2024 Consumer Confidence Report

Last year, as in years past, your tap water met all USEPA and State drinking water health standards. Melody Woods Water Co. takes care of its water supply. We are happy to report that our system has not violated a maximum contaminant level or any other water quality standard in your drinking water. This report is a snapshot of last year's water quality. Included are details about where your water comes from, what it contains, and how it compares to State standards.

We test our drinking water quality for many constituents as required by State and Federal Regulations. Some of these tests are repeated every year, while others are done less frequently. This report shows the results of our monitoring for the period of January 1 - December 31, 2024. (Earlier results included for convenient reference and, if there was no violation in 2024, the most recent test result is shown).

Full results for previous years can be found on: <u>http://www.melodywoods.com/ccr/</u> Our water continues to be clean and safe. Because of the treatment plant, our <u>treated</u> drinking water continues to meet the standards for Iron and Manganese.

Water System Name:

Melody Woods Water Company P.O. Box 1118 Los Gatos, CA 95031 California Water System 4300525 Incorporated April 5,1947

Report Date:

June 25th, 2025

Type of Water Source(s) in Use:

Ground Water

Name and General Location of Source(s):

Well #3 is located just off Summit Road, West of Melody Lane. Well #5 is located on Echo Drive.

Drinking Water Source Assessment Information:

Drinking Water Source Assessment was performed by the State in March 2002

About This Report

We test the drinking water quality for many constituents as required by state and federal regulations. This report shows the results of our monitoring for the period of January 1 to December 31, 2024, and may include earlier monitoring data (or more recent data if available).

Importance of This Report Statement in Five Non-English Languages (Spanish, Mandarin, Tagalog, Vietnamese, and Hmong)

Language in Spanish: Este informe contiene información muy importante sobre su agua para beber. Favor de comunicarse [Enter Water System's Name] a [Enter Water System's Address or Phone Number] para asistirlo en español.

Language in Mandarin: 这份报告含有关于您的饮用水的重要讯息。请用以下地址和电话联系 [Enter Water System Name]以获得中文的帮助: [Enter Water System's Address][Enter Water System's Phone Number].

Language in Tagalog: Ang pag-uulat na ito ay naglalaman ng mahalagang impormasyon tungkol sa inyong inuming tubig. Mangyaring makipag-ugnayan sa [Enter Water System's Name and Address] o tumawag sa [Enter Water System's Phone Number] para matulungan sa wikang Tagalog.

Language in Vietnamese: Báo cáo này chứa thông tin quan trọng về nước uống của bạn. Xin vui lòng liên hệ [Enter Water System's Name] tại [Enter Water System's Address or Phone Number] để được hỗ trợ giúp bằng tiếng Việt.

Language in Hmong: Tsab ntawv no muaj cov ntsiab lus tseem ceeb txog koj cov dej haus. Thov hu rau [Enter Water System's Name] ntawm [Enter Water System's Address or Phone Number] rau kev pab hauv lus Askiv.

Term	Definition
Level 1 Assessment	A Level 1 assessment is a study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system.
Level 2 Assessment	A Level 2 assessment is a very detailed study of the water system to identify potential problems and determine (if possible) why an <i>E. coli</i> MCL violation has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions.
Maximum Contaminant Level (MCL)	The highest level of a contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs (or MCLGs) as is economically and technologically feasible. Secondary MCLs are set to protect the odor, taste, and appearance of drinking water.
Maximum Contaminant Level Goal (MCLG)	The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the U.S. Environmental Protection Agency (U.S. EPA).
Maximum Residual Disinfectant Level (MRDL)	The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.
Maximum Residual Disinfectant Level Goal (MRDLG)	The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.
Primary Drinking Water Standards (PDWS)	MCLs and MRDLs for contaminants that affect health along with their monitoring and reporting requirements, and water treatment requirements.

Terms Used in This Report

Term	Definition
Public Health Goal (PHG)	The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California Environmental Protection Agency.
Regulatory Action Level (AL)	The concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow.
Secondary Drinking Water Standards (SDWS)	MCLs for contaminants that affect taste, odor, or appearance of the drinking water. Contaminants with SDWSs do not affect the health at the MCL levels.
Treatment Technique (TT)	A required process intended to reduce the level of a contaminant in drinking water.
Variances and Exemptions	Permissions from the State Water Resources Control Board (State Board) to exceed an MCL or not comply with a treatment technique under certain conditions.
ND	Not detectable at testing limit.
ppm	parts per million or milligrams per liter (mg/L)
ppb	parts per billion or micrograms per liter (µg/L)
ppt	parts per trillion or nanograms per liter (ng/L)
ррд	parts per quadrillion or picogram per liter (pg/L)
pCi/L	picocuries per liter (a measure of radiation)

Sources of Drinking Water and Contaminants that May Be Present in Source Water

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include:

- Microbial contaminants, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- Inorganic contaminants, such as salts and metals, that can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- Pesticides and herbicides, that may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses.
- Organic chemical contaminants, including synthetic and volatile organic chemicals, that are byproducts of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, agricultural application, and septic systems.

• Radioactive contaminants, that can be naturally-occurring or be the result of oil and gas production and mining activities.

Regulation of Drinking Water and Bottled Water Quality

In order to ensure that tap water is safe to drink, the U.S. EPA and the State Board prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. The U.S. Food and Drug Administration regulations and California law also establish limits for contaminants in bottled water that provide the same protection for public health.

About Your Drinking Water Quality

Drinking Water Contaminants Detected

The tables below list the drinking water contaminants that were detected during the most recent sampling for the constituent, in both Source water (the water that comes from our wells before treatment), Treated water (the water that comes to your house) and, for lead and copper testing, the water in customer's houses. The presence of these contaminants in the water does not necessarily indicate that the water poses a health risk. The State Board allows us to monitor for certain contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of the data, though representative of the water quality, are more than one year old. Any violation of an AL, MCL, MRDL, or TT is highlighted and asterisked. Additional information regarding the violation is provided later in this report.

Table 1. Sampling Results Showing the Detection of Coliform Bacteria (in Treated water)

Complete if bacteria are detected.

Microbiological Contaminants	Highest No. of Detections	No. of Months in Violation	MCL	MCLG	Typical Source of Bacteria
Total Coliform Bacteria	(in a month) 1	0	1 positive monthly sample (a)	0	Naturally present in the environment
E. coli	(In the year) 0	0	(b)	0	Human and animal fecal waste

We had one detection of Total Coliform bacteria (not *E. coli*). These are not harmful but indicate a potential problem. We re-sampled at the original and backup sample sites. We found no bacteria in those samples, leading us to believe the first sample was contaminated during the sampling process.

- (a) Two or more positive monthly samples is a violation of the MCL
- (b) Routine and repeat samples are total coliform-positive and either is *E. coli*-positive or system fails to take repeat samples following *E. coli*-positive routine sample or system fails to analyze total coliform-positive repeat sample for *E. coli*.

Table 2. Sampling Results Showing the Detection of Lead and Copper (in customer plumbing)

Chemical or Constituent (and reporting units)	Sample Date	No. of Samples Collected	90th Percentile Level Detected	No. of sites exceeding AL	AL	PHG	Typical Source of Contaminant
Lead (ppt)	2024	5	3.7 (ppt)	0	15,000 (ppt)	200	Internal corrosion of household water plumbing systems; discharges from industrial manufacturers; erosion of natural deposits
Copper (ppt)	2024	5	525 (ppt)	0	1,300 (ppt)	300	Internal corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives

The water supplied to each home has very low (undetectable) levels of Lead and Copper. However, lead and copper can be dissolved into the water from your household plumbing. This can be especially true of houses using water softeners. Melody Woods water is responsible for supplying high quality drinking water but cannot control the plumbing in your house.

Lead

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing.

When your water has been sitting for several hours, you can minimize the potential for lead (and copper) exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. [Optional: If you do so, you may wish to collect the flushed water and reuse it for another beneficial purpose, such as watering plants.] If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/lead

Table 3. Sampling Results for Sodium and Hardness (Source Water)

Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	MCL	PHG	Typical Source of Contaminant
SODIUM (ppm)	2023-2024	33 (ppm)	19-47 (ppm)	None	None	Salt present in the water and is generally naturally occurring
HARDNESS, TOTAL (AS CACO3) (ppm)	2023-2024	186 (ppm)	176-196 (ppm)	None	None	Sum of polyvalent cations present in the water, generally magnesium and calcium, and are usually naturally occurring

Table 4. Detection of Contaminants with a Primary Drinking Water Standard (Treated Water)

Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	MCL	PHG	Typical Source of Contaminant
BROMODICHLOROMETHANE	2024	2.22 (ppb)	NA	None	None	Disinfection byproducts
BROMOFORM	2024	1.65 (ppb)	NA	None	None	Disinfection byproducts
CHLOROFORM	2024	2.32 (ppb)	NA	None	None	Disinfection byproducts
DIBROMOACETIC ACID	2024	1.1 (ppb)	NA	None	None	Disinfection byproducts
DIBROMOCHLOROMETHANE	2024	2.88 (ppb)	NA	None	None	Disinfection byproducts
DICHLOROACETIC ACID	2024	0 (ppb)	NA	None	None	Disinfection byproducts
TOTAL HALOACETIC ACIDS (HAA5)	2024	2.3 (ppb)	NA	60.00	None	Disinfection byproducts
MONOBROMOACETIC ACID	2024	0 (ppb)	NA	None	None	Disinfection byproducts
MONOCHLOROACETIC ACID	2024	0 (ppb)	NA	None	None	Disinfection byproducts
ТТНМ	2024	9.07 (ppb)	NA	80.00	None	Disinfection byproducts
TRICHLOROACETIC ACID	2024	1.2 (ppb)	NA	None	None	Disinfection byproducts

Table 5a. Detection of Contaminants with a Secondary Drinking Water Standard (Treated Water)

Chemical or Constituent (and reporting units)	Sample Dates	Average Level Detected	Range of Detections	MCL	PHG	Typical Source of Contaminant		
Iron (ppb)	2024-2025	0 (ppb)	0-0 (ppb)	300 ppb	NA	Leaching from natural deposits; industrial wastes		
We treat our water to	o remove the	naturally hig	h levels of iror	n in our s	ource wate	r.		
Manganese (ppb)	2024-2025	9.3 (ppb)	0-140* (ppb)	50 ppb	NA	Leaching from natural deposits		
We treat our water to remove the naturally high levels of manganese in our source water. We had one month with a level over the secondary MCL. This was due to the sample being taken when the treatment plant had just started, before treatment had reached an effective level and does not represent the level in water delivered to customers.								

Table 5b. Detection of Contaminants with a Secondary Drinking Water Standard (Source Water)

Chemical or Constituent (and reporting units)	Sample Dates	Level Detected	Range of Detections	MCL	PHG	Typical Source of Contaminant		
						Erosion of natural deposits; residual from		
						some surface water		
ALUMINUM (ppb)	2023-2024	120 (ppb)	110-130 (ppb)	1000.00	0.6	treatment processes		
COLOR (UNITS)	2023-2024	17.5 (UNITS)	15-20 (UNITS)	15.00	None	Naturally-occurring organic materials		
						Internal corrosion of household plumbing systems; erosion of natural deposits; leaching from wood		
COPPER, FREE (ppb)	2023-2024	125 (ppb)	0-250 (ppb)	1000.00	300	preservatives		
FOAMING AGENTS						Municipal and industrial		
(SURFACTANTS) (ppm)	2023-2024	0 (ppm)	0-0 (ppm)	.5	None	waste discharges		
IRON (ppb)	2024-2025	951* (ppb)	0-2000 (ppb)	300.00	None	Leaching from natural deposits; industrial wastes		
Our well water contains iron at levels that exceed the secondary MCL of 300 ppb. The iron MCL was set to protect you against unpleasant aesthetic effects (e.g., color, taste, and odor) and the staining of plumbing fixtures (e.g., tubs and sinks) and clothing while washing. We treat our well water to remove iron.								
There are no PHGs, MCLG of aesthetics	s, or mandatory st	andard health e	effects language for	iron becaus	e secondary l	MCLs are set on the basis		
MANGANESE (ppb)	2024-2025	643* (ppb)	110-1200 (ppb)	50.00	None	Leaching from natural deposits		
Our well water contains m	anganese at level	s that exceed th	e secondary MCL c	of 50 ppb. Th	e manganese	MCL was set to protect		
you against neurological e system. We treat our well	ffects. High levels water to remove	of manganese i manganese.	n people have beer	n shown to r	esult in adver	se effects to the nervous		

						Leaking underground
						storage tanks;
						discharges from
METHYL TERT-BUTYL						petroleum and chemical
ETHER (ppb)	2024-2024	0 (ppb)	0-0 (ppb)	13.00	13	factories
ODOR (TON)	2023-2024	0 (TON)	0-0 (TON)	3.00	None	
SILVER (ppb)	2023-2024	0 (ppb)	0-0 (ppb)	100.00	None	Industrial discharge
TURBIDITY (NTU)	2023-2024	13* (NTU)	8-18* (NTU)	5.00	N/A	Soil runoff
Turbidity has no health ef	fects. However, h	igh levels of tur	bidity can interfere	with disinfe	ction. Turbidi	ty in our well water comes
from iron and manganese	deposits and vari	es significantly o	over time. We see	high turbidit [,]	/ (more partio	cles in the water) when
the wells start up; the tur	bidity improves as	the well is run.	This doesn't affect	our treated	water.	
						Runoff/leaching from
						natural deposits;
ZINC (ppb)	2023-2024	0 (ppb)	0-0 (ppb)	5000.00	None	industrial wastes
						Runoff/leaching from
TDS (ppm)	2023-2024	300 (ppm)	270-330 (ppm)	1000.00	None	natural deposits
CONDUCTIVITY @ 25 C						Runoff/leaching from
UMHOS/CM (NA)	2023-2024	460 (NA)	380-540 (NA)	1600.00	None	natural deposits
						Substances that form
						ions when in water;
CHLORIDE (ppm)	2023-2024	35.5 (ppm)	19-52 (ppm)	500.00	None	seawater influence
						Runoff/leaching from
						natural deposits;
SULFATE (ppm)	2023-2024	54.5 (ppm)	54-55 (ppm)	500.00	None	seawater influence

Table 6a. Radioactive Contaminants (Source Water)

Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	MCL	PHG	Typical Source of Contaminant
GROSS ALPHA PARTICLE		3.397	1.914-4.88			Erosion of natural
ACTIVITY (PCI/L)	2024-2024	(PCI/L)	(PCI/L)	15.00	None	deposits

Table 6b: Inorganic Contaminants (Source Water)

Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	MCL	PHG	Typical Source of Contaminant
						Discharge from petroleum refineries; fire retardants;
ANTIMONY, TOTAL (ppb)	2023-2024	0 (ppb)	0-0 (ppb)	6.00	1	ceramics; electronics; solder
						Erosion of natural deposits;
						runoff from orchards; glass
						and electronics production
ARSENIC (ppb)	2023-2024	0 (ppb)	0-0 (ppb)	10.00	0.004	wastes
						Internal corrosion of asbestos
						cement water mains; erosion
ASBESTOS (MFL)	2021-2021	0 (MFL)	0-0 (MFL)	7.00	7	of natural deposits
						Discharge of oil drilling wastes
						and from metal refineries;
BARIUM (ppb)	2023-2024	65 (ppb)	0-130 (ppb)	1000.00	2	erosion of natural deposits

						Discharge from metal
						refineries, coal-burning factories, and electrical
BERYLLIUM, TOTAL						aerospace, and defense
(ppb)	2023-2024	0 (ppb)	0-0 (ppb)	4.00	1	industries
						Internal corrosion of
						natural deposits: discharge
						from electroplating and
						industrial chemical factories,
						and metal refineries; runoff
(dqq) MUIMDAD	2023-2024	(daa) 0	(dqq) 0-0	5	0.04	paints
		- 1-17		-		Discharge from steel and pulp
				50	100	mills and chrome plating;
СНКОМІОМ (ррб)	2023-2024	(ddd) (dd	(ddd) (0-0	50	100	erosion of natural deposits
CVANIDE (ppb)	2023-2024	0 (nnh)	0-0 (nnh)	150	None	Discharge from steel/metal,
	2023 2024	0 (ppb)	00(000)	150	None	Erosion of natural deposits:
						water additive which promotes
						strong teeth; discharge from
FULIORIDE (nnh)	2023-2024	170 (nnh)	110-230 (nnh)	2000	None	fertilizer and aluminum
	2023 2024	1/0 (pp0)	110 200 (ppb)	2000	None	Internal corrosion of
						household water plumbing
						systems; discharges from
LEAD (ppb)	2023-2024	0 (ppb)	0-0 (ppb)	None	0.2	industrial manufacturers; erosion of natural deposits
		C (PP~)			0.1	
MERCURY (ppb)	2023-2024	0 (ppb)	0-0 (ppb)	2	1.2	
NICKEL (ppb)	2023-2024	0 (ppb)	0-0 (ppb)	100	12	
						Runoff and leaching from
						fertilizer use; leaching from
NITRATE (ppb)	2025-2025	250 (ppb)	0-500 (ppb)	10.000	10.000	erosion of natural deposits
		(1-17	(FF - 7	-,	-,	Runoff and leaching from
						fertilizer use; leaching from
	2025-2025	0 (nnm)	$0_{-}0$ (nnm)	1	1	septic tanks and sewage;
	2023-2023	0 (ppin)		1	1	Perchlorate is an inorganic
						chemical used in solid rocket
						propellant, fireworks,
						explosives, flares, matches,
						and a variety of industries. It
						water as a result of
						environmental contamination
						from historic aerospace or
						that used or use store or
						dispose of perchlorate and its
PERCHLORATE (ppb)	2023-2023	0 (ppb)	0-0 (ppb)	6	1	salts.
						Discharge from petroleum,
						giass, and metal refineries; erosion of natural deposits:
						discharge from mines and
						chemical manufacturers;
SELENILIM (ppb)	2023-2024	0 (ppb)	0-0 (ppb)	50	20	runoff from livestock lots (feed
	2023-2024	0 (000)	<u>0-0 (hhn)</u>			Leaching from ore-processing
						sites; discharge from
	2022.2023		0.0 (m. 1.)	_		electronics, glass, and drug
THALLIUM, TOTAL (ppb)	2023-2024	U (ppb)	U-U (ppb)	2	0.1	factories

Table 6c: Synthetic Organic Contaminants including Pesticides and Herbicides

Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	MCL	PHG	Typical Source of Contaminant
ATRAZINE (ppb)	2024-2024	0 (ppb)	0-0 (ppb)	1	0.15	Runoff from herbicide used on row crops and along railroad and highway right- of-ways
1,2,3- TRICHLOROPROPANE (ppt)	2023-2023	0 (ppt)	0-0 (ppt)	10	0.7	Discharge from industrial and agricultural chemical factories; leaching from hazardous waste sites; used as cleaning and maintenance solvent, paint and varnish remover, and cleaning and degreasing agent; byproduct during the production of other compounds and pesticides.
SIMAZINE (ppb)	2024-2024	0 (ppb)	0-0 (ppb)	4	4	Herbicide runoff

Table 6d: Volatile Organic Contaminants

Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	MCL	PHG	Typical Source of Contaminant
						Discharge from plastics,
						dyes and nylon factories;
						leaching from gas
						storage tanks and
BENZENE (ppb)	2024-2024	0 (ppb)	0-0 (ppb)	1	0.15	landfills
						Discharge from chemical
CARBON						plants and other
TETRACHLORIDE (ppt)	2024-2024	0 (ppt)	0-0 (ppt)	500	100	industrial activities
						Extraction and
						degreasing solvent; used
						in the manufacture of
						pharmaceuticals, stone,
1,1-DICHLOROETHANE						clay, and glass products;
(ppb)	2024-2024	0 (ppb)	0-0 (ppb)	5	3	fumigant
						Discharge from
1,2-DICHLOROETHANE						industrial chemical
(ppt)	2024-2024	0 (ppt)	0-0 (ppt)	500	400	factories
						Discharge from
1,1-DICHLOROETHYLENE						industrial chemical
(ppb)	2024-2024	0 (ppb)	0-0 (ppb)	6	10	factories

						Discharge from
						industrial chemical
						factories; major
						biodegradation
CIS-1,2-						byproduct of TCE and
DICHLOROETHYLENE						PCE groundwater
(ppb)	2024-2024	0 (ppb)	0-0 (ppb)	6	100	contamination
						Discharge from
						industrial chemical
						factories; minor
						biodegradation
TRANS-1,2-						byproduct of TCE and
DICHLOROETHYLENE						PCE groundwater
(ppb)	2024-2024	0 (ppb)	(dqq) 0-0	10	60	contamination
						Discharge from
						pharmaceutical and
DICHLOROMETHANE						chemical factories:
(dqq)	2024-2024	(dqq) 0	(dgg) 0-0	5	4	insecticide
		- (1-17				Discharge from
						industrial chemical
						factories: primary
						component of some
(nnb)	2024-2024	0 (ppb)	0-0 (nnh)	5	0.5	fumigants
	2024 2024	0 (pp0)	0 0 (pp5)	5	0.5	Runoff/leaching from
						nematocide used on
(nnt)	2024-2024	0 (ppt)	0-0 (ppt)	500	200	croplands
	2024-2024	0 (ppt)	0-0 (ppt)	500	200	Discharge from
						potroloum rofinarios:
						industrial chamical
ETHVI DENIZENE (ppb)	2024 2024	0(nnh)	0.0(nnh)	200	200	factorios
	2024-2024	o (ppb)	0-0 (ppp)	300	300	Discharge from
						industrial and
						agricultural chomical
						factorios and dry
CHI OBOBENIZENE (ppb)	2024 2024	0(nnh)	0.0(nnh)	70	70	clooping facilities
CHLOROBENZENE (ppb)	2024-2024	o (ppp)	0-0 (hhn)	70	70	Discharge from
						industrial and
	2024 2024	O(aab)	0.0 (mmh)	600	70	factories and dry
(ממק)	2024-2024	(dqq) U	(dqq) 0-0	600	70	Cleaning facilities
						Discharge from
						agricultural chemical
	2024 2024	0 (mmh)	0.0 (-	70	factories and dry
(ממק)	2024-2024	(aqq) U	(dqq) 0-0	5	70	
						Discharge from rubber
	2024 2024	0 (mmh)	0.0 (100	0.5	and plastic factories;
STIKENE (PPD)	2024-2024	(ממק) ט	(aqq) U-U	100	0.5	Discharge from landfills
						Discharge from
						industrial and
						agricultural chemical
						factories; solvent used in
1,1,2,2-						production of TCE,
TETRACHLOROETHANE					-	pesticides, varnish and
(ppb)	2024-2024	0 (ppb)	0-0 (ppb)	1	0.1	lacquers

						Discharge from
						factories, dry cleaners,
TETRACHLOROETHYLENE						and auto shops (metal
(ppb)	2024-2024	0 (ppb)	0-0 (ppb)	5	0.06	degreaser)
1,2,4-						
TRICHLOROBENZENE						Discharge from textile-
(ppb)	2024-2024	0 (ppb)	0-0 (ppb)	5	5	finishing factories
						Discharge from metal
						degreasing sites and
1,1,1-						other factories;
TRICHLOROETHANE						manufacture of food
(ppb)	2024-2024	0 (ppb)	0-0 (ppb)	200	1000	wrappings
1,1,2-			,			Discharge from
TRICHLOROETHANE						industrial chemical
(dqq)	2024-2024	(dqq) 0	(dqq) 0-0	5	0.3	factories
						Discharge from metal
TRICHLOROETHYLENE						degreasing sites and
(dqq)	2024-2024	(dqq) 0	(daa) 0-0	5	1.7	other factories
						Discharge from
						petroleum and chemical
						factories: underground
TOLUENE (ppb)	2024-2024	(dqq) 0	0-0 (ppb)	150	150	gas tank leaks
		- (PP-7)				Discharge from
						industrial factories:
						degreasing solvent:
TRICHLOROFLUOROMET						propellant and
HANE (ppb)	2024-2024	(dqq) 0	0-0 (ppb)	150	1300	refrigerant
		- (PP-7)	(PP)			Discharge from metal
						degreasing sites and
						other factories: dry
TRICHI OROTRIFI UOROF						cleaning solvent:
THANE (ppb)	2024-2024	0 (ppb)	0-0 (ppb)	1200	4	refrigerant
		0 (00~)			•	Leaching from PVC
						piping: discharge from
						plastics factories.
						biodegradation
						hyproduct of TCF and
						PCF groundwater
VINYL CHLORIDE (ppt)	2024-2024	0 (ppt)	0-0 (ppt)	500	50	contamination
		~ (PP')			50	Discharge from
						netroleum and chemical
XVIENES TOTAL (nph)	2024-2024	0 (nnh)	0-0 (ppb)	1750	1 ହ	factories: fuel solvent
ATTENES, TOTAL (ppb)	2024 2024	0 (660)	0-0 (hhn)	1,20	1.0	ractories, ruer solvent

Chemical or Constituent (and reporting units)	Sample Dates	Average Level Detected	Range of Detections	SMCL	PHG	Typical Source of Contaminant
ALKALINITY, BICARBONATE (ppm)	2023-2024	125 (ppm)	120-130 (ppm)	None	None	Erosion of natural deposits
CALCIUM (ppm)	2023-2024	55.5 (ppm)	55-56 (ppm)	None	None	Erosion of natural deposits
ALKALINITY, CARBONATE (ppm)	2023-2024	0 (ppm)	0-0 (ppm)	None	None	Erosion of natural deposits
HYDROXIDE AS CALCIUM CARBONATE (ppm)	2023-2024	0 (ppm)	0-0 (ppm)	None	None	Erosion of natural deposits
MAGNESIUM (ppm)	2023-2024	11.55 (ppm)	9.1-14 (ppm)	None	None	Erosion of natural deposits
РН (рН)	2023-2024	6.56 (pH)	6.39-6.73 (pH)	None	None	0

Table 6e. Other General Physical Characteristics (Source Water)

Additional General Information on Drinking Water

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the U.S. EPA's Safe Drinking Water Hotline (1-800-426-4791).

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. U.S. EPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* and other microbial contaminants are available from the Safe Drinking Water Hotline (1-800-426-4791).

Lead Service Line Inventory

In 2024, Melody Woods Water (with the help of the community) completed an inventory of the system to check for lead service lines (customer water pipes leading from the meter to the house). We are happy to report that we found no lead service lines in our system. If you're interested in a copy of the survey, please email <u>lorenzo@melodywoods.com</u>. The following information is provided as educational material.

Lead can cause serious health effects in people of all ages, especially pregnant people, infants (both formulafed and breastfed), and young children. Lead in drinking water is primarily from materials and parts used in service lines and in home plumbing. Melody Woods is responsible for providing high quality drinking water and removing lead pipes but cannot control the variety of materials used in the plumbing in your home. Because lead levels may vary over time, lead exposure is possible even when your tap sampling results do not detect lead at one point in time. You can help protect yourself and your family by identifying and removing lead materials within your home plumbing and taking steps to reduce your family's risk. Using a filter, certified by an American National Standards Institute accredited certifier to reduce lead, is effective in reducing lead exposures. Follow the instructions provided with the filter to ensure the filter is used properly. Use only cold

Melody Woods Consumer Confidence Report

water for drinking, cooking, and making baby formula. Boiling water does not remove lead from water. Before using tap water for drinking, cooking, or making baby formula, flush your pipes for several minutes. You can do this by running your tap, taking a shower, doing laundry or a load of dishes. If you have a lead service line or galvanized requiring replacement service line, you may need to flush your pipes for a longer period. If you are concerned about lead in your water and wish to have your water tested, contact [INSERT NAME OF SYSTEM and CONTACT INFORMATION]. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available at https://www.epa.gov/safewater/lead.