

2018 CONSUMER CONFIDENCE REPORT

conservation A NEW WAY OF LIFE

CITY OF SOLVANG 1644 OAK STREET SOLVANG, CA 93463 (805) 688-5575 https://www.cityofsolvang.com/ccr2018

2018 Consumer Confidence Report

Water System Name: CITY OF SOLVANG	Report Date: JUNE 2019						
	as required by state and federal regulations. This report shows December 31, 2018 and may include earlier monitoring data.						
Este informe contiene información muy importante so entienda bien.	bre su agua potable. Tradúzcalo ó hable con alguien que lo						
Type of water source(s) in use: Ground Water (Solvan	g Wells & ID#1 Wells) & Surface Water (CCWA)						
Ynez River Wat	tiver Wells; Well 4 & 21 & HCA South Upland Wells; Santa ter Conservation District, Improvement District No. 1 (ID#1) & Vater Authority (CCWA)						
Drinking Water Source Assessment information: Source 2002	e Assessments for the City's wells were completed September						
Time and place of regularly scheduled board meetings for	public participation:Second & Fourth Monday of each Month at 1644 Oak Street, Solvang, CA @ 6:30 P.M.						
For more information, contact: <u>Mike Mathews</u>	Phone: (805) 688-5575						
TERMS USED	IN THIS REPORT						
Maximum Contaminant Level (MCL) : The highest level of a contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs (or MCLGs) as is economically and technologically feasible. Secondary MCLs are set to protect the odor, taste, and	Secondary Drinking Water Standards (SDWS): MCLs for contaminants that affect taste, odor, or appearance of the drinking water. Contaminants with SDWSs do not affect the health at the MCL levels. Treatment Technique (TT): A required process intended to						
 appearance of drinking water. Maximum Contaminant Level Goal (MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the U.S. Environmental Protection Agency (U.S. EPA). Public Health Goal (PHG): The level of a contaminant is a set by the level of a contaminant is a set	 reduce the level of a contaminant in drinking water. Regulatory Action Level (AL): The concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow. Variances and Exemptions: State Board permission to exceed an MCL or not comply with a treatment technique under certain conditions. 						
 in drinking water below which there is no known or expected risk to health. PHGs are set by the California Environmental Protection Agency. Maximum Residual Disinfectant Level (MRDL): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants. 	 Level 1 Assessment: A Level 1 assessment is a study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system. Level 2 Assessment: A Level 2 assessment is a very detailed study of the water system to identify potential problems and determine (if possible) why an <i>E. coli</i> MCL violation has 						
Maximum Residual Disinfectant Level Goal (MRDLG): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants. Primary Drinking Water Standards (PDWS): MCLs and MRDLs for contaminants that affect health along with their monitoring and reporting requirements, and water treatment requirements.	 occurred and/or why total coliform bacteria have been found in our water system on multiple occasions. ND: not detectable at testing limit ppm: parts per million or milligrams per liter (mg/L) ppb: parts per billion or micrograms per liter (μg/L) ppt: parts per trillion or nanograms per liter (ng/L) ppq: parts per quadrillion or picogram per liter (pg/L) pCi/L: picocuries per liter (a measure of radiation) 						

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include:

- *Microbial contaminants*, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- *Inorganic contaminants*, such as salts and metals, that can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- *Pesticides and herbicides*, that may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses.
- Organic chemical contaminants, including synthetic and volatile organic chemicals, that are byproducts of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, agricultural application, and septic systems.
- *Radioactive contaminants*, that can be naturally-occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, the U.S. EPA and the State Water Resources Control Board (State Board) prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. State Board regulations also establish limits for contaminants in bottled water that provide the same protection for public health.

Tables 1, 2, 3, 4, 5, and 6 list all of the drinking water contaminants that were detected during the most recent sampling for the constituent. The presence of these contaminants in the water does not necessarily indicate that the water poses a health risk. The State Board allows us to monitor for certain contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of the data, though representative of the water quality, are more than one year old. Any violation of an AL, MCL, MRDL, or TT is asterisked. Additional information regarding the violation is provided later in this report.

TABLE 1 –	TABLE 1 – SAMPLING RESULTS SHOWING THE DETECTION OF COLIFORM BACTERIA										
Microbiological Contaminants	Highest No. of Detections	No. of Months in Violation	MCL	MCLG	Typical Source of Bacteria						
Total Coliform Bacteria	0	0	More than 1 sample in a month with a detection	0	Naturally present in the environment						
Fecal Coliform or <i>E. coli</i>	0	0	A routine sample and a repeat sample detect total coliform and either sample also detects fecal coliform or <i>E. coli</i>	0	Human and animal fecal waste						
E. coli	0	0	A routine sample and a repeat sample detect total coliform and either sample also detects <i>E. coli</i>		Human and animal fecal waste						

TABLE 2	TABLE 2 – SAMPLING RESULTS SHOWING THE DETECTION OF LEAD AND COPPER											
Lead and Copper	Sample Date	No. of Samples Collected	90 th Percenti le Level Detected	No. Sites Exceeding AL	AL	PH G	Typical Source of Contaminant					
Lead (ppb)	3/29/17	20	8.7	0	15	0.2	Internal corrosion of household water plumbing systems; discharges from industrial manufacturers; erosion of natural deposits					
Copper (ppb)	3/29/17	20	620	0	1300	0.3	Internal corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives					

	TABLE 3 – SAMPLING RESULTS FOR SODIUM AND HARDNESS										
Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	MCL	PHG (MCLG)	Typical Source of Contaminant					
Sodium (ppm)	2017-2018	63	58-72	none	none	Salt present in the water and is generally naturally occurring					
Hardness (ppm)	2017-2018	599	412-713	none	none	Sum of polyvalent cations present in the water, generally magnesium and calcium, and are usually naturally occurring					

TABLE 4 – DET	ECTION O	F CONTAMIN	ANTS WITH A	PRIMARY	DRINKING	WATER STANDARD
Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	MCL [MRDL]	PHG (MCLG) [MRDLG]	Typical Source of Contaminant
Fluoride (ppm)	2017- 2018	0.18	<0.1-0.3	2	1	Erosion of Natural deposits; water additive which promotes strong teeth
Nitrate (ppm) (as N03)	2017- 2018	5	<0.5-16.9	45	45	Runoff & leaching from fertilizer use; sewage; erosion of natural deposits
Nitrate and Nitrite (as N) (ppm)	2017- 2018	1.18	<.1-3.8	10	10	Runoff & leaching from fertilizer use; sewage; erosion of natural deposits
Hexavalent Chromium (ppb)	2015- 2017	.2	<1-1	10	.02	Discharge from electroplating factories, leather tanneries, wood preservation, chemical synthesis, refractory production, and textile manufacturing facilities; erosion of natural deposits.
Tetrachloroethylene (PCE) (ppb)	2016- 2017	.14	0-0.7	5	N/A	Leaching from PVC pipes: discharge from factories, dry cleaners and auto shops (metal degreasers)
Gross Alpha Activity (pCi/L)	2013- 2018	7.3	3.75-16	15	N/A	Erosion of natural deposits
Uranium (pCi/L)	2013- 2018	6.4	1.3-16.5	20	.5	Erosion of natural deposits
Trihalomethane (TTHM) (ppb)	1/18- 10/18	29	11-37	80	N/A	Byproduct of drinking water chlorination
Haloacetic Acid (HA A5) (ppb)	1/18- 10/18	7	4-11	60	N/A	Byproduct of drinking water chlorination
Selenium (ppb)	2017- 2018	8.25	<1-12	50	50	Erosion of natural deposits; discharge chemical manufacturers and runoff from livestock lot.

TABLE 5 – DETE	CTION OF	CONTAMINA	NTS WITH A <u>SF</u>	CONDAR	<u>Y</u> DRINKIN	G WATER STANDARD
Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	MCL	PHG (MCLG)	Typical Source of Contaminant
Chloride (ppm)	2017- 2018	80.8	57-117	500	N/A	Runoff/leaching from natural deposits; seawater influence
Odor (units)	2017- 2018	<1	<1	3 Units	N/A	Natural occurring materials
Specific conductance (Umhos/cm)	2017- 2018	1365	1120-1590	1600	N/A	Substance that forms ions when in water; seawater influence
Sulfate (ppm)	2017- 2018	291	203-337	500	N/A	Runoff/leaching from natural deposits; industrial wastes
Total Dissolved Solids (ppm)	2017- 2018	947	760-1090	1000	N/A	Runoff/leaching from natural deposits

	TABLE 6 – DETECTION OF UNREGULATED CONTAMINANTS										
Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	Notification Level	Health Effects Language						
Boron (ppb)	2017- 2018	260	200-300	1000	Some men who drink water containing boron in excess of the action level over many years may experience reproductive effects based on studies in dogs.						
Vanadium (ppb)	2017- 2018	6.2	<2.0-9	50	The babies of some pregnant women who drink water containing vanadium in excess of the action level may have an increased risk of developmental effects, based on studies in laboratory animals						

*Any violation of an MCL, MRDL, or TT is asterisked. Additional information regarding the violation is provided later in this report.

Additional General Information on Drinking Water

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the U.S. EPA's Safe Drinking Water Hotline (1-800-426-4791).

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. U.S. EPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* and other microbial contaminants are available from the Safe Drinking Water Hotline (1-800-426-4791).

Lead-Specific Language for Community Water Systems: If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. The City of Solvang is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. [Optional: If you do so, you may wish to collect the flushed water and reuse it for another beneficial purpose, such as watering plants.] If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline (1-800-426-4791) or at https://www.epa.gov/lead

CENTRAL COAST WATER AUTHORITY POLONIO PASS WATER TREATMENT PLANT WATER QUALITY TABLE

COVERING THE REPORTING PERIOD OF JANUARY-DECEMBER 2018

Please see last page for key to abbreviations.

			TREATED	SOURCE				
		State	PHG	State	Range		STATE	
Parameter	Units	MCL	(MCLG)	DLR	Average	CCWA	WATER	Major Sources in Drinking Water

PRIMARY STANDARDS--Mandatory Health-Related Standards

CLARITY (a)

Combined Filter Effluent	TT=<1 NTU every 4 hours	Range	Range 0 - 0.13		Soil runoff
Turbidity (a)	TT=95% of samples <0.3 NTU	%	100%	NA	

INORGANIC CHEMICALS

Aluminum mg/	ma/L	1 (b)	0.6	0.05	Range	ND - 0.095	ND - 0.14	Erosion of natural deposits; residual from some
Aluminum	mg/∟	1 (b)	0.0	0.00	Average	0.058	0.088	surface water treatment processes

DISTRIBUTION SYSTEM MONITORING

Total Chlorine Residual	mg/L	MRDL = 4.0	MRDLG =	NA	Range	1.76 - 3.2	NA	Drinking water disinfectant added for treatment
	iiig/L	MINDE 1.0	4.0	10.1	Average	2.32	NA	
Total Coliform		5.0% of			Range	0	NA	
Bacteria (c)		monthly	(0)		Average	0	NA	Naturally present in the environment
Buotona (o)		samples			Highest	0%	NA	
Total Trihalomethanes					Range	27 - 50	NA	
(d)	ug/L	80	NA	(0.5)	Average	39	NA	By-product of drinking water chlorination
(u)					Highest LRAA	42.8	NA	
					Range	8.3 - 12	NA	
Haloacetic Acids (d)	ug/L	60	NA	(1) (e)	Average	10	NA	By-product of drinking water chlorination
					Highest LRAA	13.1	NA	

SECONDARY STANDARDS--Aesthetic Standards

Oblasida		F00 (i)	NIA	(4)	Range	39 - 140	34 - 142	Runoff/leaching from natural deposits; seawater
Chloride	mg/L	500 (j)	NA	(1)	Average	81	78	influence
Color	ACU	15 (j)	NA	(3)	Range	ND	30	Naturally occuring organic materials
000	700	15 ()	INA.	(5)	Average	ND	30	Naturally occurring organic materials
Corrosivity	SU	non-	NA	NA (0.1)	Range	11	11	
(Aggresivity Index) (i)	00	corrosive	1.0.1	(0.1)	Average	11	11	
Iron, Total	mg/L	0.3 (j)	NA	0.1	Range	ND	0.17	Leaching from natural deposits; industrial wastes
iion, iotai	iiig/∟	0.5 (j)	IN/A	0.1	Average	ND	0.17	Leaching norm natural deposits, industrial wastes
Manganese, Total ug/L 50	50 (j)	NA	(2)	Range	ND	22		
Manganese, Totai	ug/L	50 ()	NA.	(2)	Average	ND	22	
Odor Threshold	TON 3 (j)	3 (i)	NA	(1)	Range	2	2	Naturally occuring organic materials
	TON	5 ()	1.07	(1)	Average	2	2	Naturally occurring organic matchais
Specific Conductance	uS/cm	1600 (j)	NA	NA	Range	294 - 592	105 - 702	Substances that form ions when in water;
opecine conductance	uo/cm	1000 (j)	NA.	INA	Average	481	451	seawater influence
Sulfate	mg/L	500 (j)	NA	(0.5)	Range	55	30	Runoff/leaching from natural deposits; industrial
Sullate	iiig/L	500 (J)	NA.	(0.3)	Average	55	30	wastes
Total Dissolved Solids	mg/L	1000 (j)	NA	(10)	Range	220	190	Runoff/leaching from natural deposits
(TDS)	iiig/∟	1000 (j)	IN/A	(10)	Average	220	190	runon/reaching nom natural deposits
Turbidity (Monthly) (a)	NTU	5 (j)	NA	(0.1)	Range	ND - 0.12	ND - 10.2	Soil runoff
rubiuity (worthily) (a)	1110	5()	NА	(0.1)	Average	0.05	1.73	

ADDITIONAL PARAMETERS (Unregulated)

2-Methylisoborneol	ng/L	NA	NA	(1)	Range Average	ND - 1 0.4	ND - 2 0.6	_
Alkalinity (Total) as	"	NA	NA	(2)	Range	44 - 78	46 - 86	Runoff/leaching from natural deposits; seawater
CaCO3 equivalents	mg/L	NA	NA		Average	61	66	influence
Calcium	ma m/l	NA	NA	(1)	Range	14	15	Runoff/leaching from natural deposits; seawater
Calcium	mg/L	NA	INA	(1)	Average	14	15	influence

Chromium Hoxovalant	Chromium, Hexavalent ug/L	L NA	0.02	NA	Range	0.058	0.064	Discharge from electroplating factories, leather tanneries, wood preservation, chemical synthesis, refractory production, and textile
Chromium, nexavalent			0.02	NA.	Average	0.058	0.064	manufacturing facilities; erosion of natural deposits
Geosmin	ng/L	NA	NA	(1)	Range	ND - 1	ND - 2	
Coostinin	ng/L	1177	11/1	(1)	Average	0.6	0.6	
Hardness (Total) as	mg/L	NA	NA	(3)	Range	62 - 140	58 - 142	Leaching from natural deposits
CaCO3	mg/∟	NA	INA	(3)	Average	96	96	Leaching norm matural deposits
Heterotrophic Plate	CFU/mL	тт	NA	NA	Range	0 - 1	NA	Naturally present in the environment
Count (f)					Average	0	NA	
Magnesium	mg/L	NA	NA	(0.1)	Range	7.7	8.0	Runoff/leaching from natural deposits; seawater
Wagnesiam	iiig/L	1177		(0.1)	Average	7.7	8.0	influence
pН	SU	NA	NA	(0.1)	Range	7.8 - 8.7	7.6 - 9.45	Runoff/leaching from natural deposits; seawater
рп	00	1177		(0.1)	Average	8.3	8.5	influence
Potassium	mg/L	NA	NA	(1)	Range	1.8	1.9	Runoff/leaching from natural deposits; seawater
1 otassium	mg/∟	INA	INA.	(1)	Average	1.8	1.9	influence
Sodium	mg/L	NA	NA	(1)	Range	40	33	Runoff/leaching from natural deposits; seawater
	iiig/E	10.0	101	(1)	Average	40	33	influence
Total Organic Carbon	mg/L TT	ТТ	NA	(0.3)	Range	1.6 - 3.2	2.4 - 5	Various natural and man made sources
(TOC) (g)	3			. ,	Average	2.1	3.3	

ABBREVIATIONS AND NOTES

Footnotes:

- (a) Turbidity (NTU) is a measure of the cloudiness of the water and it is a good indicator of the effectiveness of our filtration system. Monthly turbidity values are listed in the Secondary Standards section.
- (b) Aluminum has a Secondary MCL of 0.2 ppm.
- (c) Total coliform MCLs: Systems that collect ≥40 samples/month no more than 5.0% of the monthly samples may be Total Coliform positive. Systems that collect <40 samples per month no more than 1 positive sample per month may be Total Coliform positive. Fecal coliform/E. coli MCLs: The occurrence of 2 consecutive Total Coliform positive samples, one of which contains fecal coliform/E. coli, constitutes an acute MCL violation.

(d) Compliance based on the running quarterly annual average of distribution system samples.
 (e) Monochloroacetic Acid (MCAA) has a DLR of 2.0 ug/L while the other four Haloacetic Acids

- have DLR's of 1.0 ug/L.
- (f) Pour plate technique
- (g) TOCs are taken at the treatment plant's combined filter effluent.
- (h) State MCL is 45 mg/L as NO3, which equals 10 mg/L as N.
- (i) Al ³ 12.0 = Non-aggressive water Al (10.0 - 11.9) = Moderately aggressive water Al £ 10.0 = Highly aggressive water
- Reference: ANSI/AWWA Standard C400-93 (R98)
- (j) Secondary MCL

Abbreviations

ACU = Apparent Color Units CCWA = Central Coast Water Authority CFU/ml = Colony Forming Units per milliliter DLR = Detection Level for purposes of Reporting MCL = Maximum Contaminant Level MCLG = Maximum Contaminant Level Goal MRDL = Maximum Residual Disinfectant Level MRDLG = Maximum Residual Disinfectant Level Goal NA = Not Applicable NTU = Nephelometric Turbidity Units pCi/L = PicoCuries per liter PHG = Public Health Goal ppb = parts per billion, or micrograms per liter (µg/L) ppm = parts per million, or milligrams per liter (mg/L) TON = Threshold Odor Number TT = Treatment Technique LRAA = Locational Running Annual Average

			PHG			Drinking W	ater Source	
	l lucito	State		State	Range	State	Ground	
Parameter	Units	MCL	(MCLG)	DLR	Average	Water	Water	Major Sources in Drinking Water
PRIMARY STANDA	RDSMa	andatory H	ealth-Re	lated St	andards			
CLARITY								
Combined Filter	NTU	TT=<1 N	ITU every 4	hours	Range	0 - 0.13	NA	Soil runoff
Effluent Turbidity(a)	NIU	TT=95% of	f samples <	0.3 NTU	%	100%	NA	
INORGANIC CHEMICAL	8							
Aluminum(b)	ppm	1 (b)	0.6	0.05	Range	ND - 0.095	ND - 0.47	Residue from water treatment process;
Aluminum(b)	ppm	1 (0)	0.0	0.05	Average	0.058	0.064	Erosion of natural deposits
Arsenic	ppb	10	0.004	2	Range	ND	ND - 2.5	Erosion of natural deposits; orchard runoff; from
/ 1001110	662	10	0.001	-	Average	ND	0.25	glass/electronics production wastes
Chromium (Total Cr)	ppb	50	(100)	10	Range	ND	ND - 18	Erosion of natural deposits; steel,
()			()		Average	ND	3.8	pulp mills, and chrome plating wastes
Fluoride	ppm	2	1	0.1	Range	ND	ND - 0.33	Erosion of natural deposits;
					Average	ND	0.23	water additive for tooth health
Nickel	ppb	100	12	10	Range Average	ND ND	ND - 11 1.1	Erosion of natural deposits; discharge from metal factories
					Range	ND	ND - 2.2	Runoff and leaching from fertilizer use; leaching
Nitrate (as Nitrogen)	ppm	10	10	0.4	Trange			from septic tanks and sewage; erosion of natural
Millale (as Millogen)			10	0.4	Average	ND	0.72	deposits
RADIONUCLIDES							• •	• ·
IN DIONOGE DEG					Range	ND	ND - 12	
Gross Alpha(c)	pCi/L	15	NA	3	Average	ND	4.0	Erosion of natural deposits
					Range	NC	2.1 - 5.6	
Uranium(d)	pCi/L	20	0.5	1	-	NC	3.2	Erosion of natural deposits
					Average	NC	3.2	
SECONDARY STAN		Aesthetic	: Standai	rds				
Aluminum	ppm	0.2	NA	0.05	Range	ND - 0.095	ND - 0.47	Residue from water treatment process;
Adminum	ppin	0.2	11/4	0.00	Average	0.058	0.064	Erosion of natural deposits
Chloride	ppm	500	NA		Range	39 - 140	29 - 54	Runoff/leaching from natural deposits;
-					Average	81	36.8	seawater influence
Color	ACU	15	NA		Range Average	ND ND	ND ND	Naturally-occurring organic materials
Corrosivity		non-			Range	11		Balance of hydrogen, carbon, & oxygen in
(Aggresivity Index)(e)	none	corrosive	NA		Average	11	12.1 12.0	water, affected by temperature & other factors
				100	Range	ND	ND - 790	Leaching from natural deposits;
Iron	ppb	300	NA	100	Average	ND	140	industrial wastes
NA		50	NIA	00	Range	ND	ND - 23	Less the second second second to
Manganese	ppb	50	NA	20	Average	ND	2.3	Leaching from natural deposits
Odor Threshold	TON	3	NA	1	Range	2	1 - 3	Naturally-occurring organic materials
	TON	5		'	Average	2	1.2	, , ,
Specific	µmho/	1600	NA		Range	294 - 592		Substances that form ions
Conductance	cm				Average	481	935	when in water; seawater influence
Sulfate	ppm	500	NA	0.5	Range	55	37 - 290	Runoff/leaching from natural deposits;
Total Dissolved					Average	55	204	industrial wastes
Total Dissolved	ppm	1000	NA		Range	220 220	460 - 770 607	Runoff/leaching from natural deposits;
Solids (TDS) Lab Turbidity (ID#1)	+				Average Range	220 ND - 0.12	ND - 3.1	
Turbidity (State Water)	NTU	5	NA		Average	0.05	0.4	Soil erosion/runoff
						0.00	LL U.4	

ADDITIONAL PARAMETERS (Unregulated)

Alkalinity (Total) as	nnm	NA	NA		Range	44 - 78	230 - 290	Runoff/leaching from natural deposits;
CaCO ₃ equivalents	ppm	NA NA	IN/A		Average	61	264	seawater influence
Boron	nnh	NA	NL=1.000	100	Range	NC	110 - 380	Runoff/leaching from natural deposits;
Deron	ppb	INA	INL-1,000	100	Average	NC	259	wastewater, and fertilizers/pesticides.
Calcium	ppm	NA	NA		Range	14	46 - 110	Runoff/leaching from natural deposits;
Calcium	ppin	INA.	NA NA		Average	14	37	seawater influence
Chromium, Hexavalent(f)	ppb	NA	0.02	1.0	Range	0.058	ND - 12	Discharges from industrial manufacturers;
	ppp	NA	0.02	1.0	Average	0.058	4.2	erosion of natural deposits
Geosmin	ng/L	NA	NA	(1)	Range	ND - 1	NC	An organic compound mainly produced by
Geosinin	lig/∟	NA	INA.	(1)	Average	0.6	NC	blue-green algae (cyanobacteria)
Hardness (Total) as					Range	62 - 140	320 - 520	
CaCO₃	ppm	NA	NA		Average	96	428	Leaching from natural deposits

2018 Annual Water Quality Report - Santa Ynez River Water Conservation District, ID#1

			Drinking Water Source						
Parameter	Units	State MCL	PHG (MCLG)	State DLR	Range Average	State Water		Ground Water	Major Sources in Drinking Water
Heterotrophic Plate	CFU/mL	TT	NA		Range	0 - 1	Π	NA	Naturally present in the environment
Count ^g	CF0/IIIL	11	NA		Average	0.4		NA	naturally present in the environment
Magnesium	ppm	NA	NA		Range	7.7		46 - 60	Runoff/leaching from natural deposits;
	PP				Average	7.7		54	seawater influence
2-Methylisoborneol (MIB)	ng/L	NA	NA	NA	Range	ND - 1		NC	An organic compound mainly produced by
	ng/L	NA	NA	INA	Average	0.4		NC	blue-green algae (cyanobacteria)
pН	pH Units	NA	NA		Range	7.8 - 8.7		7.4 - 7.7	Runoff/leaching from natural deposits;
pri					Average	8.3		7.5	seawater influence
Potassium	nnm	NA	NA		Range	1.8		2.1 - 2.8	Runoff/leaching from natural deposits;
Fotassium	ppm	INA.	INA		Average	1.8		2.5	seawater influence
Sodium	nnm	NA	NA		Range	40	1	40 - 54	Runoff/leaching from natural deposits;
Soulum	ppm	INA	INA		Average	40		47	seawater influence
Total Organic Carbon			NIA	0.00	Range	1.6 - 3.2		NA	
(TOC) ^h	ppm	ppm TT	NA	0.30	Average	2.1		NA	Various natural and manmade sources.
Vanadium	ppb	NA	NL=50	3	Range	NC		ND - 25	Leaching from natural deposits;
Vanadidini	php	NA	NL-50	5	Average	NC		9	industrial wastes

Distribution System Water Quality

ORGANIC CHEMICALS

					Range	27 - 50	5.0 - 31.4	
Total Trihalomethanes ^I	ppb	80	NA	NA	Highest LRAA	42.8	22.7	By-product of drinking water chlorination
					Range	8.3 - 12	ND - 16.9	
Haloacetic Acids	ppb	60	NA	1,2 ^J	Highest LRAA	13.1	6.9	By-product of drinking water chlorination
DISINFECTION								
Total chlorine residual		MRDL =	MRDLG =		Range	1.76 - 3.2		Measurement of the disinfectant
CCWA Distribution	ppm	4.0	4.0		Average	2.32		used in the production of drinking water
Free/total chlorine residual		MRDL =	MRDLG =		Range		0.03 - 2.19	Measurement of the disinfectant
ID#1 Distribution	ppm	4.0	4.0		Average		1.35	used in the production of drinking water

Abbrevations and Notes

Footnotes:

- (a) Turbidity (NTU) is a good indicator of the effectiveness of a filtration system.
- Monthly turbidity values for State Water are listed in the Secondary Standards section.
- (b) Aluminum has a Secondary MCL of 0.2 ppb.
- (c) Gross alpha particle activity monitoring required every nine years for State Water; more frequent monitoring is required for some groundwater based on detected levels. Reported average and range are from most recent sampling of all supply wells.
- (d) Uranium monitoring is dependent on measured gross alpha particle activity.
- (e) $AI \ge 12.0 = Non-aggressive water$
 - AI (10.0 11.9) = Moderately aggressive water
 - AI ≤ 10.0 = Highly aggressive water
 - Reference: ANSI/AWWA Standard C400-93 (R98)
- (f) There is currently no MCL for Hexavalent Chromim. The previous MCL of 10.0 ppb was withdrawn on September 11, 2017.
- (g) Pour plate technique -- monthly averages.
- (h) TOCs are taken at the State Water treatment plant's combined filter effluent.
- (i) Compliance based on the LRAA of distribution system samples. Values reported are the range of all 2018 sample results and highest locational running annual average.
 (j) Monochloroacetic Acid (MCAA) has a DLR of 2.0 ug/L while the other four Haloacetic Acids

Abbreviations

ACU = Apparent Color Units

CCWA = Central Coast Water Authority

CFU/ml = Colony Forming Units per milliliter

DLR = Detection Limit for the Purpose of Reporting

ID#1 = Santa Ynez River Water Conservation District,

- Improvement District No.1
- LRAA Locational Running Annual Average
- NA = Not Applicable
- NC = Not Collected
- ND = Non-detect
- ng/L = nanograms per liter
- NL = Notification Level
- NTU = Nephelometric Turbidity Units
- pCi/L = PicoCuries per liter
- ppb = parts per billion, or micrograms per liter (µg/L)
- ppm = parts per million, or milligrams per liter (mg/L)
- SI = saturation index
- TON = Threshold Odor Number µmho/cm = micromhos per centimeter

Analytical Results

have DLR's of 1.0 ug/L.

The following summary table of analytical results lists the range and average concentrations of the drinking water contaminants (as well as other water quality constituents) that were detected during the most recently required sampling for each source and constituent listed. Also listed are results of the District's required distribution system sampling. It is worth noting that chemicals not detected are not included in the report. Additionally, DDW sampling requirements allow for source monitoring of certain contaminants less than once per year because the concentrations of these contaminants do not vary significantly from year to year. Therefore, some of the data listed in the tables, though representative of the source water quality, are more than a year old.

Exceedance of Regulatory Standards

The summary table of analytical results confirms that water served by the District met all primary drinking water standards during the 2018 reporting period. Secondary standards for iron and aluminum were exceeded in a single sample from one supply well (Well 24 – sampled March 2018), following a period of non-use. These secondary standards are designed to protect consumers against unpleasant aesthetic affects such as color, taste, odor, or the staining of plumbing fixtures or clothing. Well 24 is pumped directly to a 3.2-million-gallon reservoir prior to entering the distribution system so actual iron and aluminum concentrations delivered to District customers were much less due to blending of multiple sources (e.g., other wells) within the reservoir.

City of Solvang Conservation Efforts

The City of Solvang has downgraded to Stage 1 Drought Regulations. For a full list of the regulations, please see: www.cityofsolvang.com

Conservation Programs

Low Flow Toilet Rebates

Landscape Rebate

For more information on these programs, please contact the City of Solvang at 805-688-5575

Water Wise Facts

- □ 1 Unit of water on your water bill = One Hundred Cubic Feet (1 HCF)
- □ 1 Unit = 1 HCF = 100 Cubic Feet = 748 gallons
- □ The State of California Department of Water Resources has determined the minimum quantity of water for health & safety purposes is 50/gallons per person per day.
- □ For a family of four, 50/gallons per person per day = 8.3 Units/month.

Additional Resources

Waterwise Santa Barbara, www.waterwisesb.org

ABBREVIATIONS AND NOTES

Footnotes:

- (a) Turbidity (NTU) is a measure of the cloudiness of the water and is a good indicator of the effectiveness of a filtration system. Monthly turbidity values for State Water are listed in the Secondary Standards section.
- (b) Aluminum has a Secondary MCL of 200 ppb.
- (c) Gross alpha particle activity monitoring required every nine years for State Water; more frequent monitoring is required for some groundwater based on detected levels. Reported average represents highest running source average.
- (d) Uranium monitoring is dependent on measured gross alpha particle activity.
- (e) Pour plate technique -- monthly averages.
- (f) TOCs are taken at the State Water treatment plant's combined filter effluent.
- (g) Total coliform MCLs: No more than 5.0% (State Water) or 1 sample (ID#1) of the monthly samples may be Total Coliform positive. All required follow-up and confirmation samples collected in response to each of the positive Total Coliform samples were absent for Total Coliform.
- (h) Compliance based on the running quarterly annual average of distribution system samples. Values reported are range of all sample results and highest running annual average.
- (j) Monochloroacetic Acid (MCAA) has a DLR of 2.0 ug/L while the other four Haloacetic Acids have DLR's of 1.0 ug/L.

Abbreviations

- ACU = Apparent Color Units
- CCWA = Central Coast Water Authority
- CFU/ml = Colony Forming Units per milliliter
- ID#1 = Santa Ynez River Water Conservation District, Improvement District No.1
- NA = Not Applicable
- NC = Not Collected
- NL = Notification Level
- NTU = Nephelometric Turbidity Units
- pCi/L = PicoCuries per liter
- ppb = parts per billion, or micrograms per liter (μ g/L)
- ppm = parts per million, or milligrams per liter (mg/L)

SI = saturation index

 μ mho/cm = micromhos per centimeter, (unit of specific conductance of water)

