 10 mg/L is a health risk for infants of less than six months of age. Such nitrate levels in drinking water can interfere with the capacity of the infant's blood to carry oxygen, resulting in serious illness; symptoms include shortness of breath and blueness of the skin. Nitrate levels above 10 mg/L may also affect the ability of the blood to carry oxygen in other individuals, such as pregnant women and those with specific enzyme deficiencies. If you are caring for an infant, or you are pregnant, you should ask advice from your health care provider.

Summary Information for Violation of a MCL, MRDL, AL, TT, or Monitoring and Reporting Requirement

Violation	Explanation	Duration	Actions Taken to Correct Violation	Health Effects Language
Monitoring and Reporting Requirement	Lab failed to notify the facility or Public Health within 24 hours.	Single incident in December 2022	Lab was notified of mistake and corrective action taken.	Quality of water lapse due to reporting requirement.

Table 7. Violation of a MCL, MRDL, AL, TT or Monitoring Reporting Requirement

For Water Systems Providing Groundwater as a Source of Drinking Water

Table 8.	Sampling	Results 3	Showing	Fecal Indi	cator-Positive	Groundwater	Source Samples
	Quinbuni	,	onomig	i oour mar		Ol Callanator	

Microbiological Contaminants (complete if fecal- indicator detected)	Total No. of Detections	Sample Dates	MCL [MRDL]	PHG (MCLG) [MRDLG]	Typical Source of Contaminant
E. coli	1	12/06/2022	0	(0)	Human and animal fecal waste.
Coliforms	1	12/06/2022	0	0	Human and animal fecal waste
Coliforms	5	01/2023, 02/2023, 03/2023, 04/2023,	0	0	Human and animal fecal waste

Summary Information for Fecal Indicator-Positive Groundwater Source Samples, Uncorrected Significant Deficiencies, or Violation of a Groundwater TT

Special Notice of Fecal Indicator-Positive Groundwater Source Sample: December 2022

Level 1 or Level 2 Assessment Requirement not Due to an *E. coli* MCL Violation

Coliforms are bacteria that are naturally present in the environment and are used as an indicator that other, potentially harmful, waterborne pathogens may be present or that a potential pathway exists through which contamination may enter the drinking water distribution system. We found coliforms indicating the need to look for potential problems in water treatment or distribution. When this occurs, we are required to conduct assessment(s) to identify problems and to correct any problems that were found during these assessments.

If the water system failed to complete all the required assessments or correct all identified sanitary defects, the water system is in violation of the treatment technique requirement and shall include the following statements, as appropriate.

For Violation of the Total Coliform Bacteria TT Requirement, Enter Additional Information Described in Instructions for SWS CCR Document

If a water system is required to comply with a Level 2 assessment requirement that is due to an *E. coli* MCL violation, include the information below [22 CCR section 64481(n)(2)].

Level 2 Assessment Requirement Due to an E. coli MCL Violation

E. coli are bacteria whose presence indicates that the water may be contaminated with human or animal wastes. Human pathogens in these wastes can cause short-term effects, such as diarrhea, cramps, nausea, headaches, or other symptoms. They may pose a greater health risk for infants, young children, the elderly, and people with severely compromised immune systems. We found *E. coli* bacteria, indicating the need to look for potential problems in water treatment or distribution. When this occurs, we are required to conduct assessment(s) identify problems and to correct any problems that were found during these assessments.

We were required to complete a Level 2 assessment because we found *E. coli* in our water system. In addition, we were required to take one corrective action and we completed one of these actions. The Citation Directive was posted in common areas and completed by 04/10/2023. Further, The Emergency Disinfection Plan was posted and completed by 03/08/23.

If a water system failed to complete the required assessment or correct all identified sanitary defects, the water system is in violation of the treatment technique requirement and shall include the following statements, as appropriate:

If a water system detects *E. coli* and has violated the *E. coli* MCL, include one or more the following statements to describe any noncompliance, as applicable:

We had a total of 4 coliform-positive repeat samples following an *E. coli*-positive routine sample, prechlorination.

The water system had one positive for E/coli – Coliforms in December 2022 in one the wells, prechlorination. Samples in the distribution system during December came back negative. Corrective Action was performed and determined that the likely source is due to the high rain fall and the historical trend of the high water table of the Coyote Valley during these events. The farm did not have any more positives for E.coli in the water after the initial positive in Dec. 2022. The farm did continue have positives for Coliforms in Jan, Feb, March, April of 2023. The well was shutdown and reopened after permission was given by the Water Quality Board. The wells have been free of bacteria detection since May of 2023.