

CITY OF SOLVANG

2022 Consumer Confidence Report

1644 Oak Street Solvang CA 93463

Every drop counts, please conserve water!

Water System Name:

Report Date: JUNE 1, 2023

We test the drinking water quality for many constituents as required by state and federal regulations. This report shows the results of our monitoring/or the period of January 1 - December 31, 2022, and may include earlier monitoring data.

Este informe contiene informacion muy importante sobre su agua potable. Traduzcalo o hable con alguien que lo entienda bien.

Type of water source(s) in use: <u>Ground Water (Solvang Wells & ID#! Wells) & Surface Water (CCWA)</u> Name & general location of source(s): Well 3 & 7A River Wells; Well 4, 21, 22 & HCA South Upland Wells; Santa Ynez River Water Conservation District, Improvement District No. 1 (ID#l) & Central Coast Water Authority (CCWA) Drinking Water Source Assessment information: <u>Source Assessments for the City's wells were completed September 2002</u>

Time and place of regularly scheduled board meetings for public participation:

CITY OF SOLVANG

Second & Fourth Monday of each Month at 1644 Oak Street, Solvang, CA @ 6:30 P.M.

For more information, contact: _Mike Mathews_____

Phone: (805) 688-5575 Ext. 229

TERMS USED IN THIS REPORT

Maximum Contaminant Level (MCL): The highest level of a contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs (or MCLGs) as is economically and technologically feasible. Secondary MCLs are set to protect the odor, taste, and appearance of drinking water.

Maximum Contaminant Level Goal (MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the U.S. Environmental Protection Agency (U.S. EPA).

Public Health Goal (PHG): The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California Environmental Protection Agency.

Maximum Residual Disinfectant Level (MRDL): The highest level of a disinfectant allowed .in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Maximum Residual Disinfectant Level Goal (MRDLG): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

Primary Drinking Water Standards (PDWS): MC Ls and MRDLs for contaminants that affect health along with their monitoring and reporting requirements, and water treatment requirements. **Secondary Drinking Water Standards (SOWS):** MCLs for contaminants that affect taste, odor, or appearance of the drinking water. Contaminants with SDWSs do not affect the health at the MCL levels.

Treatment Technique (TT): A required process intended to reduce the level of a contaminant in drinking water.

Regulatory Action Level (AL): The concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow.

Variances and Exemptions: State Board permission to exceed an MCL or not comply with a treatment technique under certain conditions.

Level 1 Assessment: A Level **1** assessment is a study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system.

Level 2 Assessment: A Level 2 assessment is a very detailed study of the water system to identify potential problems and determine (if possible) why an *E. coli* MCL violation has occutTed and/or why total coliform bacteria have been found in our water system on multiple occasions.

ND: not detectable at testing limit

ppm: parts per million or milligrams per liter

(mg/L) $\ensuremath{\text{ppb:}}\xspace$ parts per billion or micrograms per

liter ($\mu g/L$) **ppt:** parts per trillion or nanograms

per liter (ng/L) $\boldsymbol{ppq:}$ parts per quadrillion or

picogram per liter (pg/L) **pCi/L:** picocuries per liter (a measure of radiation)

Page **1** *of* **4**

Consumer Confidence Report

Page 2 of 4

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include:

- *Microbial contaminants,* such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- *Inorganic contaminants*, such as salts and metals, that can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- *Pesticides and herbicides,* that may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses.
- Organic chemical contaminants, including synthetic and volatile organic chemicals, that are byproducts of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, agricultural application, and septic systems.
- *Radioactive contaminants,* that can be naturally-occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, the U.S. EPA and the State Water Resources Control Board (State Board) prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. State Board regulations also establish limits for contaminants in bottled water that provide the same protection for public health.

Tables 1, 2, 3, 4, 5, and 6 list all the drinking water contaminants that were detected during the most recent sampling for the constituent. The presence of these contaminants in the water does not necessarily indicate that the water poses a health risk. The State Board allows us to monitor for certain contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of the data, though representative of the water quality, are more than one year old. Any violation of an AL, MCL, MRDL, or TT is asterisked. Additional information regarding the violation is provided later in this report.

TABLE 1 - SA	TABLE 1 - SAMPLING RESULTS SHOWING THE DETECTION OF COLIFORM BACTERIA											
Microbiological Contaminants	Highest No. of Detections	No. of Months in Violation	MCL	MCLG	Typical Source of Bacteria							
Total Coliform Bacteria	0	0	More than I sample in a month with a detection	0	Naturally present in the environment							
Fecal Coliform and <i>E. coli</i>	0	0	A routine sample and a repeat sample detect total coliform and either sample also detects fecal coliform or£. <i>coli</i>	0	Human and animal fecal waste							
E.coli	0	0	A routine sample and a repeat sample detect total coliform and either sample also detects <i>E.coli</i>	0	Human and animal fecal waste							

TABLE 2 - SAMPLING RESULTS SHOWING THE DETECTION OF LEAD AND COPPER											
Lead and Copper	Sample Date	No. of Samples Collected	90 ^{1h} Percenti le Level Detected	No. Sites Exceeding AL	AL	PH G	Typical Source of Contaminant				
Lead (ppb)	8/10/20	20	0	0	15	0.2	Internal corrosion of household water plumbing systems; discharges from industrial manufacturers; erosion of natural deposits				
Copper (ppb)	8/10/20	20	78	0	1300	0.3	Internal corrosion of household plumbing systems: erosion of natural deposits; leaching from wood preservatives				

Consumer Confidence Report

Page 3 of 4

	TABLE 3 - SAMPLING RESULTS FOR SODIUM AND HARDNESS												
Chemical or Constituent (and recortin2 units)	Sample Date	Level Detected	Range of Detections	MCL	PHG (MCLG)	Typical Source of Contaminant							
Sodium (ppm)	2020-2022	63	56-72	none	none	Salt present in the water and is 2eneralIv naturally occurring							
Hardness (ppm)	2020-2022	593	433-718	none	none	Sum of polyvalent cations present in the water, generally magnesium and calcium, and are usually naturally occurrin2							

TABLE4-DETEC	CTION OF C	ONTAMINAN	TS WITH A PR	IMARY DI	RINKING W	ATER STANDARD
Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	MCL (MRDL)	PHG (MCLG) (MRDLG)	Typical Source of Contaminant
Fluoride (ppm)	2020- 2022	0.22	<0.1-0.3	2	.1	Erosion of Natural deposits; water additive which promotes strong teeth
Arsenic (ppb)	2020- 2022	3.6	2-5	10	0.004	Erosion of natural deposits; orchard runoff, from glass/electronics production wastes
Nitrate (as N) (ppm)	2022-	1.97	<0.4-4.4	10	10	Runoff & leaching from fertilizer use; sewage: erosion of natural deposits
Chlorine (ppm)	2022	1.99	1.42-2.48	4.0	4.0	Drinking water disinfectant added for treatment
Tetrachloroethylene (PCE) (ppb)	2016- 2022	.4	ND-0.9	5	N/A	Leaching from PVC pipes: discharge from factories, dry cleaners and auto shops (metal de2reasers)
Gross Alpha Activity (pCi/L)	2018- 2021	7.05	1.3-12.9	15	N/A	Erosion of natural deposits
Uranium (pCi/L)	2016- 2021	7.72	3.11-11.1	20	.5	Erosion of natural deposits
Total Trihalomethane (TTHM) (ppb)	2022	41.6	16-76	80	N/A	Byproduct of drinking water chlorination
Haloacetic Acid (HA AS)(ppb)	2022	18.3	2-38	60	N/A	Byproduct of drinking water chlorination
Selenium (ppb)	2020- 2022	12.75	10-15	50	N/A	Erosion of natural deposits; discharge chemical manufacturers and runoff from livestock lot.

TABLE 5 - DETEC	TABLE 5 - DETECTION OF CONTAMINANTS WITH A SECONDARY DRINKING WATER STANDARD												
Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	MCL	PHG (MCLG)	Typical Source of Contaminant							
Color (ACU)	2020- 2022	7.5	5-10	15	N/A	Natural-occuring organic materials							
Chloride (ppm)	2020- 2022	86.2	51-111	250	N/A	Runoff/leaching from natural deposits; seawater influence							
Iron (ppm)	2020- 2022	155	140-170	300	N/A	Leaching from natural deposits; industrial wastes							
Manganese (ppm)	2019- 2022	20	ND-20	50	N/A	Leaching from natural deposits							

Consumer Confidence Report

Page 4 of 4

Odor (units)	2020- 2022	2	0-2	3	N/A	Natural occurring materials
Specific conductance (Umhos/cm)	2020- 2022	1272	792-1600	1600	N/A	Substance that forms ions when in water; seawater influence
Sulfate (ppm)	2020- 2022	244	145-331	500	N/A	Runoff/leaching from natural deposits; industrial wastes
Total Dissolved Solids (ppm)	2020- 2022	907	710-1050	1000	N/A	Runoff/leaching from natural deposits
Turbidity (NTU)	2020- 2022	2.3	.4-5.8	5	N/A	Soil erosion/runoff
Zinc (ppm)	2020- 2022	100	ND-120	N/A	N/A	Runoff/leaching from natural deposits; industrial wastes

	TABLE 6-DETECTJON OF UNREGULATED CONTAMINANTS											
Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	Notification Level	Health Effects Language							
Boron (ppb)	2020- 2022	250	200-300	1000 ppb	Some men who drink water containing boron in excess of the action level over many years may experience reproductive effects based on studies in dogs.							
Vanadium (ppb)	2020- 2022	7.25	5-9	50 ppb	The babies of some pregnant women who drink water containing vanadium in excess of the action level may have an increased risk of developmental effects. based on studies in laboratory animals							

Additional General Information on Drinking Water

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the U.S. EPA's Safe Drinking Water Hotline (1-800-426-4791).

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. U.S. EPNCenters for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* and other microbial contaminants are available from the Safe Drinking Water Hotline (1-800-426-4791).

Lead-Specific Language for Community Water Systems: If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. The City of Solvang is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. [Optional: If you do so, you may wish to collect the flushed water and reuse it for another beneficial purpose, such as watering plants.] If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline (1-800-426-4791) or at https://www.epa.gov/lead

CENTRAL COAST WATER AUTHORITY POLONIO PASS WATER TREATMENT PLANT WATER QUALITY TABLE COVERING THE REPORTING PERIOD OF JANUARY-DECEMBER 2022

Please see last page for key to abbreviations.

						TREATED	SOURCE	
		State	PHG	State	Range		STATE	
Parameter	Units	MCL	(MCLG)	DLR	Average	CCWA	WATER	Major Sources in Drinking Water

PRIMARY STANDARDS--Mandatory Health-Related Standards

CLARITY (a)

Combined Filter Effluent	ΝΤΠ	TT=<1 NTU every 4 hours	Range	0.05 - 0.15	NA	Soil rupoff
Turbidity (a)	NIU	TT=95% of samples <0.3 NTU	%	100%	NA	

INORGANIC CHEMICALS

Aluminum mg/L	ma/l	g/L 1 (b)	0.6	0.05	Range	ND - 0.11	ND - 0.054	Erosion of natural deposits; residual from some
	mg/∟				Average	0.054	0.040	surface water treatment processes
Arsenic, Total ug/L	10	0.004	2	Range	ND	2.6	Erosion of natural deposits; runoff from orchards;	
	ug/L	10	0.004	2	Average	ND	2.6	lass and electronics production wastes
Fluoride	mg/L	2	1	0.1	Range	ND	0.11	Erosion of natural deposits; water additive that
					Average	ND	0.11	and aluminum factories

RADIONUCLIDES

Gross Alpha Particle p0	nCi/l	15	(0)	3	Range	4.9	ND - 22	Fresion of natural denosits
	poi/L	15			Average	4.9	12.5	
Uranium	nCi/l	20	0.43	1	Range	ND	1.9	Fresion of natural deposits
	poi/L	20			Average	ND	1.9	

DISTRIBUTION SYSTEM MONITORING

Total Chlorine Residual	ma/l		MRDLG =	ΝΔ	Range	0.21 - 3.7	NA	Drinking water disinfectant added for treatment
Total Chionne Residual	IIIg/L		4.0		Average	2.80	NA	
Tatal Oalifama					Range	0	NA	
Racteria		(c)	(0)		Average	0	NA	Naturally present in the environment
Daciena					Highest	0%	NA	
					Range	0	NA	
E.coli (c)		0	(0)		Average	0	NA	Human and animal fecal waste
					Highest	0%	NA	
Total Tribalans athon as				(0.5)	Range	43 - 69	NA	
(d)	ug/L	80	NA		Average	52	NA	By-product of drinking water chlorination
(u)					Highest LRAA	54.3	NA	
Haloacetic Acids (d)		60		(1) (e)	Range	8.6 - 19.7	NA	
	ug/L		NA		Average	14	NA	By-product of drinking water chlorination
					Highest LRAA	15.2	NA	

SECONDARY STANDARDS--Aesthetic Standards

Chloride	ma/l	500 (i)	ΝΔ	(1)	Range	74 - 145	68 - 133	Runoff/leaching from natural deposits; seawater
onionae	mg/∟	500 (j)		(1)	Average	104	100	influence
Color		15 (j)	NIA	(3)	Range	ND	15	Naturally accuring organic materials
	ACU		NA		Average	ND	15	
Corrosivity	811	non-	NIA	(0.1)	Range	12.2	12.6	
(Aggresivity Index) (i)	30	corrosive	INA	(0.1)	Average	12.2	12.6	
Iron, Total	ma/l	0.3 (j)	NΛ	(0.01)	Range	ND	0.078	Leaching from natural deposits; industrial wastes
	mg/∟				Average	ND	0.078	
Magnasium, Tatal	ma/l	NA	NA	(0.1)	Range	17	18	Runoff/leaching from natural deposits; seawater
Magnesium, rotai	mg/∟				Average	17	18	influence
Manganaga Tatal	ug/l	50 (i)	NIA	(0)	Range	ND	26	
Manganese, Total	ug/L	50 (J)	INA	(2)	Average	ND	26	
Odor Throshold	TON	3 (j)	NIA	(1)	Range	ND	2	Naturally occuring organic materials
	TON		NA		Average	ND	2	
Specific Conductance	uS/cm	1600 (j)	NA	NA	Range	585 - 937	481 - 835	Substances that form ions when in water;
	u3/cm				Average	701	623	seawater influence
Sulfate	ma/l	500 (i)	NΔ	(0.5)	Range	96	64	Runoff/leaching from natural deposits; industrial
ounate	mg/L	500 (J)		(0.3)	Average	96	64	wastes

Total Dissolved	ma/l	1000 (i)	NΙΔ	(10)	Range	380	340	Runoff/leaching from natural denosits
Solids (TDS)	mg/∟	1000 (j)		(10)	Average	380	340	I tanon neaching norm natural deposits
Turbidity (Monthly) (a)	NTU	5 (i)	ΝΔ	(0.1)	Range	ND - 0.25	ND - 4.8	Soil rupoff
Turbidity (Montility) (a)	NIU	5()		(0.1)	Average	0.06	1.24	

ADDITIONAL PARAMETERS (Unregulated)

2 Mothuliaghornool	ng/	NIA	NIA	(1)	Range	ND - 32	ND - 56	An organic compound mainly produced by blue-
2-ivietnyiisoporneoi	ng/∟	NA	NA	(1)	Average	7.7	12.4	green algae (cyanobacteria)
Alkalinity (Total) as		NIA	NIA	(2)	Range	68 - 102	78 - 108	Runoff/leaching from natural deposits; seawater
CaCO3 equivalents	mg/∟	NA	NA NA	(2)	Average	80	91	influence
Anion Sum - Calculated		NA	NA	(0.004)	Range	6.4	5.9	
	meq/L			(0.001)	Average	6.4	5.9	-
Bicarbonate Alkalinity	ma/l	NΔ	NA	(2)	Range	110	120	
as HCO3	iiig/L	11/5		(2)	Average	110	120	
Calaium	ma/l	NIA	NIA		Range	29	30	Runoff/leaching from natural deposits; seawater
Calcium	mg/∟	NA	NA	(1)	Average	29	30	influence
Carbonate as CO3	ma/l	NA	NA	(2)	Range	ND	3.1	
	mg/L			(-)	Average	ND	3.1	
Cation Sum - Calculated	meg/l	NA	NA	(0.001)	Range	6.2	6	_
outon outoutatou				(0.001)	Average	6.2	6.0	
Chromium, Hexavalent uç	ua/l	NA	0.02	NA	Range	0.067	0.049	Discharge from electroplating factories, leather tanneries, wood preservation, chemical synthesis, refractory production, and textile manufacturing facilities; erosion of natural deposits
	ug/L	NA			Average	0.067	0.049	
O		NΙΔ	NA	(1)	Range	ND - 2	ND - 7	An organic compound mainly produced by
Geosmin	ng/L	NA			Average	0.3	2.4	bacterial growth in surface water
Hardness (Total) as	ma/l	ΝΔ	NIA	(2)	Range	104 - 158	104 - 166	l eaching from natural deposits
CaCO3	mg/∟	NA.	IN/A	(3)	Average	127	127	Leaching from hatural deposits
Heterotrophic Plate	CELI/ml	тт	NΔ	NΔ	Range	0 - 98	NA	HPC measures a range of bacteria that are natura
Count (f)	OF O/ITE		10/1	147.1	Average	2	NA	The official and the second that are nature
Langelier Index @ 25 °C	NONE	NA	NA	(-14)	Range	0.27	0.75	_
				()	Average	0.27	0.75	
Langelier Index @ 60 °C	NONE	NA	NA	(-14)	Range	0.72	1.2	-
					Range	17	1.2	Runoff/leaching from natural deposits: seawater
Magnesium, Total	mg/L	NA	NA	(0.1)	Average	17	18	influence
nН	511	NΔ	ΝΔ	(0.1)	Range	7.2 - 8.9	7.5 - 9.25	Runoff/leaching from natural deposits; seawater
рп	30	INA	117	(0.1)	Average	8.4	8.6	influence
Potassium	mg/L	NA	NA	(1)	Range	3.6	3.8	Runoff/leaching from natural deposits; seawater
	Ű			. ,	Average	3.6	3.8	Influence Runoff/leaching from natural deposite: seawater
Sodium	mg/L	NA	NA	(1)	Average	76	67	influence
Total Organic Carbon					Range	1.9 - 4.5	3.9 - 6	
(TOC) (g)	mg/L	TT	NA	(0.3)	Average	2.9	4.7	Various natural and man made sources

ABBREVIATIONS AND NOTES

Footnotes:

- (a) Turbidity (NTU) is a measure of the cloudiness of the water and it is a good indicator of the effectiveness of our filtration system. Monthly turbidity values are listed in the Secondary Standards section.
- (b) Aluminum has a Secondary MCL of 0.2 ppm.
- (c) Level 1 treatment technique triggers: Systems that collect ≥40 samples/month, no more than 5.0% of the monthly samples may be Total Coliform positive. Systems that collect <40 samples per month, no more than one positive sample per month may be Total Coliform positive

Level 2 treatment technique triggers: System has an E. coli MCL violation, has a second Level 1 treatment technique trigger within a rolling 12-month period, or the system with reduced annual monitoring has a Level 1 treatment technique trigger in two consecutive vears

E. coli MCLs: The occurrence of 2 consecutive Total Coliform positive samples, one of which contains E. coli, constitutes an acute MCL violation.

- (d) Compliance based on the running quarterly annual average of distribution system samples. (e) Monochloroacetic Acid (MCAA) has a DLR of 2.0 ug/L while the other four Haloacetic Acids have DLR's of 1.0 ug/L.
- (f) Pour plate technique
- (g) TOCs are taken at the treatment plant's combined filter effluent.
- (h) State MCL is 45 mg/L as NO3, which equals 10 mg/L as N.
- (i) Al ³ 12.0 = Non-aggressive water AI (10.0 - 11.9) = Moderately aggressive water AI £ 10.0 = Highly aggressive water Reference: ANSI/AWWA Standard C400-93 (R98)
- (i) Secondary MCL

Abbreviations

ACU = Apparent Color Units CCWA = Central Coast Water Authority CFU/ml = Colony Forming Units per milliliter DLR = Detection Level for purposes of Reporting MCL = Maximum Contaminant Level MCLG = Maximum Contaminant Level Goal MRDL = Maximum Residual Disinfectant Level MRDLG = Maximum Residual Disinfectant Level Goal NA = Not Applicable ND = Non-detected above detection limit (DLR) NTU = Nephelometric Turbidity Units pCi/L = PicoCuries per liter

PHG = Public Health Goal

ppb = parts per billion, or micrograms per liter (µg/L)

- ppm = parts per million, or milligrams per liter (mg/L)
- TON = Threshold Odor Number
- TT = Treatment Technique
- LRAA = Locational Running Annual Average

2022 Annual Water Quality Report - Santa Ynez River Water Conservation District, ID No.1

Drinking W							g Water Source		
	1	State	PHG	State	Range	State	Ground		
Parameter	Units	MCL	(MCLG)	DLR	Average	Water	Water	Major Sources in Drinking Water	
PRIMARY STANDAR	DSMa	ndatory He	alth-Relat	ted Star	ndards				
	1	TT							
Combined Filter	NTU	=<1 N	IIU every 4	hours	Range	0.05 - 0.15	NA	Soil runoff	
Effluent Turbidity ^a		11=95% o	t samples <0).3 NTU	%	100%	NA		
INORGANIC CHEMICALS									
Aluminum	nnh	1000	600	50	Range	ND - 110	ND	Residue from water treatment process;	
Aluminum	ppp	1000	000	50	Average	54	ND	erosion of natural deposits	
Arsenic	ppb	10	0.004	2	Range	ND	ND - 2.6	Erosion of natural deposits; orchard runoff; from	
					Average		0.4	glass/electronics production wastes	
Barium	ppm	1	2	0.1	Average	ND	ND	metal refineries: erosion of natural deposits	
Chromium (Total)	nnh	50	(100)	10	Range	ND	ND - 20	Erosion of natural deposits; steel,	
Chioman (Total)	ppp	50	(100)	10	Average	ND	3.2	pulp mills, and chrome plating wastes	
Fluoride	ppm	2	1	0.1	Range	ND	ND - 0.33	Erosion of natural deposits;	
					Average		0.2	Water additive for tooth health	
Nickel	ppb	100	12	10	Average	ND	1.2	metal factories	
Nitrata (ao Nitragon)	nnm	10	10	0.4	Range	ND	ND - 6.0	Runoff and leaching from fertilizer use; leaching from	
Nillale (as Nillogen)	ppm	10	10	0.4	Average	ND	0.9	septic tanks and sewage; erosion of natural deposits	
Selenium	ppb	50	30	5	Range	ND	ND - 7.1	Runoff and leaching from fertilizer use; leaching from	
					Average	ND	1.0	septic tarks and sewage, crosion of natural deposits	
RADIONUCLIDES									
Gross Alpha ^b	pCi/L	15	NA	3	Range	4.9	ND - 7.2	Erosion of natural deposits	
		-		_	Average	4.9	2.7	'	
Uranium ^c	pCi/L	20	0.5	1	Range	ND	2.1 - 5.6	Erosion of natural deposits	
-					Average	ND	3.8		
SECONDARY STAN	DARDS-	-Aesthetic	Standard	S					
Aluminum	nnh	200	NIA	50	Range	ND - 110	ND	Residue from water treatment process;	
Aluminum	php	200	IN/A	50	Average	54	ND	Erosion of natural deposits	
Chloride	ppm	500	NA		Range	74 - 145	26 - 61	Runoff/leaching from natural deposits;	
					Average	104 ND	36 ND - 3	seawater Influence	
Color	ACU	15	NA		Average	ND	0.5	Naturally-occurring organic materials	
Corrosivity									
(Aggresive Index) ^d		non-	NIA		Range	12.2	11.8 - 12.7	Balance of hydrogen, carbon, & oxygen in	
· · · · ·	none	non- corrosive	NA		Range Average	12.2 12.2	11.8 - 12.7 12.2	Balance of hydrogen, carbon, & oxygen in water, affected by temperature & other factors	
Iron	none	non- corrosive 300	NA		Range Average Range	12.2 12.2 ND	11.8 - 12.7 12.2 ND - 190	Balance of hydrogen, carbon, & oxygen in water, affected by temperature & other factors Leaching from natural deposits;	
Iron	none ppb	non- corrosive 300	NA NA	 100	Range Average Range Average	12.2 12.2 ND ND	11.8 - 12.7 12.2 ND - 190 14.0	Balance of hydrogen, carbon, & oxygen in water, affected by temperature & other factors Leaching from natural deposits; industrial wastes	
Iron Odor Threshold	none ppb TON	non- corrosive 300 3	NA NA NA	 100 1	Range Average Range Average	12.2 12.2 ND ND ND	11.8 - 12.7 12.2 ND - 190 14.0 1 - 2	Balance of hydrogen, carbon, & oxygen in water, affected by temperature & other factors Leaching from natural deposits; industrial wastes Naturally-occurring organic materials	
Iron Odor Threshold	none ppb TON	non- corrosive 300 3	NA NA NA	 100 1	Range Average Range Average Average Range	12.2 12.2 ND ND ND ND 585 - 937	11.8 - 12.7 12.2 ND - 190 14.0 1 - 2 1 790 - 1100	Balance of hydrogen, carbon, & oxygen in water, affected by temperature & other factors Leaching from natural deposits; industrial wastes Naturally-occurring organic materials Substances that form ions	
Iron Odor Threshold Specific Conductance	none ppb TON µmho/ cm	non- corrosive 300 3 1600	NA NA NA NA	 100 1 	Range Average Average Range Average Range Average	12.2 12.2 ND ND ND 585 - 937 701	11.8 - 12.7 12.2 ND - 190 14.0 1 - 2 1 790 - 1100 926	Balance of hydrogen, carbon, & oxygen in water, affected by temperature & other factors Leaching from natural deposits; industrial wastes Naturally-occurring organic materials Substances that form ions when in water; seawater influence	
Iron Odor Threshold Specific Conductance	none ppb TON µmho/ cm	non- corrosive 300 3 1600 500	NA NA NA	 100 1 	RangeAverageRangeAverageRangeAverageAverageRangeAverageRangeAverageRange	12.2 12.2 ND ND S85 - 937 701 96	11.8 - 12.7 12.2 ND - 190 14.0 1 - 2 1 790 - 1100 926 69 - 270	Balance of hydrogen, carbon, & oxygen in water, affected by temperature & other factors Leaching from natural deposits; industrial wastes Naturally-occurring organic materials Substances that form ions when in water; seawater influence Runoff/leaching from natural deposits;	
Iron Odor Threshold Specific Conductance Sulfate	none ppb TON µmho/ cm ppm	non- corrosive 300 3 1600 500	NA NA NA NA	 100 1 0.5	RangeAverageRangeAverageRangeAverageRangeAverageRangeAverageRangeAverage	12.2 12.2 ND ND S85 - 937 701 96 96	11.8 - 12.7 12.2 ND - 190 14.0 1 - 2 1 790 - 1100 926 69 - 270 169	Balance of hydrogen, carbon, & oxygen in water, affected by temperature & other factors Leaching from natural deposits; industrial wastes Naturally-occurring organic materials Substances that form ions when in water; seawater influence Runoff/leaching from natural deposits; industrial wastes	
Iron Odor Threshold Specific Conductance Sulfate Total Dissolved	none ppb TON µmho/ cm ppm ppm	non- corrosive 300 3 1600 500 1000	NA NA NA NA NA	 100 1 0.5	Range Average Average Range Average Average Range Average Range	12.2 12.2 ND ND ND 585 - 937 701 96 96 380 200	11.8 - 12.7 12.2 ND - 190 14.0 1 - 2 1 790 - 1100 926 69 - 270 169 450 - 730	Balance of hydrogen, carbon, & oxygen in water, affected by temperature & other factors Leaching from natural deposits; industrial wastes Naturally-occurring organic materials Substances that form ions when in water; seawater influence Runoff/leaching from natural deposits; industrial wastes Runoff/leaching from natural deposits;	
Iron Odor Threshold Specific Conductance Sulfate Total Dissolved Solids (TDS)	none ppb TON µmho/ cm ppm ppm	non- corrosive 300 3 1600 500 1000	NA NA NA NA NA	 100 1 0.5 	RangeAverageRangeAverageRangeAverageRangeAverageRangeAverageRangeAverageRangeAverageRangeAverageRangeAverageRangeAverageRangeAverageRangeAverage	12.2 12.2 ND ND 585 - 937 701 96 96 380 380 380	11.8 - 12.7 12.2 ND - 190 14.0 1 - 2 1 790 - 1100 926 69 - 270 169 450 - 730 581 0 20 - 160	Balance of hydrogen, carbon, & oxygen in water, affected by temperature & other factors Leaching from natural deposits; industrial wastes Naturally-occurring organic materials Substances that form ions when in water; seawater influence Runoff/leaching from natural deposits; industrial wastes Runoff/leaching from natural deposits;	
Iron Odor Threshold Specific Conductance Sulfate Total Dissolved Solids (TDS) Lab Turbidity (ID No.1) Turbidity (State Water)	none ppb TON µmho/ cm ppm ppm ppm NTU	non- corrosive 300 3 1600 500 1000 5	NA NA NA NA NA NA	 100 1 0.5 	RangeAverageRangeAverageRangeAverageRangeAverageRangeAverageRangeAverageRangeAverageRangeAverageAverage	12.2 12.2 ND ND 585 - 937 701 96 96 380 380 ND - 0.25 0.06	11.8 - 12.7 12.2 ND - 190 14.0 1 - 2 1 790 - 1100 926 69 - 270 169 450 - 730 581 0.20 - 1.60 0.38	Balance of hydrogen, carbon, & oxygen in water, affected by temperature & other factors Leaching from natural deposits; industrial wastes Naturally-occurring organic materials Substances that form ions when in water; seawater influence Runoff/leaching from natural deposits; industrial wastes Runoff/leaching from natural deposits; Soil erosion/runoff	
Iron Odor Threshold Specific Conductance Sulfate Total Dissolved Solids (TDS) Lab Turbidity (ID No.1) Turbidity (State Water)	none ppb TON µmho/ cm ppm ppm ppm NTU	non- corrosive 300 3 1600 500 1000 5	NA NA NA NA NA	 100 1 0.5 	RangeAverageRangeAverageRangeAverageRangeAverageRangeAverageRangeAverageRangeAverageRangeAverageRangeAverageRangeAverageRangeAverageRangeAverageRangeAverageRange	12.2 ND ND ND 585 - 937 701 96 96 380 380 380 ND - 0.25 0.06 ND	11.8 - 12.7 12.2 ND - 190 14.0 1 - 2 1 790 - 1100 926 69 - 270 169 450 - 730 581 0.20 - 1.60 0.38 ND - 100	Balance of hydrogen, carbon, & oxygen in water, affected by temperature & other factors Leaching from natural deposits; industrial wastes Naturally-occurring organic materials Substances that form ions when in water; seawater influence Runoff/leaching from natural deposits; industrial wastes Runoff/leaching from natural deposits; Soil erosion/runoff Leaching from natural deposits;	
Iron Odor Threshold Specific Conductance Sulfate Total Dissolved Solids (TDS) Lab Turbidity (ID No.1) Turbidity (State Water) Zinc	none ppb TON µmho/ cm ppm ppm NTU ppb	non- corrosive 300 3 1600 500 1000 5 5000	NA NA NA NA NA NA	 100 1 0.5 50	RangeAverageRangeAverageRangeAverageRangeAverageRangeAverageRangeAverageRangeAverageRangeAverageRangeAverageRangeAverageAverageAverageAverageAverageAverageAverage	12.2 12.2 ND ND 585 - 937 701 96 96 380 380 380 ND - 0.25 0.06 ND ND	11.8 - 12.7 12.2 ND - 190 14.0 1 - 2 1 790 - 1100 926 69 - 270 169 450 - 730 581 0.20 - 1.60 0.38 ND - 100 9	Balance of hydrogen, carbon, & oxygen in water, affected by temperature & other factors Leaching from natural deposits; industrial wastes Naturally-occurring organic materials Substances that form ions when in water; seawater influence Runoff/leaching from natural deposits; industrial wastes Runoff/leaching from natural deposits; Soil erosion/runoff Leaching from natural deposits; industrial wastes	
Iron Odor Threshold Specific Conductance Sulfate Total Dissolved Solids (TDS) Lab Turbidity (ID No.1) Turbidity (State Water) Zinc	none ppb TON µmho/ cm ppm ppm NTU ppb	non- corrosive 300 3 1600 500 1000 5 5 5000	NA NA NA NA NA NA	 100 1 0.5 50	RangeAverageRangeAverageRangeAverageRangeAverageRangeAverageRangeAverageRangeAverageRangeAverageRangeAverageRangeAverageRangeAverageRangeAverageRangeAverage	12.2 12.2 ND ND ND 585 - 937 701 96 96 380 380 380 ND - 0.25 0.06 ND ND	11.8 - 12.7 12.2 ND - 190 14.0 1 - 2 1 790 - 1100 926 69 - 270 169 450 - 730 581 0.20 - 1.60 0.38 ND - 100 9	Balance of hydrogen, carbon, & oxygen in water, affected by temperature & other factors Leaching from natural deposits; industrial wastes Naturally-occurring organic materials Substances that form ions when in water; seawater influence Runoff/leaching from natural deposits; industrial wastes Runoff/leaching from natural deposits; Soil erosion/runoff Leaching from natural deposits; industrial wastes	
Iron Odor Threshold Specific Conductance Sulfate Total Dissolved Solids (TDS) Lab Turbidity (ID No.1) Turbidity (State Water) Zinc ADDITIONAL PARAM	none ppb TON µmho/ cm ppm ppm NTU ppb	non- corrosive 300 3 1600 500 1000 5 5 5000 (Unregulat	NA NA NA NA NA NA NA	 100 1 0.5 50	RangeAverageRangeAverageRangeAverageRangeAverageRangeAverageRangeAverageRangeAverageRangeAverageRangeAverageRangeAverageRangeAverageRangeAverageRangeAverageRangeAverage	12.2 12.2 ND ND ND 585 - 937 701 96 96 96 380 380 ND - 0.25 0.06 ND ND ND	11.8 - 12.7 12.2 ND - 190 14.0 1 - 2 1 790 - 1100 926 69 - 270 169 450 - 730 581 0.20 - 1.60 0.38 ND - 100 9	Balance of hydrogen, carbon, & oxygen in water, affected by temperature & other factors Leaching from natural deposits; industrial wastes Naturally-occurring organic materials Substances that form ions when in water; seawater influence Runoff/leaching from natural deposits; industrial wastes Runoff/leaching from natural deposits; Soil erosion/runoff Leaching from natural deposits; industrial wastes	
Iron Odor Threshold Specific Conductance Sulfate Total Dissolved Solids (TDS) Lab Turbidity (ID No.1) Turbidity (State Water) Zinc ADDITIONAL PARAM Alkalinity (Total) as	none ppb TON µmho/ cm ppm ppm NTU ppb ETERS	non- corrosive 300 3 1600 500 1000 5 5 5000 (Unregulat	NA NA NA NA NA NA ed)	 100 1 0.5 50	RangeAverageRangeAverageRangeAverageRangeAverageRangeAverageRangeAverageRangeAverageRangeAverageRangeRangeRangeRangeRangeRangeRangeRangeRangeRange	12.2 12.2 ND ND 585 - 937 701 96 96 380 380 ND - 0.25 0.06 ND ND ND ND 88 96 380 380 380 380 380 380 380 380	11.8 - 12.7 12.2 ND - 190 14.0 1 - 2 1 790 - 1100 926 69 - 270 169 450 - 730 581 0.20 - 1.60 0.38 ND - 100 9	Balance of hydrogen, carbon, & oxygen in water, affected by temperature & other factors Leaching from natural deposits; industrial wastes Naturally-occurring organic materials Substances that form ions when in water; seawater influence Runoff/leaching from natural deposits; industrial wastes Runoff/leaching from natural deposits; Soil erosion/runoff Leaching from natural deposits; industrial wastes Runoff/leaching from natural deposits; industrial wastes	
Iron Odor Threshold Specific Conductance Sulfate Total Dissolved Solids (TDS) Lab Turbidity (ID No.1) Turbidity (State Water) Zinc ADDITIONAL PARAM Alkalinity (Total) as CaCO ₃ equivalents	none ppb TON µmho/ cm ppm ppm NTU ppb ETERS	non- corrosive 300 3 1600 500 1000 5 5 5000 (Unregulat NA	NA NA NA NA NA NA Ced)	 100 1 0.5 50	Range Average	12.2 12.2 ND ND 585 - 937 701 96 96 380 380 ND - 0.25 0.06 ND ND ND 68 - 102 80 NO	11.8 - 12.7 12.2 ND - 190 14.0 1 - 2 1 790 - 1100 926 69 - 270 169 450 - 730 581 0.20 - 1.60 0.38 ND - 100 9 260 - 360 295	Balance of hydrogen, carbon, & oxygen in water, affected by temperature & other factors Leaching from natural deposits; industrial wastes Naturally-occurring organic materials Substances that form ions when in water; seawater influence Runoff/leaching from natural deposits; industrial wastes Runoff/leaching from natural deposits; Soil erosion/runoff Leaching from natural deposits; industrial wastes Runoff/leaching from natural deposits; industrial wastes	
Iron Odor Threshold Specific Conductance Sulfate Total Dissolved Solids (TDS) Lab Turbidity (ID No.1) Turbidity (State Water) Zinc ADDITIONAL PARAM Alkalinity (Total) as CaCO ₃ equivalents Boron	none ppb TON µmho/ cm ppm ppm NTU ppb FTERS	non- corrosive 300 3 1600 500 1000 5 5000 (Unregulat NA NA	NA	 100 1 50 50	Range Average Range Average	12.2 12.2 ND ND 585 - 937 701 96 96 380 380 ND - 0.25 0.06 ND ND ND 68 - 102 80 NC NC	11.8 - 12.7 12.2 ND - 190 14.0 1 - 2 1 790 - 1100 926 69 - 270 169 450 - 730 581 0.20 - 1.60 0.38 ND - 100 9 260 - 360 295 ND - 360	Balance of hydrogen, carbon, & oxygen in water, affected by temperature & other factors Leaching from natural deposits; industrial wastes Naturally-occurring organic materials Substances that form ions when in water; seawater influence Runoff/leaching from natural deposits; industrial wastes Runoff/leaching from natural deposits; Soil erosion/runoff Leaching from natural deposits; industrial wastes Runoff/leaching from natural deposits; industrial wastes Runoff/leaching from natural deposits; industrial wastes Runoff/leaching from natural deposits; waster influence Runoff/leaching from natural deposits; waster influence Runoff/leaching from natural deposits;	
Iron Odor Threshold Specific Conductance Sulfate Total Dissolved Solids (TDS) Lab Turbidity (ID No.1) Turbidity (State Water) Zinc ADDITIONAL PARAM Alkalinity (Total) as CaCO ₃ equivalents Boron	none ppb TON µmho/ cm ppm ppm NTU ppb ETERS	non- corrosive 300 3 1600 500 1000 5 5000 (Unregulat NA NA	NA	 100 1 50 100	Range Average Range Average	12.2 12.2 ND ND ND 585 - 937 701 96 96 380 380 ND - 0.25 0.06 ND ND ND 80 NC 29	11.8 - 12.7 12.2 ND - 190 14.0 1 - 2 1 790 - 1100 926 69 - 270 169 450 - 730 581 0.20 - 1.60 0.38 ND - 100 9 260 - 360 295 ND - 360 192 32 - 110	Balance of hydrogen, carbon, & oxygen in water, affected by temperature & other factors Leaching from natural deposits; industrial wastes Naturally-occurring organic materials Substances that form ions when in water; seawater influence Runoff/leaching from natural deposits; industrial wastes Runoff/leaching from natural deposits; Soil erosion/runoff Leaching from natural deposits; industrial wastes Runoff/leaching from natural deposits; industrial wastes Runoff/leaching from natural deposits; waster influence Runoff/leaching from natural deposits; seawater influence Runoff/leaching from natural deposits; wastewater, and fertilizers/pesticides. Runoff/leaching from natural deposits;	
Iron Odor Threshold Specific Conductance Sulfate Total Dissolved Solids (TDS) Lab Turbidity (ID No.1) Turbidity (State Water) Zinc ADDITIONAL PARAM Alkalinity (Total) as CaCO ₃ equivalents Boron Calcium	none ppb TON µmho/ cm ppm ppm NTU ppb FTERS ppm ppb ppb	non- corrosive 300 3 1600 500 1000 5 5000 (Unregulat NA NA NA	NA NA	 100 1 0.5 50 100 	RangeAverageRangeAverageRangeAverageRangeAverageRangeAverageRangeAverageRangeAverageRangeAverageRangeAverageRangeAverageRangeAverageRangeAverageRangeAverageRangeAverageRangeAverageRangeAverageRangeAverageRangeAverageRangeAverage	12.2 12.2 ND ND ND 585 - 937 701 96 96 380 380 ND - 0.25 0.06 ND ND ND ND ND ND 29 29	11.8 - 12.7 12.2 ND - 190 14.0 1 - 2 1 790 - 1100 926 69 - 270 169 450 - 730 581 0.20 - 1.60 0.38 ND - 100 9 260 - 360 295 ND - 360 192 32 - 110 73	Balance of hydrogen, carbon, & oxygen in water, affected by temperature & other factors Leaching from natural deposits; industrial wastes Naturally-occurring organic materials Substances that form ions when in water; seawater influence Runoff/leaching from natural deposits; industrial wastes Runoff/leaching from natural deposits; Soil erosion/runoff Leaching from natural deposits; industrial wastes Runoff/leaching from natural deposits; industrial wastes Runoff/leaching from natural deposits; industrial wastes Runoff/leaching from natural deposits; wastewater Runoff/leaching from natural deposits; seawater influence Runoff/leaching from natural deposits; wastewater, and fertilizers/pesticides. Runoff/leaching from natural deposits; wastewater, and fertilizers/pesticides. Runoff/leaching from natural deposits; wastewater, and fertilizers/pesticides. Runoff/leaching from natural deposits;	
Iron Odor Threshold Specific Conductance Sulfate Total Dissolved Solids (TDS) Lab Turbidity (ID No.1) Turbidity (State Water) Zinc Alkalinity (Total) as CaCO ₃ equivalents Boron Calcium	none ppb TON µmho/ cm ppm ppm NTU ppb FTERS ppm ppb ppm	non- corrosive 300 3 1600 500 1000 5 5000 (Unregulat NA NA NA	NA NA NA NA NA NA NA NA NA NL=1,000 NA	100 1 0.5 50 100 100	RangeAverageRangeAverageRangeAverageRangeAverageRangeAverageRangeAverageRangeAverageRangeAverageRangeAverageRangeAverageRangeAverageRangeAverageRangeAverageRangeAverageRangeAverageRangeAverageRangeAverageRangeAverageRangeAverageRange	12.2 12.2 ND ND ND 585 - 937 701 96 96 96 96 380 380 ND - 0.25 0.06 ND ND ND 0.06 ND ND 0.25 0.06 ND ND 0.25 0.06 ND ND 0.25 0.06 ND ND 0.25 0.06 ND ND 0.25 0.06 ND 0.06 ND 0.25 0.06 ND 0.06 ND 0.05 0.06 ND 0.05 0.06 ND 0.05 0.06 ND 0.05 0.06 ND 0.05 0.06 ND 0.06 ND 0.05 0.06 ND 0.06 0.06 ND 0.06 ND 0.06 0.07	11.8 - 12.7 12.2 ND - 190 14.0 1 - 2 1 790 - 1100 926 69 - 270 169 450 - 730 581 0.20 - 1.60 0.38 ND - 100 9 260 - 360 295 ND - 360 192 32 - 110 73 ND - 25	Balance of hydrogen, carbon, & oxygen in water, affected by temperature & other factors Leaching from natural deposits; industrial wastes Naturally-occurring organic materials Substances that form ions when in water; seawater influence Runoff/leaching from natural deposits; industrial wastes Runoff/leaching from natural deposits; Soil erosion/runoff Leaching from natural deposits; industrial wastes Runoff/leaching from natural deposits; industrial wastes Runoff/leaching from natural deposits; industrial wastes Runoff/leaching from natural deposits; seawater influence Runoff/leaching from natural deposits; seawater, and fertilizers/pesticides. Runoff/leaching from natural deposits; wastewater, and fertilizers/pesticides. Runoff/leaching from natural deposits; seawater influence Discharges from industrial manufacturers; erosion	

²⁰²² Annual Water Quality Report - Santa Ynez River Water Conservation District, ID No.1

						Drinking Wa	ater Source	
-		State	PHG	State	Range	State	Ground	
Parameter	Units	MCL	(MCLG)	DLR	Average	Water	Water	Major Sources in Drinking Water
ADDITIONAL PARAM	IETERS	(Unregula	ted)					
		(enegate						
Geosmin	na/l	NA	NA	(1)	Range	ND - 2	NC	An organic compound mainly produced by
	ng/E			(.)	Average	0.3	NC	blue-green algae (cyanobacteria)
Hardness (Total) as	ppm	NA	NA		Range	104 - 158	290 - 480	I eaching from natural deposits
CaCO ₃	PP				Average	127	408	
Heterotrophic Plate	CELI/ml	тт	NIA		Range	0 - 98	NA	Naturally present in the environment
Count			IN/A		Average	2	NA	Naturally present in the environment
Magnesium	nnm	NA	NA		Range	17	42 - 90	Runoff/leaching from natural deposits;
	ppm				Average	17	54	seawater influence
2 Methylisoborneol (MIB)	ng/l	NA	NA	ΝΑ	Range	ND - 32	NC	An organic compound mainly produced by
	lig/∟		NA .		Average	7.7	NC	blue-green algae (cyanobacteria)
рН	pН	ΝΔ	ΝΑ		Range	7.2 - 8.9	7.0 - 8.1	Runoff/leaching from natural deposits;
pri	Units	IN/A	11/2		Average	8.4	7.5	seawater influence
Potossium	nnm	ΝΑ	NA		Range	3.6	1.9 - 2.7	Runoff/leaching from natural deposits;
Fotassium	ppm	NA	IN/A		Average	3.6	2.3	seawater influence
Sodium	nnm	ΝΔ	NIA		Range	76	38 - 60	Runoff/leaching from natural deposits;
Soulum	ppm	NA	IN/A		Average	76	47	seawater influence
Total Organic Carbon		тт	NIA	0.00	Range	1.9 - 4.5	NA	
(TOC) ^g	ppm	11	NA	0.30	Average	2.9	NA	various natural and manmade sources.
Vanadium	nnh	NΔ	NI =50	з	Range	NC	ND - 23	Leaching from natural deposits;
	hhn		NL-30	5	Average	NC	10	industrial wastes
Distribution System	Water Q							
Biotribution Oystein								

ORGANIC CHEMICALS

					Range	43 - 58	5.7 - 53.5	
h Total Trihalomethanes	ppb	80	NA	NA	Highest LRAA	53	36.2	By-product of drinking water chlorination
					Range	6.3 - 11	2.7 - 15.4	
Haloacetic Acids	ppb	60	NA	1,2 ⁱ	Highest LRAA	13.0	11.3	By-product of drinking water chlorination
DISINFECTION								
Total chlorine residual		MRDL =	MRDLG =		Range	1.37 - 3.58		Measurement of the disinfectant
CCWA Distribution	ppm	4.0	4.0		Average	2.79		used in the production of drinking water
Free/total chlorine residual		MRDL =	MRDLG =		Range		0.48 - 3.72	Measurement of the disinfectant
ID No.1 Distribution	ppm	4.0	4.0		Average		1.82	used in the production of drinking water

Abbrevations and Notes

Footnotes:

- (a) Turbidity (NTU) is a good indicator of the effectiveness of a filtration system. Monthly turbidity values for State Water are listed in the Secondary Standards section.
- (b) Gross alpha particle activity monitoring required every nine years for State Water; more frequent monitoring is required for some groundwater based on detected levels. Reported average and range are from most recent sampling of all supply wells.
- (c) Uranium monitoring is dependent on measured gross alpha particle activity.
- (d) The District's Water Supply Permit, issued by DDW (formerly DPH), requires monitoring of the asbestos levels in the distribution system in the areas that contain asbestos cement pipes whenever the aggressive index (AI) of the water served to the public is below 11.5.
- (e) There is currently no MCL for Hexavalent Chromium. The previous MCL of 10.0 ppb was withdrawn on September 11, 2017.
- (f) Pour plate technique -- monthly averages.
- (g) TOCs are taken at the State Water treatment plant's combined filter effluent.
- (h) Compliance based on the LRAA of distribution system samples. Values reported are the range of all 2022 sample results and highest locational running annual average.
- Monochloroacetic Acid has a DLR of 2.0 ug/L while the other four Haloacetic Acids have DLR's of 1.0 ug/L.

Abbreviations

ACU = Apparent Color Units

CCWA = Central Coast Water Authority

CFU/ml = Colony Forming Units per milliliter

DLR = Detection Limit for the Purpose of Reporting

ID No.1 = Santa Ynez River Water Conservation District, Improvement District No.1

LRAA - Locational Running Annual Average

- NA = Not Applicable
- NC = Not Collected
- ND = Non-detect
- ng/L = nanograms per liter
- NL = Notification Level
- NTU = Nephelometric Turbidity Units
- pCi/L = PicoCuries per liter
- ppb = parts per billion, or micrograms per liter (μ g/L)
- ppm = parts per million, or milligrams per liter (mg/L)
- SI = saturation index
- TON = Threshold Odor Number
- µmho/cm = micromhos per centimeter