2021 Consumer Confidence Report

Water System Name: Twin Valley, Inc. (4300575) Report Date: June 01, 2022

We test the drinking water quality for many constituents as required by state and federal regulations. This report shows the results of our monitoring for the period of January 1 - December 31, 2021 and may include earlier monitoring data. Este informe contiene información muy importante sobre su agua potable. Tradúzcalo ó hable con alguien que lo entienda bien.

Type of water source(s) in use: Groundwater

Name & general location of source(s): Well #2, Well #3 & Well #6 on Sycamore Avenue, Well #5 on Chaparral Road

Drinking Water Source Assessment information: Available by Request

Time and place of regularly scheduled board meetings for public participation:

For more information, contact: Miles Farmer, Cypress Water Services Phone: (831) 920-6796

TERMS USED IN THIS REPORT

Maximum Contaminant Level (MCL): The highest level of a contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs (or MCLGs) as is economically and technologically feasible. Secondary MCLs are set to protect the odor, taste, and appearance of drinking water.

Maximum Contaminant Level Goal (MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the U.S. Environmental Protection Agency (U.S. EPA).

Public Health Goal (PHG): The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California Environmental Protection Agency.

Maximum Residual Disinfectant Level (MRDL): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Maximum Residual Disinfectant Level Goal (MRDLG): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

Primary Drinking Water Standards (PDWS): MCLs and MRDLs for contaminants that affect health along with their monitoring and reporting requirements, and water treatment requirements.

Secondary Drinking Water Standards (SDWS): MCLs for contaminants that affect taste, odor, or appearance of the drinking water. Contaminants with SDWSs do not affect the health at the MCL levels.

Treatment Technique (TT): A required process intended to reduce the level of a contaminant in drinking water.

Regulatory Action Level (AL): The concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow.

Variances and Exemptions: State Board permission to exceed an MCL or not comply with a treatment technique under certain conditions.

Level 1 Assessment: A Level 1 assessment is a study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system.

Level 2 Assessment: A Level 2 assessment is a very detailed study of the water system to identify potential problems and determine (if possible) why an *E. coli* MCL violation has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions.

ND: not detectable at testing limit

ppm: parts per million or milligrams per liter (mg/L)

ppb: parts per billion or micrograms per liter (μg/L)

ppt: parts per trillion or nanograms per liter (ng/L)

ppq: parts per quadrillion or picogram per liter (pg/L)

pCi/L: picocuries per liter (a measure of radiation)

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include:

- Microbial contaminants, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- Inorganic contaminants, such as salts and metals, that can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- Pesticides and herbicides, that may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses.
- Organic chemical contaminants, including synthetic and volatile organic chemicals, that are byproducts of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, agricultural application, and septic systems.
- Radioactive contaminants, that can be naturally-occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, the U.S. EPA and the State Water Resources Control Board (State Board) prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. State Board regulations also establish limits for contaminants in bottled water that provide the same protection for public health.

Tables 1, 2, 3, 4, and 5 list all of the drinking water contaminants that were detected during the most recent sampling for the constituent. The presence of these contaminants in the water does not necessarily indicate that the water poses a health risk. The State Board allows us to monitor for certain contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of the data, though representative of the water quality, are more than one year old. Any violation of an AL, MCL, MRDL, or TT is asterisked. Additional information regarding the violation is provided later in this report.

TABLE 1 - SAMPLING RESULTS SHOWI						ING THE DETECTION OF COLIFORM BACTERIA								
Microbiological Contaminants Highes					MCL		MCLG	Typical Source of Bacteria						
(complete if bacteria detec		-		Violation Violation		MCL		MCLC	V 1					
Total Coliform Bacteria (In a mo.) (state Total Coliform Rule) <u>0</u>		10.)	0		1 positiv	1 positive monthly sample		0	Naturally present in the environment					
Fecal Coliform or <i>E. coli</i> (In the year) (state Total Coliform Rule)		vear)	0		A routine sample and a repeat sample are total coliform positive, and one of these is also fecal coliform or <i>E. coli</i> positive			Human and animal fecal waste						
E. coli (federal Revised Total Coliform Rule)	(federal Revised Total Coliform Rule)		0		(a)		0	Human and animal fecal waste						
(a) Routine and repeat samp	les are total co									following <i>E. coli</i> -positive routine sample o				
	TABLE						iform-positive repeat sample for <i>E. coli</i> . ING THE DETECTION OF LEAD AND COPPER							
Lead and Copper (complete if lead or coppe detected in the last sample s		e s	No. of Samples Collected	90th Percentile		No. Sites Exceeding AL		PHG	Typical Source of Contaminant					
Lead (ppb)			17	2.6		1	15	0.2	systems; c	Internal corrosion of household water plumbing systems; discharges from industrial manufacturers; erosion of natural deposits				
Copper (ppm)	06/2019	9	17	0.0	09	0	1.3	0.3		orrosion of household plumbing systems; of natural deposits; leaching from wood preservatives				
		TA	ABLE 3 – S	AMPLI		ULTS FOR	SODIUM	AND HA	RDNESS					
Chemical or Constituent (and reporting units)	Sample D	ate	Leve Detec			ange of tections	MCI		PHG ACLG)	Typical Source of Contaminant				
Sodium (ppm)	11/2021		95		17	7 - 161	none	;	none Salt present in the water and is gen naturally occurring					
Hardness (ppm) 11/2021			135.5		10	10 - 258		none		Sum of polyvalent cations present in the water, generally magnesium and calcium, and are usually naturally occurring				
1	TABLE 4 – DI	ETECT	TION OF C	CONTAN	MINANT	TABLE 4 – DETECTION OF CONTAMINANTS WITH A PRIMARY DRINKING WATER STANDARD								
Chemical or Constituent (and reporting units)	Sample Date		Level etected	Rang Detect		MCL [MRDL]	PHG (MCLC [MRDL	Ġ]		ical Source of Contaminant				
Constituent	-	D			tions	MCL	PHG (MCLC	Ğ] Er	rosion of natur strong teeth;	ral deposits; water additive that promotes discharge from fertilizer and aluminum factories				
Constituent (and reporting units)	Date	D	etected	Detect	ons 0.1	MCL [MRDL]	PHG (MCLC [MRDL	En Dis	rosion of naturations teeth; coscharges of oil	ral deposits; water additive that promotes discharge from fertilizer and aluminum factories drilling wastes and from metal refineries; erosion of natural deposits				
Constituent (and reporting units) Fluoride (ppm) Barium (ppb) Chromium (ppb)	11/2021 11/2021 11/2021	D	0.075 12.88 2.08	Detect).1 5.3	MCL [MRDL] 2 1000 50	PHG (MCLC [MRDLc] 1 2000 (100)	En Dis	rosion of natur strong teeth; of scharges of oil	ral deposits; water additive that promotes discharge from fertilizer and aluminum factories drilling wastes and from metal refineries; crosion of natural deposits steel and pulp mills and chrome plating; crosion of natural deposits				
Constituent (and reporting units) Fluoride (ppm) Barium (ppb) Chromium (ppb) Trihalomethanes (ppb)	11/2021 11/2021 11/2021 8/2020	D	0.075 12.88 2.08 5	0 - 0 0 - 3 0 - 4	5.3 1.7	MCL [MRDL] 2 1000 50 80	PHG (MCLC [MRDL0] 1 2000 (100) NA	En Dis	rosion of natur strong teeth; of scharges of oil ischarge from Byprodu	ral deposits; water additive that promotes discharge from fertilizer and aluminum factories drilling wastes and from metal refineries; erosion of natural deposits steel and pulp mills and chrome plating; erosion of natural deposits				
Constituent (and reporting units) Fluoride (ppm) Barium (ppb) Chromium (ppb)	11/2021 11/2021 11/2021	0.77	0.075 12.88 2.08	0 – 0 0 – 3	5.3 1.7	MCL [MRDL] 2 1000 50	PHG (MCLC [MRDLc] 1 2000 (100)	G] En Dis D	rosion of nature strong teeth; of scharges of oil of sischarge from Byprodu	ral deposits; water additive that promotes discharge from fertilizer and aluminum factories drilling wastes and from metal refineries; crosion of natural deposits steel and pulp mills and chrome plating; crosion of natural deposits				
Constituent (and reporting units) Fluoride (ppm) Barium (ppb) Chromium (ppb) Trihalomethanes (ppb) Gross Alpha (pCi/L) Nitrate (as N) (ppm)	11/2021 11/2021 11/2021 11/2021 8/2020 12/2020 2021 (Monthly) ABLE 5 – DET	0.77	0.075 12.88 2.08 5 5 ± 1.288 11.32	0 - 0 0 - 3 0 - 4 0.245 - 10.9 -).1 5.3 14.7 11.9	MCL [MRDL] 2 1000 50 80 15 10	PHG (MCLC [MRDL0] 1 2000 (100) NA (0) 45	Er Dis D Ru St	rosion of natur strong teeth; of scharges of oil ischarge from Byprodu Innoff and lead eptic tanks an	ral deposits; water additive that promotes discharge from fertilizer and aluminum factories drilling wastes and from metal refineries; erosion of natural deposits steel and pulp mills and chrome plating; erosion of natural deposits lects of drinking water disinfection Grosion of natural deposits ching from fertilizer use; leaching from				
Constituent (and reporting units) Fluoride (ppm) Barium (ppb) Chromium (ppb) Trihalomethanes (ppb) Gross Alpha (pCi/L) Nitrate (as N) (ppm)	11/2021 11/2021 11/2021 11/2020 8/2020 12/2020 2021 (Monthly) ABLE 5 – DET	0.77	0.075 12.88 2.08 5 5 ± 1.288 11.32	0 - 0 0 - 3 0 - 4 0.245 - 10.9 -).1	MCL [MRDL] 2 1000 50 80 15 10	PHG (MCLC [MRDL0] 1 2000 (100) NA (0) 45	Er Dis D Ru St	rosion of natur strong teeth; of scharges of oil ischarge from Byprodu Bunoff and lead eptic tanks an	ral deposits; water additive that promotes discharge from fertilizer and aluminum factories drilling wastes and from metal refineries; erosion of natural deposits steel and pulp mills and chrome plating; erosion of natural deposits ucts of drinking water disinfection Erosion of natural deposits ching from fertilizer use; leaching from and sewage; erosion of natural deposits				
Constituent (and reporting units) Fluoride (ppm) Barium (ppb) Chromium (ppb) Trihalomethanes (ppb) Gross Alpha (pCi/L) Nitrate (as N) (ppm) TA	11/2021 11/2021 11/2021 8/2020 12/2020 2021 (Monthly) ABLE 5 – DET nestituent units)	0.77	0.075 12.88 2.08 5 5 ± 1.288 11.32 ON OF CO Sample	0 - 0 0 - 3 0 - 4 0.245 - 10.9 -	5.3 4.7 -1.6 11.9	MCL [MRDL] 2 1000 50 80 15 10 WITH A SE	PHG (MCLC [MRDL0] 1 2000 (100) NA (0) 45	G] En Dis D Ru so	rosion of nature strong teeth; of scharges of oil considerate from Byprodu Byprodu Bunoff and leadeptic tanks an KING WAT	ral deposits; water additive that promotes discharge from fertilizer and aluminum factories drilling wastes and from metal refineries; erosion of natural deposits steel and pulp mills and chrome plating; erosion of natural deposits lets of drinking water disinfection erosion of natural deposits ching from fertilizer use; leaching from a sewage; erosion of natural deposits ER STANDARD				
Constituent (and reporting units) Fluoride (ppm) Barium (ppb) Chromium (ppb) Trihalomethanes (ppb) Gross Alpha (pCi/L) Nitrate (as N) (ppm) TA Chemical or Con (and reporting) Sulfate (p	Date 11/2021 11/2021 11/2021 8/2020 12/2020 2021 (Monthly) ABLE 5 – DET nstituent units) ppm) (ppb)	0.77	0.075 12.88 2.08 5 5 ± 1.288 11.32 ON OF CO Sample Date	0 - 0 0 - 3 0 - 4 0.245 - 10.9 - DNTAMI	5.3 4.7 -1.6 11.9 NANTS vel cted	MCL [MRDL] 2 1000 50 80 15 10 WITH A SE Range of Detections	PHG (MCLC [MRDL0] 1 2000 (100) NA (0) 45 ECONDA MCL	G] En Dis Dis Public Pu	rosion of natural strong teeth; of scharges of oil of sischarge from Byprodu I moff and leader tanks an KING WAT Typic	ral deposits; water additive that promotes discharge from fertilizer and aluminum factories drilling wastes and from metal refineries; erosion of natural deposits steel and pulp mills and chrome plating; erosion of natural deposits lets of drinking water disinfection erosion of natural deposits ching from fertilizer use; leaching from has ewage; erosion of natural deposits ER STANDARD al Source of Contaminant				
Constituent (and reporting units) Fluoride (ppm) Barium (ppb) Chromium (ppb) Trihalomethanes (ppb) Gross Alpha (pCi/L) Nitrate (as N) (ppm) TA Chemical or Contain (and reporting) Sulfate (p	Date 11/2021 11/2021 11/2021 8/2020 12/2020 2021 (Monthly) ABLE 5 – DET nstituent units) ppm) (ppb)	0.77	0.075 12.88 2.08 5 5 ± 1.288 11.32 ON OF CO Sample Date 11/2021	0 - 0 0 - 3 0 - 4 0.245 - 10.9 - DNTAMI Let Dete	11.9 INANTS vel cted	MCL [MRDL] 2 1000 50 80 15 10 WITH A SE Range of Detections 26 - 46	PHG (MCLC [MRDL0] 1 2000 (100) NA (0) 45 ECONDA MCL 500	G] Er Dis D Rus St RY DRIN Run Erosio	rosion of natural de	ral deposits; water additive that promotes discharge from fertilizer and aluminum factories drilling wastes and from metal refineries; erosion of natural deposits steel and pulp mills and chrome plating; erosion of natural deposits lets of drinking water disinfection erosion of natural deposits ething from fertilizer use; leaching from and sewage; erosion of natural deposits extra STANDARD al Source of Contaminant from natural deposits; industrial wastes eposits; residual from some surface water				
Constituent (and reporting units) Fluoride (ppm) Barium (ppb) Chromium (ppb) Trihalomethanes (ppb) Gross Alpha (pCi/L) Nitrate (as N) (ppm) TA Chemical or Con (and reporting) Sulfate (p	11/2021 11/2021 11/2021 11/2021 8/2020 12/2020 2021 (Monthly) ABLE 5 – DET instituent units) ppm) (ppb) ppm)	0.77	0.075 12.88 2.08 5 5 ± 1.288 11.32 ON OF CO Sample Date 11/2021 11/2021	0 - 0 0 - 3 0 - 4 0.245 - 10.9 - DNTAMI Lee Dete 34.	11.9 INANTS vel cted 25 5 97	MCL [MRDL] 2 1000 50 80 15 10 WITH A SE Range of Detections 26 - 46 0 - 88	PHG (MCLC [MRDL0] 1 2000 (100) NA (0) 45 ECONDA MCL 500	Er Dis D D Rus Se RY DRIN Erosio Runc	rosion of nature strong teeth; of strong	ral deposits; water additive that promotes discharge from fertilizer and aluminum factories drilling wastes and from metal refineries; erosion of natural deposits steel and pulp mills and chrome plating; erosion of natural deposits lets of drinking water disinfection erosion of natural deposits ching from fertilizer use; leaching from a sewage; erosion of natural deposits ER STANDARD al Source of Contaminant from natural deposits; industrial wastes eposits; residual from some surface water treatment processes				
Constituent (and reporting units) Fluoride (ppm) Barium (ppb) Chromium (ppb) Trihalomethanes (ppb) Gross Alpha (pCi/L) Nitrate (as N) (ppm) TA Chemical or Con (and reporting) Sulfate (p Aluminum Chloride (Iron (pp) Odor (TON)	Date 11/2021 11/2021 11/2021 8/2020 12/2020 2021 (Monthly) ABLE 5 – DET nstituent units) ppm) (ppb) ppm) (bb) Units)	0.77	0.075 12.88 2.08 5 5 ± 1.288 11.32 ON OF CO Sample Date 11/2021 11/2021 11/2021 11/2021 11/2021	0-0 0-3 0-4 0.245- 10.9- DNTAMI Let Dete 34. 3:	0.1	MCL [MRDL] 2 1000 50 80 15 10 3 WITH A SE Range of Detections 26 - 46 0 - 88 25 - 75.3 0 - 168 0 - 3	PHG (MCLC [MRDL0] 1 2000 (100) NA (0) 45 ECONDA MCL 500 200 500 300 3	G] Er Dis Dis Dis Runce RY DRIN	rosion of natural description of natural descriptions	ral deposits; water additive that promotes discharge from fertilizer and aluminum factories drilling wastes and from metal refineries; erosion of natural deposits steel and pulp mills and chrome plating; erosion of natural deposits lets of drinking water disinfection erosion of natural deposits ching from fertilizer use; leaching from a sewage; erosion of natural deposits ER STANDARD al Source of Contaminant from natural deposits; industrial wastes eposits; residual from some surface water treatment processes om natural deposits; seawater influence in natural deposits; industrial wastes by-occurring organic materials				
Constituent (and reporting units) Fluoride (ppm) Barium (ppb) Chromium (ppb) Trihalomethanes (ppb) Gross Alpha (pCi/L) Nitrate (as N) (ppm) TA Chemical or Con (and reporting) Sulfate (p Aluminum) Chloride (prodor (TON) Specific Conductate)	Date 11/2021 11/2021 11/2021 8/2020 12/2020 2021 (Monthly) ABLE 5 – DET instituent units) ppm) (ppb) pppm) Units) unice (μS/cm)	0.77	0.075 12.88 2.08 5 5 ± 1.288 11.32 ON OF CO Sample Date 11/2021 11/2021 11/2021 11/2021 11/2021 11/2021	0 - 0 0 - 3 0 - 4 0.245 - 10.9 - DNTAMI Lee Dete 34. 3: 45. 50 1	1.00 1.00	MCL [MRDL] 2 1000 50 80 15 10 SWITH A SE Range of Detections 26 - 46 0 - 88 25 - 75.3 0 - 168 0 - 3 595 - 739	PHG (MCLC [MRDL0] 1 2000 (100) NA (0) 45 ECONDA MCL 500 200 500 300 3 1,600	G] Er Dis Dis Ru RY DRIN Run Erosio	rosion of natural description of natural descriptions	ral deposits; water additive that promotes discharge from fertilizer and aluminum factories drilling wastes and from metal refineries; erosion of natural deposits steel and pulp mills and chrome plating; erosion of natural deposits lets of drinking water disinfection. Grosion of natural deposits ching from fertilizer use; leaching from a sewage; erosion of natural deposits. ER STANDARD al Source of Contaminant from natural deposits; industrial wastes eposits; residual from some surface water treatment processes om natural deposits; seawater influence in natural deposits; industrial wastes y-occurring organic materials in ions when in water; seawater influence				
Constituent (and reporting units) Fluoride (ppm) Barium (ppb) Chromium (ppb) Trihalomethanes (ppb) Gross Alpha (pCi/L) Nitrate (as N) (ppm) TA Chemical or Con (and reporting) Sulfate (p Aluminum) Chloride (c) Iron (pp) Odor (TON) Specific Conductate Turbidity (Date 11/2021 11/2021 11/2021 8/2020 12/2020 2021 (Monthly) ABLE 5 – DET nstituent units) ppm) (ppb) ppm) Units) unce (μS/cm) NTU)	0.77	0.075 12.88 2.08 5 5 ± 1.288 11.32 ON OF CO Sample Date 11/2021 11/2021 11/2021 11/2021 11/2021 11/2021 11/2021 11/2021	0 - 0 0 - 3 0 - 4 0.245 - 10.9 - DNTAMI Lee Dete 34. 3: 45. 50 0.4	1.00 1.00	MCL [MRDL] 2 1000 50 80 15 10 WITH A SE Range of Detections 26 - 46 0 - 88 25 - 75.3 0 - 168 0 - 3 595 - 739 0.1 - 1.3	PHG (MCLC [MRDL0] 1 2000 (100) NA (0) 45 ECONDA MCL 500 200 500 300 3 1,600 5	Erosio Runc Substa	rosion of nature strong teeth; of scharges of oil of sischarge from Byprodu Byprodu Inoff and leadeptic tanks an KING WAT Typic rooff/leaching from of natural deformatural deformatural deformatural from Naturally ances that formatical strong teeth, or the strong from the strong fro	ral deposits; water additive that promotes discharge from fertilizer and aluminum factories drilling wastes and from metal refineries; erosion of natural deposits steel and pulp mills and chrome plating; erosion of natural deposits lets of drinking water disinfection Brosion of natural deposits Ching from fertilizer use; leaching from a sewage; erosion of natural deposits ER STANDARD al Source of Contaminant From natural deposits; industrial wastes eposits; residual from some surface water treatment processes om natural deposits; seawater influence an natural deposits; industrial wastes by-occurring organic materials on ions when in water; seawater influence Soil runoff				
Constituent (and reporting units) Fluoride (ppm) Barium (ppb) Chromium (ppb) Trihalomethanes (ppb) Gross Alpha (pCi/L) Nitrate (as N) (ppm) TA Chemical or Con (and reporting) Sulfate (p Aluminum) Chloride (prodor (TON) Specific Conductate)	Date 11/2021 11/2021 11/2021 8/2020 12/2020 2021 (Monthly) ABLE 5 – DET instituent units) ppm) (ppb) ppm) Units) unce (µS/cm) NTU) pm)	0.77	0.075 12.88 2.08 5 5 ± 1.288 11.32 ON OF CO Sample Date 11/2021 11/2021 11/2021 11/2021 11/2021 11/2021	0 - 0 0 - 3 0 - 4 0.245 - 10.9 - DNTAMI Lee Dete 34. 3: 45. 50 1	1.00 1.00	MCL [MRDL] 2 1000 50 80 15 10 SWITH A SE Range of Detections 26 - 46 0 - 88 25 - 75.3 0 - 168 0 - 3 595 - 739	PHG (MCLC [MRDL0] 1 2000 (100) NA (0) 45 ECONDA MCL 500 200 500 300 3 1,600	Erosio Runc Substa	rosion of natural descriptions	ral deposits; water additive that promotes discharge from fertilizer and aluminum factories drilling wastes and from metal refineries; erosion of natural deposits steel and pulp mills and chrome plating; erosion of natural deposits lets of drinking water disinfection. Grosion of natural deposits ching from fertilizer use; leaching from a sewage; erosion of natural deposits. ER STANDARD al Source of Contaminant from natural deposits; industrial wastes eposits; residual from some surface water treatment processes om natural deposits; seawater influence in natural deposits; industrial wastes y-occurring organic materials in ions when in water; seawater influence				

Additional General Information on Drinking Water

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the U.S. EPA's Safe Drinking Water Hotline (1-800-426-4791).

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. U.S. EPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* and other microbial contaminants are available from the Safe Drinking Water Hotline (1-800-426-4791).

Lead-Specific Language: If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Twin Valley, Inc. is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. [OPTIONAL: If you do so, you may wish to collect the flushed water and reuse it for another beneficial purpose, such as watering plants.] If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline (1-800-426-4791) or at http://www.epa.gov/lead.

Summary Information for Violation of a MCL, MRDL, AL, TT, or Monitoring and Reporting Requirement

VIOLATION OF A MCL, MRDL, AL, TT, OR MONITORING AND REPORTING REQUIREMENT							
Violation	Explanation	Duration	Actions Taken to Correct the Violation	Language			
Nitrate	Blended levels always exceed MCL	Ongoing - 2021	Notification	Runoff and leaching from fertilizer use; leaching from septic tanks and sewage; erosion of natural deposits			

For Water Systems Providing Groundwater as a Source of Drinking Water

TABLE 7 – SAMPLING RESULTS SHOWING FECAL INDICATOR-POSITIVE GROUNDWATER SOURCE SAMPLES							
Microbiological Contaminants (complete if fecal-indicator detected) Total No Detection		Sample Dates	MCL [MRDL]	PHG (MCLG) [MRDLG]	Typical Source of Contaminant		
E. coli	0	Taken Monthly	0	(0)	Human and animal fecal waste		
Enterococci	0	Taken Monthly	TT	N/A	Human and animal fecal waste		
Coliphage	0	-	TT	N/A	Human and animal fecal waste		

Summary Information for Fecal Indicator-Positive Groundwater Source Samples, Uncorrected Significant Deficiencies, or Groundwater TT

VIOLATION OF GROUNDWATER TT							
TT Violation	Explanation	Duration	Actions Taken to Correct the Violation	Health Effects Language			
None	None	N/A	None	N/A			

Summary Information for Federal Revised Total Coliform Rule Level 1 and Level 2 Assessment Requirements

Level 1 or Level 2 Assessment Requirement not Due to an E. coli MCL Violation

Coliforms are bacteria that are naturally present in the environment and are used as an indicator that other, potentially harmful, waterborne pathogens may be present or that a potential pathway exists through which contamination may enter the drinking water distribution system.

During the past year we were required to conduct 0 Level 1 assessment(s).

During the past year 0 Level 2 assessments were required to be completed for our water system.

Level 2 Assessment Requirement Due to an E. coli MCL Violation

E. coli are bacteria whose presence indicates that the water may be contaminated with human or animal wastes. Human pathogens in these wastes can cause short-term effects, such as diarrhea, cramps, nausea, headaches, or other symptoms. They may pose a greater health risk for infants, young children, the elderly, and people with severely-compromised immune systems.

We were **NOT** required to complete a Level 2 assessment because we **DID NOT** find *E. coli* in our water system. In addition, we were **NOT** required to take any corrective actions.