

2020 CONSUMER CONFIDENCE REPORT

conservation A NEW WAY OF LIFE

CITY OF SOLVANG 1644 OAK STREET SOLVANG, CA 93463 (805) 688-5575 https://www.cityofsolvang.com/ccr2020

2020 Consumer Confidence Report

Water System Name: CITY OF SOLV	ANG Report Date: JUNE 2020
We test the drinking water quality for mar the results of our monitoring for the period	y constituents as required by state and federal regulations. This report shows of January 1 - December 31, 2020 and may include earlier monitoring data.
Este informe contiene información muy entienda bien.	importante sobre su agua potable. Tradúzcalo ó hable con alguien que lo
Type of water source(s) in use: Ground	Water (Solvang Wells & ID#1 Wells) & Surface Water (CCWA)
Name & general location of source(s):	Wells 3 & 7A River Wells; Well 4, 21, 22, & HCA South Upland Wells; Santa Ynez River Water Conservation District, Improvement District No. 1 (ID#1) & Central Coast Water Authority (CCWA)
Drinking Water Source Assessment inform	action: Source Assessments for the City's wells were completed September 2002
Time and place of regularly scheduled boa	rd meetings for public participation: Second & Fourth Monday of each Month at 1644 Oak Street, Solvang, CA @ 6:30 P.M.
For more information, contact: <u>Mike M</u>	athews Phone: (805) 688-5575
,	FERMS USED IN THIS REPORT
Maximum Contaminant Level (MCL) level of a contaminant that is allowed in d Primary MCLs are set as close to the PHG as is economically and technologic Secondary MCLs are set to protect the o appearance of drinking water.	 The highest rinking water. Secondary Drinking Water Standards (SDWS): MCLs for contaminants that affect taste, odor, or appearance of the drinking water. Contaminants with SDWSs do not affect the health at the MCL levels. Treatment Technique (TT): A required process intended to reduce the level of a contaminant in drinking water.
Maximum Contaminant Level Goal (level of a contaminant in drinking water there is no known or expected risk to he are set by the U.S. Environmental Proto (U.S. EPA). Public Health Goal (PHG): The level of	MCLG): The below which alth. MCLGsRegulatory Action Level (AL): The concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow.Variances and Exemptions:State Board permission to exceed an MCL or not comply with a treatment technique under certain conditions.
in drinking water below which there is expected risk to health. PHGs are set by Environmental Protection Agency. Maximum Residual Disinfectant Lev The highest level of a disinfectant allow water. There is convincing evidence tha disinfectant is necessary for control contaminants.	 no known or the California Level 1 Assessment: A Level 1 assessment is a study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system. Level 2 Assessment: A Level 2 assessment is a very detailed study of the water system to identify potential problems and determine (if possible) why an <i>E. coli</i> MCL violation has
Maximum Residual Disinfectant (MRDLG): The level of a drinking wat below which there is no known or exp health. MRDLGs do not reflect the bene of disinfectants to control microbial conta Primary Drinking Water Standards (P and MRDLs for contaminants that affec with their monitoring and reporting requ water treatment requirements.	Level Goal er disinfectant bected risk to fits of the use minants.occurred and/or why total collform bacteria have been found in our water system on multiple occasions. ND: not detectable at testing limit ppm: parts per million or milligrams per liter (mg/L) ppb: parts per billion or manograms per liter (mg/L) ppt: parts per trillion or nanograms per liter (ng/L) ppq: parts per quadrillion or picogram per liter (pg/L) pCi/L: picocuries per liter (a measure of radiation)

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include:

- *Microbial contaminants*, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- *Inorganic contaminants*, such as salts and metals, that can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- *Pesticides and herbicides*, that may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses.
- Organic chemical contaminants, including synthetic and volatile organic chemicals, that are byproducts of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, agricultural application, and septic systems.
- *Radioactive contaminants*, that can be naturally-occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, the U.S. EPA and the State Water Resources Control Board (State Board) prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. State Board regulations also establish limits for contaminants in bottled water that provide the same protection for public health.

Tables 1, 2, 3, 4, 5, and 6 list all of the drinking water contaminants that were detected during the most recent sampling for the constituent. The presence of these contaminants in the water does not necessarily indicate that the water poses a health risk. The State Board allows us to monitor for certain contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of the data, though representative of the water quality, are more than one year old. Any violation of an AL, MCL, MRDL, or TT is asterisked. Additional information regarding the violation is provided later in this report.

TABLE 1 –	TABLE 1 – SAMPLING RESULTS SHOWING THE DETECTION OF COLIFORM BACTERIA										
Microbiological Contaminants	Highest No. of Detections	No. of Months in Violation	MCL	MCLG	Typical Source of Bacteria						
Total Coliform Bacteria	0	0	More than 1 sample in a month with a detection	0	Naturally present in the environment						
Fecal Coliform or <i>E. coli</i>	0	0	A routine sample and a repeat sample detect total coliform and either sample also detects fecal coliform or <i>E. coli</i>	0	Human and animal fecal waste						
E. coli	0	0	A routine sample and a repeat sample detect total coliform and either sample also detects <i>E. coli</i>	0	Human and animal fecal waste						

TABLE 2 – SAMPLING RESULTS SHOWING THE DETECTION OF LEAD AND COPPER											
Lead and Copper	Sample Date	No. of Samples Collected	90 th Percenti le Level Detected	No. Sites Exceeding AL	AL	PH G	Typical Source of Contaminant				
Lead (ppb)	8/10/20	20	8.7	0	15	0.2	Internal corrosion of household water plumbing				
							manufacturers; erosion of natural deposits				
Copper (ppb)	8/10/20	20	620	0	1300	0.3	Internal corrosion of household plumbing systems: erosion of natural deposits: leaching				
							from wood preservatives				

TABLE 3 – SAMPLING RESULTS FOR SODIUM AND HARDNESS									
Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	MCL	PHG (MCLG)	Typical Source of Contaminant			
Sodium (ppm)	2018-2020	55	52-72	none	none	Salt present in the water and is generally naturally occurring			
Hardness (ppm)	2018-2020	603	433-713	none	none	Sum of polyvalent cations present in the water, generally magnesium and calcium, and are usually naturally occurring			

TABLE 4 – DET	TECTION O	F CONTAMIN	ANTS WITH A	PRIMARY	DRINKING	WATER STANDARD
Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	MCL [MRDL]	PHG (MCLG) [MRDLG]	Typical Source of Contaminant
Fluoride (ppm)	2018- 2020	0.21	<0.1-0.3	2	1	Erosion of Natural deposits; water additive which promotes strong teeth
Nitrate (ppm) (as N03)	2018- 2020	8.23	<2.0-17.0	45	45	Runoff & leaching from fertilizer use; sewage; erosion of natural deposits
Nitrate and Nitrite (as N) (ppm)	2018- 2020	1.86	<0.5-3.9	10	10	Runoff & leaching from fertilizer use; sewage; erosion of natural deposits
Hexavalent Chromium (ppb)	2018- 2020	<1	<1-1	10	.02	Discharge from electroplating factories, leather tanneries, wood preservation, chemical synthesis, refractory production, and textile manufacturing facilities; erosion of natural deposits.
Tetrachloroethylene (PCE) (ppb)	2018- 2020	.14	0-0.7	1	N/A	Leaching from PVC pipes: discharge from factories, dry cleaners and auto shops (metal degreasers)
Gross Alpha Activity (pCi/L)	2018- 2020	6.34	1.3-16	15	N/A	Erosion of natural deposits
Uranium (pCi/L)	2016- 2019	8.24	1.3-16.5	20	.5	Erosion of natural deposits
Trihalomethane (TTHM) (ppb)	1/20- 10/20	34.8	16-48	80	N/A	Byproduct of drinking water chlorination
Haloacetic Acid (HA A5) (ppb)	1/20- 10/20	18	6-33	60	N/A	Byproduct of drinking water chlorination
Selenium (ppb)	2018- 2020	11.2	<1-23	50	50	Erosion of natural deposits; discharge chemical manufacturers and runoff from livestock lot.

TABLE 5 – DETE	TABLE 5 – DETECTION OF CONTAMINANTS WITH A SECONDARY DRINKING WATER STANDARD											
Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	MCL	PHG (MCLG)	Typical Source of Contaminant						
Chloride (ppm)	2018- 2020	76.66	51-117	500	N/A	Runoff/leaching from natural deposits; seawater influence						
Odor (units)	2018- 2020	0	0	3	N/A	Natural occurring materials						
Specific conductance (Umhos/cm)	2018- 2020	1355	1130-1590	**2	1	Substance that forms ions when in water; seawater influence						
Sulfate (ppm)	2018- 2020	269	145-337	*2	N/A	Runoff/leaching from natural deposits; industrial wastes						
Total Dissolved Solids (ppm)	2018- 2020	917	710-1090	***2	N/A	Runoff/leaching from natural deposits						

	TABLE 6 – DETECTION OF UNREGULATED CONTAMINANTS										
Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	Notification Level	Health Effects Language						
Boron (ppb)	2018- 2020	250	200-300		Some men who drink water containing boron in excess of the action level over many years may experience reproductive effects based on studies in dogs.						
Vanadium (ppb)	2018- 2020	7.2	<1.0-10		The babies of some pregnant women who drink water containing vanadium in excess of the action level may have an increased risk of developmental effects, based on studies in laboratory animals						

*Any violation of an MCL, MRDL, or TT is asterisked. Additional information regarding the violation is provided later in this report.

Additional General Information on Drinking Water

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the U.S. EPA's Safe Drinking Water Hotline (1-800-426-4791).

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. U.S. EPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* and other microbial contaminants are available from the Safe Drinking Water Hotline (1-800-426-4791).

Lead-Specific Language for Community Water Systems: If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. The City of Solvang is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. [Optional: If you do so, you may wish to collect the flushed water and reuse it for another beneficial purpose, such as watering plants.] If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline (1-800-426-4791) or at https://www.epa.gov/lead

CENTRAL COAST WATER AUTHORITY POLONIO PASS WATER TREATMENT PLANT WATER QUALITY TABLE

COVERING THE REPORTING PERIOD OF JANUARY-DECEMBER 2020

Please see last page for key to abbreviations.

						TREATED	SOURCE	
		State	PHG	State	Range		STATE	
Parameter	Units	MCL	(MCLG)	DLR	Average	CCWA	WATER	Major Sources in Drinking Water

PRIMARY STANDARDS--Mandatory Health-Related Standards

CLARITY (a)

Combined Filter Effluent	NTU	TT=<1 NTU every 4 hours	Range	0 - 0.12	NA	Soil rupoff
Turbidity (a)	NIU	TT=95% of samples <0.3 NTU	%	100%	NA	

INORGANIC CHEMICALS

Aluminum mg/L	ma/l	1 (b)	0.6	0.05	Range	ND - 0.091	ND - 0.091	Erosion of natural deposits; residual from some
		0.0	0.05	Average	0.058	0.044	surface water treatment processes	
Arsenic, Total	ug/L	10	0.004	2	Range	ND	2	Erosion of natural deposits; runoff from orchards;
		10			Average	ND	2	glass and electronics production wastes

RADIONUCLIDES

Gross Alpha Particle pCi/L	nCi/l	15	(0)	3	Range	ND	ND	Frasion of natural denosits
	1/L 15	(0)	5	Average	ND	ND		
Cross Rota Dartiala	nCi/l	50 (a)	(0)	4	Range	ND	ND	Descu of natural and man made denosite
GIUSS Dela Particle	pCI/L	50 (g)	(0)	4	Average	ND	ND	Decay of flatural and man-made deposits

DISTRIBUTION SYSTEM MONITORING

Total Chlorine Residual	ma/l	MRDI = 4.0	MRDLG =	Range	0.88 - 3.42	NA	Drinking water disinfectant added for treatment	
Total Chionne Residual Ing/E	ing/∟	WINDE = 4.0	4.0	INA.	Average	2.57	NA	Drinking water disinfectant added for treatment
Total Coliform		5.0% of			Range	0	NA	
Bacteria (c)		monthly	(0)		Average	0	NA	Naturally present in the environment
Dacteria (C)		samples			Highest	0%	NA	
Total Tribalomathanaa		/L 80		(0.5)	Range	26 - 57	NA	
(d)	ug/L		NA		Average	40	NA	By-product of drinking water chlorination
(u)					Highest LRAA	42.5	NA	
Haloacetic Acids (d)		g/L 60			Range	7.4 - 22	NA	
	ug/L		NA	(1) (e)	Average	13	NA	By-product of drinking water chlorination
					Highest LRAA	15.8	NA	

SECONDARY STANDARDS--Aesthetic Standards

Chloride	ma/l	500 (i)	NA	(1)	Range	0 - 124	0 - 120	Runoff/leaching from natural deposits; seawater
onionao	mg/⊑	000 ()	101	(.)	Average	73	70	influence
Color	ACU	15 (i)	ΝΔ	(2)	Range	ND	20	Naturally occuring organic materials
000	ACO	15 ()	11/4	(3)	Average	ND	20	Inaturally occurring organic materials
Corrosivity	811	non-	NIA	(0.1)	Range	12	12	
(Aggresivity Index) (i)	30	corrosive	INA	(0.1)	Average	12	12	
Manganoso Total	ua/l	50 (i)	NIA	(2)	Range	ND	59	
Manganese, Total ug/L	ug/L	ug/L 30 (j)	INA	(2)	Average	ND	59	
Odor Threshold	TON	3 (j)	NA	(1)	Range	1 - 8	1 - 8	Naturally occuring organic materials
					Average	6	6	
Specific Conductance	uS/cm	1600 (i)	NIA	ΝΑ	Range	337 - 621	287 - 594	Substances that form ions when in water;
	u3/cm	1000 (j)	11/4	11/4	Average	503	458	seawater influence
Sulfate		E00 (i)	NIA	(0 E)	Range	63	38	Runoff/leaching from natural deposits; industrial
Sulfate	mg/∟	500 (J)	NA	(0.5)	Average	63	38	wastes
Total Dissolved Solids (TDS)	ma m/l	1000 (j)	NA	(10)	Range	280	240	Runoff/leaching from natural deposits
	iiig/∟				Average	280	240	
Turbidity (Monthly) (a)	NTU	U 5 (j)	NA	(0.1)	Range	ND - 0.16	ND - 9.7	Soil rupoff
i urbiaity (wonthly) (a)	NIU				Average	0.06	1.52	

ADDITIONAL PARAMETERS (Unregulated)

2-Methylisoborneol	ng/l	NA	NA	(1)	Range	ND - 3.9	ND - 11	An organic compound mainly produced by blue-
	ng/L				Average	0.6	3.9	green algae (cyanobacteria)
Alkalinity (Total) as	ma/l	NA	NIA	(2)	Range	46 - 86	60 - 90	Runoff/leaching from natural deposits; seawater
CaCO3 equivalents	mg/∟	NA	INA	(2)	Average	68	74	influence
Calcium	ma/l	NA	NA	(1)	Range	20	20	Runoff/leaching from natural deposits; seawater
Calcium	mg/∟	NA	NA	(1)	Average	20	20	influence
Chromium Hovavalant	ug/l	NA	0.02	ΝΑ	Range	0.078	0.067	tanneries, wood preservation, chemical
Chiomium, Hexavalent	ug/∟	INA	0.02	INA	Average	0.078	0.067	synthesis, refractory production, and textile
Cocomin	ng/l	NA	ΝΑ	(1)	Range	ND - 3.9	1 - 30	An organic compound mainly produced by
Geosinin	ng/∟	INA	INA	(1)	Average	0.6	5.6	bacterial growth in surface water
Hardness (Total) as CaCO3	ma/l	NA	NA	(3)	Range	64 - 126	64 - 130	Leaching from natural deposits
	mg/∟				Average	97	97	
Heterotrophic Plate	CELI/ml	тт	NΙΔ	NΙΔ	Range	0 - 11	NA	Naturally present in the environment
Count (f)		11	INA.		Average	1	NA	Naturally present in the environment
Magnesium	ma/l	NA	NA	(0 1)	Range	12	12	Runoff/leaching from natural deposits; seawater
Magnoolam	iiig/L	10.0	10.0	(0.1)	Average	12	12	influence
nH	SU	NΔ	NΔ	(0 1)	Range	7.5 - 8.85	7.9 - 9.5	Runoff/leaching from natural deposits; seawater
pri	00		10/3	(0.1)	Average	8.4	8.6	influence
Potassium	ma/l	NA	NA	(1)	Range	2.8	2.7	Runoff/leaching from natural deposits; seawater
	ing/L			(1)	Average	2.8	2.7	influence
Sodium	ma/l	NA	NA	(1)	Range	56	50	Runoff/leaching from natural deposits; seawater
Coulani	<u>9</u> , _			(.)	Average	56	50	influence
Total Organic Carbon	ma/L	тт	NA	(0.3)	Range	1.4 - 2.6	1.8 - 4	Various natural and man made sources
(TOC) (g)	3. –	-		(1.10)	Average	2.0	3.2	

ABBREVIATIONS AND NOTES

Footnotes:

- (a) Turbidity (NTU) is a measure of the cloudiness of the water and it is a good indicator of the effectiveness of our filtration system. Monthly turbidity values are listed in the Secondary Standards section.
- (b) Aluminum has a Secondary MCL of 0.2 ppm.
- (c) Total coliform MCLs: Systems that collect ≥40 samples/month no more than 5.0% of the monthly samples may be Total Coliform positive. Systems that collect <40 samples per month no more than 1 positive sample per month may be Total Coliform positive. Fecal coliform/E. coli MCLs: The occurrence of 2 consecutive Total Coliform positive samples, one of which contains fecal coliform/E. coli, constitutes an acute MCL violation.
- (d) Compliance based on the running quarterly annual average of distribution system samples.
- (e) Monochloroacetic Acid (MCAA) has a DLR of 2.0 ug/L while the other four Haloacetic Acids have DLR's of 1.0 ug/L.
- (f) Pour plate technique
- (g) TOCs are taken at the treatment plant's combined filter effluent.
- (h) State MCL is 45 mg/L as NO3, which equals 10 mg/L as N.
- (i) Al ³ 12.0 = Non-aggressive water Al (10.0 - 11.9) = Moderately aggressive water Al £ 10.0 = Highly aggressive water
- Reference: ANSI/AWWA Standard C400-93 (R98) (j) Secondary MCL

Abbreviations

ACU = Apparent Color Units CCWA = Central Coast Water Authority CFU/ml = Colony Forming Units per milliliter DLR = Detection Level for purposes of Reporting MCLG = Maximum Contaminant Level MCLG = Maximum Contaminant Level Goal MRDL = Maximum Residual Disinfectant Level MRDLG = Maximum Residual Disinfectant Level Goal NA = Not Applicable ND = Non-detected above detection limit (DLR) NTU = Nephelometric Turbidity Units pCi/L = PicoCuries per liter PHG = Public Health Goal ppb = parts per billion, or micrograms per liter (µg/L)

- ppm = parts per million, or milligrams per liter (mg/L)
- TON = Threshold Odor Number
- TT = Treatment Technique
- LRAA = Locational Running Annual Average

						Drinking Wa	ater Source	
Parameter	Units	State MCL	PHG (MCLG)	State DLR	Range Average	State Water	Ground Water	Major Sources in Drinking Water
PRIMARY STANDAR	RDSMa	andatory H	ealth-Rel	ated Sta	andards			
CLARITY								
Combined Filter		TT=<1 N	ITU every 4	hours	Range	0 - 0.12	NA	
Effluent Turbiditv ^a	NTU	TT=95% of	f samples <	0.3 NTU	%	100%	NA	Soil runoff
	<u>.</u>				!			<u>-</u>
		1000		50	Range	ND - 91	ND - 1200	Residue from water treatment process:
Aluminum	ррь	1000	600	50	Average	58	160	Erosion of natural deposits
Arsenic	ppb	10	0.004	2	Range	ND	ND - 3	Erosion of natural deposits; orchard runoff; from
					Range	ND	ND - 0.1	Discharges of oil drilling wastes and from
Barium	ppm	1	2	0.1	Average	ND	0.01	metal refineries; erosion of natural deposits
Chromium (Total Cr)	ppb	50	(100)	10	Range	ND	ND - 18	Erosion of natural deposits; steel,
	~ 77		()		Average	ND	3.6	pulp mills, and chrome plating wastes
Fluoride	ppm	2	1	0.1	Range	0.058	ND - 0.32	Erosion of natural deposits;
					Range	0.056 ND	0.19 ND - 19	Frosion of natural denosits: discharge from
Nickel	ppb	100	12	10	Average	ND	3.3	metal factories
Nitrate (as Nitrogen)	nnm	10	10	0.4	Range	ND	ND - 1.7	Runoff and leaching from fertilizer use; leaching
	ppm	10	10	0.4	Average	ND	0.5	from septic tanks and sewage; erosion of natural
Selenium	ppb	50	30	5	Range	ND	ND - 11	Runoff and leaching from fertilizer use; leaching
					Average	UN	4.0	nom septic tanks and sewage, erosion of natural
RADIONUCLIDES					Banga	ND		[
Gross Alpha ^b	pCi/L	15	NA	3	Average		ND - 0.9	Erosion of natural deposits
					Average		2.0	
Uranium ^c	pCi/L	20	0.5	1	Average	NC	1.0 - 5.0	Erosion of natural deposits
					Range	NC	3.5 ND - 0.27	
Combined Radium ^d	pCi/L	5	NA	3	Average	NC	0.16	Erosion of natural deposits
SECONDARY STAN	DARDS	Aesthetic	: Standar	ds				
		000		50	Range	ND - 91	ND - 1200	Residue from water treatment process:
Aluminum	ррь	200	NA	50	Average	58	160	Erosion of natural deposits
Chloride	ppm	500	NA		Range	0 - 124	30 - 54	Runoff/leaching from natural deposits;
	PP				Average	73	39	seawater influence
Color	ACU	15	NA		Range		ND - 3	Naturally-occurring organic materials
Corrosivity		non-			Range	12	0.4	Balance of hydrogen carbon & oxygen in
(Aggresive Index) ^e	none	corrosive	NA		Average	12	12.3	water affected by temperature & other factors
					Range	ND	ND - 1700	Leaching from natural deposits:
Iron	ppb	300	NA	100	Average	ND	270	industrial wastes
Manganese	daa	50	NA	20	Range	ND	ND - 35	Leaching from natural deposits
manganeee	~ 77				Average	ND	6.4	
Odor Threshold	TON	3	NA	1	Range Average	2 - 8 5	1-3	Naturally-occurring organic materials
Specific	µmho/	4000	NLA		Range	337 - 621	700 - 1100	Substances that form ions
Conductance	cm	1600	NA		Average	503	881	when in water; seawater influence
Sulfate	ppm	500	NA	0.5	Range	63	30 - 270	Runoff/leaching from natural deposits;
Total Dissolved					Average	63	166	industrial wastes
Solids (TDS)	ppm	1000	NA			20U 280	400 - 710	Runoff/leaching from natural deposits;
Lab Turbidity (ID#1)					Rande	ND - 0 16	ND - 1 12	
Turbidity (State Water)	NTU	5	NA		Average	0.06	0.44	Soil erosion/runoff
		///			-			
ADDITIONAL PARAN	IETERS	Onregula	ated)					
Alkalinity (Total) as	ppm	NA	NA		Range	46 - 86	260 - 290	Runoff/leaching from natural deposits;

Alkalinity (Total) as	nnm	ΝΔ	NA		Range	46 - 86	260 - 290	Runoff/leaching from natural deposits;
CaCO ₃ equivalents	ppm	INA	NA		Average	68	279	seawater influence
Boron	nnh	NA	NI -1 000	100	Range	NC	110 - 320	Runoff/leaching from natural deposits;
Вогоп	ppp	IN/A	NL−1,000	100	Average	NC	206	wastewater, and fertilizers/pesticides.
Calcium	nnm	NA	NA		Range	20	36 - 100	Runoff/leaching from natural deposits;
Calcium	ppin	INA.			Average	20	72	seawater influence
a i i i i	nnh	NA	0.02	10	Range	NC	ND - 13	Discharges from industrial manufacturers; erosion
Chromium, Hexavalent	hhn		0.02	1.0	Average	NC	4.6	of natural deposits
Geosmin	ng/l	ΝΔ	NA	(1)	Range	ND - 3.9	NC	An organic compound mainly produced by
Geosmin	lig/∟	NA	NA	(1)	Average	0.6	NC	blue-green algae (cyanobacteria)

2020 Annual Water Quality Report - Santa Ynez River Water Conservation District, ID No.1

						Drinking Water Source		
		State	PHG	State	Range	State	Ground	
Parameter	Units	MCL	(MCLG)	DLR	Average	Water	Water	Major Sources in Drinking Water
Hardness (Total) as	nnm	ΝΔ	ΝΔ		Range	64 - 126	300 - 490	l eaching from natural denosits
CaCO ₃	ppin	114	IN/A		Average	97	399	
Heterotrophic Plate		TT			Range	0 - 11	NA	
Count ^g	CFU/ML	11	NA		Average	1	NA	Naturally present in the environment
Magnesium	nnm	ΝΔ	ΝΑ		Range	12	49 - 58	Runoff/leaching from natural deposits;
Magnesium	ppin				Average	12	53	seawater influence
2 Methylisoborneol (MIB)	ng/l	ΝΔ	ΝΑ	ΝΔ	Range	ND - 3.9	NC	An organic compound mainly produced by
	lig/∟	IN/A	NA	n/A	Average	0.6	NC	blue-green algae (cyanobacteria)
	pН	ΝΔ	ΝΑ		Range	7.5 - 8.85	7.46 - 7.88	Runoff/leaching from natural deposits;
p	Units	NA	NA NA		Average	8.4	7.6	seawater influence
Potossium	nnm	ΝΑ	NA		Range	2.8	2.0 - 2.5	Runoff/leaching from natural deposits;
Polassium	ррп	INA	INA		Average	2.8	2.2	seawater influence
Sodium	nnm	NA	ΝΑ		Range	56	38 - 52	Runoff/leaching from natural deposits;
Soundin	ppm	NA	NA NA		Average	56	45	seawater influence
Total Organic Carbon				0.00	Range	1.4 - 2.6	NA	
(TOC) ^h	ppm	11	NA	0.30	Average	2.0	NA	various natural and manmade sources.
Vanadium	nnh	NΔ	NI =50	з	Range	NC	3.3 - 25	Leaching from natural deposits;
	հիր		112-30	5	Average	NC	12	industrial wastes

Distribution System Water Quality

ORGANIC CHEMICALS

					Range	26 - 57	3.0 - 41.4	
Total Trihalomethanes ^I	ppb	80	NA	NA	Highest	42.5	32.3	By-product of drinking water chlorination
					LKAA			
					Range	7.4 - 22	ND - 15.4	
Haloacetic Acids	ppb	60	NA	1,2 ^J	Highest	15.0	10.5	By-product of drinking water chlorination
					LRAA	15.0	12.5	
DISINFECTION			-			-	-	
Total chlorine residual		MRDL =	MRDLG =		Range	0.88 - 3.42		Measurement of the disinfectant
CCWA Distribution	ppm	4.0	4.0		Average	2.57		used in the production of drinking water
Free/total chlorine residual		MRDL =	MRDLG =		Range		0.17 - 2.72	Measurement of the disinfectant
ID No.1 Distribution	ppm	4.0	4.0		Average		1.56	used in the production of drinking water

Abbrevations and Notes

Footnotes

- (a) Turbidity (NTU) is a good indicator of the effectiveness of a filtration system. Monthly turbidity values for State Water are listed in the Secondary Standards section.
- (b) Gross alpha particle activity monitoring required every nine years for State Water; more frequent monitoring is required for some groundwater based on detected levels. Reported average and range are from most recent sampling of all supply wells.
- (c) Uranium monitoring is dependent on measured gross alpha particle activity.
- (d) The MCL for radium is based on a combined total of radium 226 and radium 228.
- (e) The District's Water Supply Permit, issued by DDW (formerly DPH), requires monitoring of the distribution system in areas that contain asbestos cement pipes whenever the aggressive index (AI) of the water served to the public is below 11.5.
- (f) There is currently no MCL for Hexavalent Chromium. The previous MCL of 10.0 ppb was withdrawn on September 11, 2017.
- (g) Pour plate technique -- monthly averages.
- (h) TOCs are taken at the State Water treatment plant's combined filter effluent.
- (i) Compliance based on the LRAA of distribution system samples. Values reported are the range of all 2020 sample results and highest locational running annual average.
- (j) Monochloroacetic Acid (MCAA) has a DLR of 2.0 ug/L while the other four Haloacetic Acids have DLR's of 1.0 ug/L.

Abbreviations

ACU = Apparent Color Units

CCWA = Central Coast Water Authority

CFU/ml = Colony Forming Units per milliliter

DLR = Detection Limit for the Purpose of Reporting

ID No.1 = Santa Ynez River Water Conservation District,

Improvement District No.1

LRAA - Locational Running Annual Average

- NA = Not Applicable
- NC = Not Collected
- ND = Non-detect
- ng/L = nanograms per liter
- NL = Notification Level
- NTU = Nephelometric Turbidity Units
- pCi/L = PicoCuries per liter
- ppb = parts per billion, or micrograms per liter (µg/L)
- ppm = parts per million, or milligrams per liter (mg/L)
- SI = saturation index
- TON = Threshold Odor Number
- µmho/cm = micromhos per centimeter

Analytical Results

The following summary table of analytical results lists the range and average concentrations of the drinking water contaminants (as well as other water quality constituents) that were detected during the most recently required sampling applicable to the 2020 reporting period for each source and constituent listed. Also listed are results of the District's required distribution system sampling. It is worth noting that constituents not detected, although analyzed, are not included in the report. Additionally, DDW sampling requirements allow for source monitoring of certain contaminants less than once per year because the concentrations of these contaminants do not vary significantly from year to year. Therefore, some of the data listed in the tables, though representative of the source water quality, are more than a year old.

[2020 Analytical Data Table] Exceedance of Regulatory Standards

The summary table of analytical results confirms that water served by the District met all primary drinking water standards during the 2020 reporting period with one possible exception. A required triennial sample taken from Well 27 in December of 2018 showed an aluminum value of 1200 ppb. Although this value exceeded the primary drinking water standard of 1000 ppb, the well was not put into operation throughout the 2019 year and subsequently was not used until June 2020. Importantly, since the construction of this well in 2006, all analytical sampling results have been non-detect for aluminum. The same December 2018 sampling results also showed values for turbidity (15.2 NTU) and iron (1700 ppb) in excess of secondary drinking water standards and contrary to normal values for the well. These anomalous sampling results for turbidity, iron, and aluminum indicate that the well was not adequately flushed before the December 2018 sample methods and contrary to normal values for the well. These anomalous sampling results for 0.41 NTU. Regular flushing and bacteriological sampling of the well was used from June through October. Follow-up confirmation samples taken from this well in May of 2021 showed non-detect for aluminum and iron.

Separately, a triennial sample taken from Well 17 in December of 2018 showed values for iron (590 ppb) and aluminum (230 ppb) in excess of secondary drinking water standards. Flow monitoring data show that these sampling results also may have been the result of irregular flushing when the December 2018 sample was taken. Notably, the well was not used throughout the 2019 year. In calendar year 2020, following complete flushing and bacteriological sampling, the well was used from October through December. Follow-up confirmation samples taken from this well in May of 2021 showed non-detect for aluminum and iron.

The primary standard (MCL) for aluminum (1000 ppb) has been established because some people who drink water in excess of the MCL over many years may experience short-term gastrointestinal tract effects. The secondary standards for iron (300 ppb) and aluminum (200 ppb) are designed to protect consumers against unpleasant aesthetic affects such as color, taste, odor, or the staining of plumbing fixtures or clothing. Based on the information above, the District does not believe that water supplies distributed during the 2020 reporting period (or any other reporting period) contained aluminum or iron values above the water quality thresholds. Please also note that water actually delivered to District customers generally has lower constituent levels than sampled water from wells due to blending with other water sources and dilution within the distribution system.

City of Solvang Conservation Efforts

The City of Solvang is currently under Stage 1 Drought Regulations. For a full list of the regulations, please see: www.cityofsolvang.com

Conservation Programs

□ Landscape Rebate For more information on these programs, please contact the City of Solvang at 805-688-5575 X 202

Water Wise Facts

□ 1 Unit of water on your water bill = One Hundred Cubic Feet (1 HCF)

□ 1 Unit = 1 HCF = 100 Cubic Feet = 748 gallons

□ The State of California Department of Water Resources has determined the minimum quantity of water for health & safety purposes is 50/gallons per person per day.

□ For a family of four, 50/gallons per person per day = 8.3 Units/month.

Additional Resources

Waterwise Santa Barbara, www.waterwisesb.org

ABBREVIATIONS AND NOTES

Footnotes:

- (a) Turbidity (NTU) is a measure of the cloudiness of the water and is a good indicator of the effectiveness of a filtration system. Monthly turbidity values for State Water are listed in the Secondary Standards section.
- (b) Aluminum has a Secondary MCL of 200 ppb.
- (c) Gross alpha particle activity monitoring required every nine years for State Water; more frequent monitoring is required for some groundwater based on detected levels. Reported average represents highest running source average.
- (d) Uranium monitoring is dependent on measured gross alpha particle activity.
- (e) Pour plate technique -- monthly averages.
- (f) TOCs are taken at the State Water treatment plant's combined filter effluent.
- (g) Total coliform MCLs: No more than 5.0% (State Water) or 1 sample (ID#1) of the monthly samples may be Total Coliform positive. All required follow-up and confirmation samples collected in response to each of the positive Total Coliform samples were absent for Total Coliform.
- (h) Compliance based on the running quarterly annual average of distribution system samples. Values reported are range of all sample results and highest running annual average.
- (j) Monochloroacetic Acid (MCAA) has a DLR of 2.0 ug/L while the other four Haloacetic Acids have DLR's of 1.0 ug/L.

CCWA = Central Coast Water Authority

CFU/ml = Colony Forming Units per milliliter

- ID#1 = Santa Ynez River Water Conservation District, Improvement District No.1
- NA = Not Applicable
- NC = Not Collected
- NL = Notification Level
- NTU = Nephelometric Turbidity Units pCi/L = PicoCuries per liter
- pci/L = Ficocuries per inter

ppb = parts per billion, or micrograms per liter ($\mu g/L$) ppm = parts per million, or milligrams per liter (mg/L)

SI = saturation index

µmho/cm = micromhos per centimeter, (unit of specific conductance of water)

