

APPENDIX B: eCCR Certification Form (Suggested Format)

Consumer Confidence Report Certification Form (To be submitted with a copy of the CCR)

Water System Name:	Montecito Water District
Water System Number:	4210007

The water system named above hereby certifies that its Consumer Confidence Report was distributed on June 3, 2025 (date) to customers (and appropriate notices of availability have been given). Further, the system certifies that the information contained in the report is correct and consistent with the compliance monitoring data previously submitted to the State Water Resources Control Board, Division of Drinking Water (DDW).

Certified by:

Name: Chad Hurshman	Title: Water Treatment & Production Superintendent
Signature:	Date: June 11, 2025
Phone number: (805) 969-2271	blank

To summarize report delivery used and good-faith efforts taken, please complete this page by checking all items that apply and fill-in where appropriate:

- CCR was distributed by mail or other direct delivery methods (attach description of other direct delivery methods used).
- CCR was distributed using electronic delivery methods described in the Guidance for Electronic Delivery of the Consumer Confidence Report (water systems utilizing electronic delivery methods must complete the second page).
- "Good faith" efforts were used to reach non-bill paying consumers. Those efforts included the following methods:
 - Posting the CCR at the following URL: www.montecitowater.com/doc/CCR2024
 - Mailing the CCR to postal patrons within the service area (attach zip codes used)
 - Advertising the availability of the CCR in news media (attach copy of press release)
 - Publication of the CCR in a local newspaper of general circulation (attach a copy of the published notice, including name of newspaper and date published)
 - Posted the CCR in public places (attach a list of locations) – Public Meeting, Board Agenda and Packet, Public Library, District Office

- Delivery of multiple copies of CCR to single-billed addresses serving several persons, such as apartments, businesses, and schools
- Delivery to community organizations (attach a list of organizations)!
- Publication of the CCR in the electronic city newsletter or electronic community newsletter or listserv (attach a copy of the article or notice)
- Electronic announcement of CCR availability via social media outlets (attach list of social media outlets utilized)
- Other (attach a list of other methods used)
- For systems serving at least 100,000 persons: Posted CCR on a publicly-accessible internet site at the following URL: www._____
- For privately-owned utilities: Delivered the CCR to the California Public Utilities Commission

Consumer Confidence Report Electronic Delivery Certification

Water systems utilizing electronic distribution methods for CCR delivery must complete this page by checking all items that apply and fill-in where appropriate.

- Water system mailed a notification that the CCR is available and provides a direct URL to the CCR on a publicly available website where it can be viewed (attach a copy of the mailed CCR notification). URL: www.montecitowater.com/doc/CCR2024
- Water system emailed a notification that the CCR is available and provides a direct URL to the CCR on a publicly available site on the Internet where it can be viewed (attach a copy of the emailed CCR notification).
Water system emailed the CCR as an electronic file email attachment.
- Water system emailed the CCR text and tables inserted or embedded into the body of an email, not as an attachment (attach a copy of the emailed CCR).
Requires prior DDW review and approval. Water system utilized other electronic delivery method that meets the direct delivery requirement.

Provide a brief description of the water system's electronic delivery procedures and include how the water system ensures delivery to customers unable to receive electronic delivery.

Montecito Water District used electronic delivery for the 2024 CCR, and distribution was supported with these procedures:

CCR Posted to Web Site May 29, 2025 at www.montecitowater.com/doc/CCR2024

Bill Insert / Bill message sent to all District Customers with May Invoice: mailed before June 5, 2025.
Direct Email to all District Customers who have an email address associated with their account: sent on June 3, 2025
Delivery to Community Organizations: Montecito Association, Summerland Citizen's Association
Social Media Announcement: Facebook Post: June 11, 2025
Press placement / Advertisement in Montecito Journal announcing availability of CCR: June 12, 2025
Printed copies of the CCR are available / posted at the District Office.
Printed copies of the CCR are mailed upon request.
Multiple copies of the CCR are provided to landlords upon request.
PDF copies of the CCR are emailed upon request.

This form is provided as a convenience and may be used to meet the certification requirement of section 64483(c) of the California Code of Regulations.

2024 ANNUAL DRINKING WATER CONSUMER CONFIDENCE REPORT

This report explains where your water comes from, provides information on water quality and how it is measured, and presents the District's 2024 test results which show that **drinking water met, or was better than, state and federal water quality standards.**

Your drinking water is treated to comply with Federal and State standards in accordance with the United States Environmental Protection Agency (EPA) Federal Safe Drinking Water Act and the State of California's Water Resources Control Board requirements.

As required by the EPA for all public water systems, the District completed a Lead Service Line Inventory with the goal of identifying any potential sources of lead in tap water associated with water service lines. No lead was detected in the District's pipes during a comprehensive survey completed in 2018, and no lead was apparent in any of the 1,700 customer service lines examined in 2024. Results from this State approved sampling process, which placed an emphasis on properties built before 1986 when the lead ban was enacted, indicate that copper is the most common pipe material, followed by plastic and galvanized steel. If you have any concerns that your household plumbing may be contributing lead to your drinking water, or would like to learn more, many resources are available online including: <https://drinktap.org/Water-Info/Whats-in-My-Water/Lead-In-Water>

The District has also expanded sampling to enhance detection of PFAS (Per- and polyfluoroalkyl substances). PFAS were not detected in District water sources when testing in compliance with State and Federal requirements began in 2014-15, and none have been detected through the most recent and rigorous required screening for 29 types of PFAS completed in 2024-25. While previous testing detected parts per billion (ppb or micrograms per liter - ug/L or one drop in 500 barrels of water), updated EPA standards can detect parts per trillion (ppt or nanogram per liter - ng/L or one drop in 500,000 barrels of water). Understanding and analysis of PFAS continues to evolve, and more information may be found here: <https://www.waterboards.ca.gov/pfas>

Providing high quality drinking water is a vital part of the District's mission. We take pride in the work we do and appreciate the opportunity offered by this annual report to reassure the community that the water delivered to your tap meets or exceeds the highest standards, year after year.

Reliability. Service. Quality. District tradition for more than a century.

Water quality meets or exceeds all State and Federal standards

Certified/Licensed Distribution Staff and Engineers maintain and repair infrastructure

Certified/Licensed Treatment Staff and Engineers ensure testing and compliance


Drinking Water Consumer Confidence Report published annually

Monitoring and sampling occur 24 hours/day, 365 days/year

**Nick Turner,
General Manager**

Este informe contiene información muy importante sobre su agua potable. Tradúzcalo o hable con alguien que lo entienda bien. Para información en español llame al 805.969.2271.

MONTECITO WATER DISTRICT
583 San Ysidro Road, Santa Barbara, CA 93108
phone: 805.969.2271
email: info@montecitowater.com

Montecito Water District's Water Quality Summary 2024

Primary Standards (PDWS)	Units	Maximum Contaminant Level	Public Health Goal (MCLG)	Jameson Lake Average	Jameson Lake Range	Ground Water Average	Ground Water Range	Cachuma Lake Average	Cachuma Lake Range	Common Sources of Contamination in Drinking Water			
Water Clarity													
Treated Turbidity	NTU	TT = 1 NTU TT = 95% of Samples \leq 0.3	NA	0.06	0.03 - 0.24 100.0%	0.43	0.1 - 1.0	NA	ND - 0.09 100%	Soil runoff.			
Radioactive Contaminants (2024)													
Gross Alpha Particle Activity	pCi/L	15	(0)	3.01	3.01	2.49	1.92 - 3.47	NA	NA	Erosion of natural deposits.			
Uranium	pCi/L	20	0.43	NA	NA	NA	NA	0.76	NA	Erosion of natural deposits.			
Inorganic Contaminants													
Barium	mg/L	1	2	ND	ND	0.08	0.06 - 0.10	NA	NA	Discharges of oil drilling wastes; erosion of natural deposits.			
Total Chromium	µg/L	50	100	18	18	26	24 - 28	NA	NA	Erosion of natural deposits.			
Hexavalent Chromium	µg/L	10	0.02	ND	ND	ND	ND	0.025	NA	Erosion of natural deposits.			
Fluoride	mg/L	2	1	0.2	0.2	0.9	0.5 - 1.3	0.44	0.395 - 0.49	Erosion of natural deposits; discharge from fertilizer.			
Mercury	µg/L	2	1.2	ND	ND	0.05	ND - 0.09	ND	ND	Erosion of natural deposits; runoff from landfills and cropland.			
Nickel	µg/L	100	12	ND	ND	0.33	ND - 1.0	ND	ND	Erosion of natural deposits.			
Nitrate as N (Nitrogen)	mg/L	10	10	ND	ND	2.7	0.9 - 4.0	0.09	DNQ - 0.179	Runoff or leaching from fertilizer use; leaching from septic tanks and sewage; erosion from natural deposits.			
Perchlorate	µg/L	6	1	ND	ND	0.7	ND - 2.5	ND	ND	Perchlorate is an inorganic chemical used in solid rocket propellant, fireworks, explosives, flares, matches, and a variety of industries. It usually gets into drinking water as a result of environmental contamination from historic aerospace or other industrial operations that used or use, store, or dispose of perchlorate and its salts.			
Selenium	µg/L	50	30	ND	ND	4.0	2.0 - 6.0	1.2	NA	Discharge from petroleum, glass, and metal refineries; erosion of natural deposits; discharge from mines and chemical manufacturers; runoff from livestock lots (feed additive).			
Synthetic Organic Contaminants													
Atrazine	µg/L	1	0.15	ND	ND	0.056	0.056	ND	ND	Herbicide runoff			
Simazine	µg/L	4	4	ND	ND	0.059	0.059	ND	ND	Herbicide runoff			
Primary Standards for Distribution System	Units	Maximum Contaminant Level	Public Health Goal (MCLG)	Distribution System Average		Distribution System Range		Common Sources of Contamination in Drinking Water					
Microbiological Contaminant Samples													
Fecal Coliform Bacteria and E. Coli	% Tests Positive	0	0	0.00%		0	Naturally present in the environment.						
Disinfectant													
Free Chlorine Residual	mg/L	MRDL, 4.0		MRDLG, 4.0		0.88	0.20 - 2.14		Drinking water disinfectant added for treatment.				
Disinfection Byproducts (DBP)													
Total Trihalomethanes	µg/L	80	NA	Highest LRAA, 32.8		13 - 50	Byproduct of drinking water disinfection.						
Haloacetic Acids	µg/L	60	NA	Highest LRAA, 25.9		7 - 38	Byproduct of drinking water disinfection.						
Units	Maximum Contaminant Level	Public Health Goal (MCLG)	Jameson Lake Average	Jameson Lake Range	Cachuma Lake Average	Cachuma Lake Range	Common Sources of Contamination in Drinking Water						
Bromate	µg/L	10	NA	NA	NA	3.0	1.9 - 5.0	Byproduct of drinking water disinfection.					
Total Organic Carbon (DBP Precursor)	mg/L	TT	NA	1.1	0.4 - 1.9	1.69	1.29 - 2.22	Various natural and manmade sources. Total Organic Carbon (TOC) has no health effects. However, it provides a medium for the formation of disinfection byproducts.					
Lead and Copper Rule (2023)	Units	AL	PHG	Samples collected	Above AL	90th Percentile	Schools (range)	Schools tested in 2022 Common Sources of Contamination in Drinking Water					
Lead	µg/L	15	0.2	34	0	ND	ND	Internal corrosion of household water plumbing systems; discharges from industrial manufacturers; erosion of natural deposits.					
Copper	µg/L	1300	300	34	0	470	ND - 1580	Internal corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives.					
Lead and Copper Rule Every three years, a minimum of 30 residences are tested for lead and copper levels at the tap. The most recent set of 34 samples was collected in 2023. All of the samples were well below the regulatory action level (RAL). Copper was detected in 26 samples. The 90th percentile value was at 470 µg/L. Lead was not detected in any of the samples. The 90th percentile value was Non-Detect. If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Montecito Water District is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/lead .													
Secondary Standards	Units	Maximum Contaminant Level	Jameson Lake Average	Jameson Lake Range	Ground Water Average	Ground Water Range	Cachuma Lake Average	Cachuma Lake Range	Common Sources of Contamination in Drinking Water				
Aesthetic Standards													
Color	Units	15	ND	ND	ND	ND	4	ND - 5	Naturally-occurring organic materials.				
Chloride	mg/L	500	10	10	142	98 - 230	16	14.8 - 18	Runoff or leaching from natural deposits; seawater influence.				
Copper	mg/L	1	ND	ND	ND	ND	0.040	0.021 - 0.059	Internal corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives.				
Iron	µg/L	300	ND	ND	48	ND - 220	ND	ND - DNQ	Leaching from natural deposits; industrial wastes.				
Manganese	µg/L	50	ND	ND	9	ND - 90	ND	NA	Leaching from natural deposits.				
Threshold Odor at 60 degrees celcius	Units	3	ND	ND	ND	ND	8	8 - 8	Naturally-occurring organic materials.				
Specific Conductance	umhos/cm	1600	860	701 - 1109	1160	942 - 1280	956	838 - 1079	Substances that form ions in water; seawater influence.				
Sulfate	mg/L	500	188	188	170	130 - 235	302	232 - 360	Runoff or leaching from natural deposits; industrial wastes.				
Total Dissolved Solids	mg/L	1000	500	500	948	560 - 1930	659	568 - 760	Runoff or leaching from natural deposits.				
Zinc	mg/L	5	ND	ND	0.007	ND - 0.020	ND	ND	Runoff or leaching from natural deposits; industrial wastes.				

Montecito Water District's Water Quality Summary 2024

Secondary Standards	Units	Maximum Contaminant Level	Jameson Lake Average	Jameson Lake Range	Ground Water Average	Ground Water Range	Cachuma Lake Average	Cachuma Lake Range
Additional Constituents Analyzed								
pH	pH units	NS	7.80	6.90 - 8.30	6.89	6.76 - 7.25	7.56	7.32 - 7.83
Total Hardness	mg/L	NS	381	324 - 448	409	271 - 648	426	368 - 496
Total Alkalinity	mg/L	NS	207	176 - 248	217	188 - 252	191	164 - 255
Boron	ug/L	1 (AL)	ND	ND	0.2	ND - 0.6	0.38	0.37 - 0.39
Calcium	mg/L	NS	99	99	88	64 - 109	104	94.5 - 115
Magnesium	mg/L	NS	23	23	33	27 - 41	44	28 - 55
Sodium	mg/L	NS	25	25	95	60 - 149	51	40 - 57
Potassium	mg/L	NS	2	2	1.0	1.0	2.4	1.8 - 3.0
Uranium	ug/L	NS	NS	NA	NA	NA	0.68	NA
Vanadium	mg/L	NS	6	6	7.7	7.0 - 8.0	ND	ND

Unregulated Contaminant Monitoring Rule 5 (2024) (5 year reporting requirement)

	Units	Maximum Contaminant Level	Jameson Lake Average	Jameson Lake Range	Ground Water Average	Ground Water Range	Cachuma Lake Average	Cachuma Lake Range
Perfluorobutanoic acid (PFBA)	ug/L	NS	ND	ND	ND	ND	ND	ND
Perfluoropentanoic acid (PFPeA)	ug/L	NS	ND	ND	ND	ND	ND	ND
Perfluorohexanoic Acid (PFHxA)	ug/L	NS	ND	ND	ND	ND	ND	ND
Perfluoroheptanoic Acid (PFHpa)	ug/L	NS	ND	ND	ND	ND	ND	ND
Perfluorooctanoic Acid (PFOA)	ug/L	NS	ND	ND	ND	ND	ND	ND
Perfluorononanoic Acid (PFNA)	ug/L	NS	ND	ND	ND	ND	ND	ND
Perfluorodecanoic Acid (PFDA)	ug/L	NS	ND	ND	ND	ND	ND	ND
Perfluoroundecanoic Acid (PFUnA)	ug/L	NS	ND	ND	ND	ND	ND	ND
Perfluorododecanoic Acid (PFDoDA)	ug/L	NS	ND	ND	ND	ND	ND	ND
Perfluorobutane sulfonic acid (PFBS)	ug/L	NS	ND	ND	ND	ND	ND	ND
Perfluoropentanesulfonate (PFPeS)	ug/L	NS	ND	ND	ND	ND	ND	ND
Perfluorohexane sulfonic acid (PFHxS)	ug/L	NS	ND	ND	ND	ND	ND	ND
Perfluoroheptanesulfonic acid (PFHps)	ug/L	NS	ND	ND	ND	ND	ND	ND
Perfluoroctane sulfonic acid (PFOS)	ug/L	NS	ND	ND	ND	ND	ND	ND
4:2 Fluorotelomer Sulfonate ND 0.0030 ug/L	ug/L	NS	ND	ND	ND	ND	ND	ND
6:2 Fluorotelomer Sulfonate ND 0.0050 ug/L	ug/L	NS	ND	ND	ND	ND	ND	ND
8:2 Fluorotelomer Sulfonate ND 0.0050 ug/L	ug/L	NS	ND	ND	ND	ND	ND	ND
Hexafluoropropylene oxide dimer acid (HFPO-DA)	ug/L	NS	ND	ND	ND	ND	ND	ND
4,8-dioxa-3H-perfluorononanoic Acid (ADONA)	ug/L	NS	ND	ND	ND	ND	ND	ND
9-chlorohexadecafluoro-3-oxanon-1- sulfonic Acid	ug/L	NS	ND	ND	ND	ND	ND	ND
Nonfluoro-3,6-dioxaheptanoic acid (NFDA)	ug/L	NS	ND	ND	ND	ND	ND	ND
11-chloroeicosfluoro 3oxaundecane-1-sulfonic Acid	ug/L	NS	ND	ND	ND	ND	ND	ND
Perfluoro-4-methoxybutanoic acid (PFMBA)	ug/L	NS	ND	ND	ND	ND	ND	ND
Perfluoro-3-methoxypropanoic acid (PFMPA)	ug/L	NS	ND	ND	ND	ND	ND	ND
Perfluoro(2-ethoxyethane)sulfonic acid (PFEESA)	ug/L	NS	ND	ND	ND	ND	ND	ND
N-EtOSAA ND 0.0050 ug/L EPA 537	ug/L	NS	ND	ND	ND	ND	ND	ND
N-MeFOSAA ND 0.0060 ug/L EPA 537	ug/L	NS	ND	ND	ND	ND	ND	ND
Perfluorotridecanoic Acid (PFTrDA)	ug/L	NS	ND	ND	ND	ND	ND	ND
Perfluorotetradecanoic Acid (PFTeDA)	ug/L	NS	ND	ND	ND	ND	ND	ND
Lithium	ug/L	NS	32.6	29.0 - 38.0	30.9	20.0 - 42.0	22.7	ND - 42.5

Unregulated Contaminant Monitoring Rule 4 (2019-20) (5 year reporting requirement)

HAA5	ug/L	NS	32.87	23.98 - 44	NA	NA	13	ND - 32
HAA6Br	ug/L	NS	8.03	4.24 - 14.09	NA	NA	14	ND - 24
HAA9	ug/L	NS	39.95	32.57 - 48.94	NA	NA	24	ND - 51
Bromochloroacetic Acid	ug/L	NS	3.29	1.89 - 5.45	NA	NA	3.9	ND - 8.2
Bromodichloroacetic Acid	ug/L	NS	2.95	2.15 - 4.05	NA	NA	3.5	ND - 5.8
Chlorodibromoacetic Acid	ug/L	NS	0.85	0 - 1.9	NA	NA	2.2	ND - 3.3
Dibromoacetic Acid	ug/L	NS	0.71	0 - 1.9	NA	NA	2.3	ND - 4.2
Dichloroacetic Acid	ug/L	NS	12.34	7.75 - 20	NA	NA	6.0	ND - 16
Monobromoacetic Acid	ug/L	NS	0.24	0 - 0.8	NA	NA	2.3	ND - 4.9
Monochloroacetic Acid	ug/L	NS	1.17	ND - 1.6	NA	NA	2.3	ND - 4.9
Trichloroacetic Acid	ug/L	NS	18.41	10.75 - 26	NA	NA	4.2	ND - 12

People with Sensitive Immune Systems

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can

be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. U.S. EPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Drinking Water Hotline (1-800-426-4791).

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include:
Microbial contaminants, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.

Inorganic contaminants, such as salts and metals, that can be naturally-occurring or result from urban storm water runoff,

industrial or domestic wastewater discharges, oil and gas production, mining, or farming.

Pesticides and herbicides, that may come from a variety of sources such as agriculture, urban storm water runoff, and residential uses.

Organic chemical contaminants, including synthetic and volatile organic chemicals, that are by-products of industrial processes and petroleum production, and can also come from gas stations, urban storm water runoff, agricultural application, and septic systems.

Radioactive contaminants, that can be naturally-occurring or be the result of oil and gas production and mining activities.

Drinking Water Info

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the U.S. Environmental Protection Agency's (U.S. EPA's) Safe Drinking Water Hotline (1-800-426-4791).

In order to ensure that tap water is safe to drink, the U.S Environmental Protection Agency (USEPA) and the Division Of Drinking Water prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. U.S. Food and Drug Administration regulations and California law also establish limits for contaminants in bottled water that provide the same protection for public health.

Source Water Assessment: A comprehensive source water assessment of the District's drinking water sources was adopted in June 2021. A copy of this report is available for public inspection at the District Office.

Last year, as in years past, your tap water met all EPA and State drinking water health standards. Montecito Water District vigilantly safeguards its water supplies and once again we are proud to report that our system has never violated a maximum contaminant level or any other water quality standard. This brochure is a snapshot of last year's water quality. Included are details about where your water comes from, what it contains, and how it compares to State standards. We are committed to providing you information because informed customers are our best allies.

WATER QUALITY TERMINOLOGY

Maximum Contaminant Level (MCL): The highest level of a contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs (or MCLGs) as is economically and technologically feasible. Secondary MCLs are set to protect the odor, taste, and appearance of drinking water.

Maximum Contaminant Level Goal (MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the U.S. Environmental Protection Agency.

Public Health Goal (PHG): The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California Environmental Protection Agency.

Primary Drinking Water Standard (PDWS): MCLs and MRDLs for contaminants that affect health along with their monitoring and reporting requirements, and water treatment requirements.

Maximum Residual Disinfectant Level (MRDL): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Maximum Residual Disinfectant Level Goal (MRDLG): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

Action Level (AL): The concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow.

Treatment Technique (TT): A required process intended to reduce the level of a contaminant in drinking water.

mg/L: Milligrams per liter, or parts per million. 1 mg/L is equal to about one drop in 17 gallons of water.

µg/L: Micrograms per liter, or parts per billion. 1 µg/L is equal to about one drop in 17,000 gallons of water.

< : Less than.

NA: Not applicable. **ND:** Non-detected.

NS: No Standard. **DNQ:** Detected, not quantified.

pCi/L: Pico curies per liter, a measure of radiation.

umhos/cm: Micromhos per centimeter (an indicator of dissolved minerals in water).

NTU: Nephelometric turbidity unit.

LRAA: Locational Running Annual Average

For Water Softeners: MWD's surface water has a hardness range of 19 to 26 grains per gallon, while groundwater has a hardness range of 19 to 38 grains per gallon. One grain per gallon equals 17.1 mg/L.

Footnotes: The State allows us to monitor for some contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of our data, though representative, are more than one year old.

Surface water sources include the District's Jameson Lake and Lake Cachuma. The District's Paden Well No. 2, Ennisbrook Well No. 2 and T Mosby Well No. 2 were used as groundwater supply sources.

An average number of 54 coliform samples were collected each month at 12 District sampling stations in compliance with the Federal Revised Total Coliform Rule . All sample results were negative.

Turbidity is a measure of the cloudiness of the water. Montecito Water District monitors for it continuously because turbidity is a good indicator of water quality. High turbidity can hinder the effectiveness of disinfectants. 100% of the District's samples met the Turbidity Performance standard. The highest single surface water turbidity measurement during the year was 0.24 NTU.

WATER SOURCES 2024

Most water supplies are rainfall dependent, and become limited in times of drought. As the District looks to the future, it aims to increase its portfolio of local, reliable supplies.

RELIABLE SINCE 1921
www.montecitowater.com

Doulton Tunnel, a horizontal well, source of groundwater and conveyance from Jameson Lake.

Cachuma Project (Lake Cachuma), a federally owned surface water facility.

Jameson Lake, a District owned surface water facility.

Groundwater wells, source from the Montecito Groundwater Basin.

Conservation - Water efficiency.

State Water Project & Supplemental Water Purchase.

FACILITIES

The District's water source portfolio and array of facilities is highly diversified. The combination of its own assets and collaboration with many partners provides added resiliency.

Conservation — water supply that is attained through efficiency of use — is unique in that it is dependent on people rather than rainfall. The District will continue to look to its customers for their partnership in using water wisely.

2 Surface Water Treatment Plants

7 Pumping Stations

9 Storage Reservoirs

12 Groundwater Wells

114 (approximate) Miles of Pipeline

943 Fire Hydrants

Water Supplied by the City of Santa Barbara, secured by Charles E. Meyer Desalination facility.

For more information please contact **Chad Hurshman**, Water Treatment and Production Superintendent, at 805.969.7924

We encourage public participation.

For meeting times, agendas, and additional resources: www.montecitowater.com

Este informe contiene información muy importante sobre su agua potable. Tradúzcalo o hable con alguien que lo entienda bien. Para información en español llame al 805.969.2271.

BOARD OF DIRECTORS:

Ken Coates, President
Brian Goebel, Vice-President
Cori Hayman, Director
Tobe Plough, Director
Floyd Wicks, Director
Nick Turner, P.E.
General Manager & Board Secretary

CONSUMER CONFIDENCE REPORT 2024

WATER QUALITY CONTINUES TO MEET OR EXCEED STANDARDS

Montecito Water District is pleased to provide you with the Annual Drinking Water Consumer Confidence Report. This report explains where your water comes from, provides information on water quality and how it is measured, and presents the District's 2024 test results which show that drinking water met, or was better than, state and federal water quality standards.

The report is now available online to view or print.*

Visit montecitowater.com/doc/CCR2024 or scan the QR code

*As part of our efforts to reduce costs and minimize environmental impacts, we now deliver reports electronically. If you would like to receive a printed copy of the report, please email info@montecitowater.com, call us at 805-969-2271, or visit the District office at 583 San Ysidro Road, Santa Barbara, CA 93108.

ATTENTION LANDLORDS, BUSINESSES, SCHOOLS & OTHER GROUPS:

Please share this information with tenants, students, and other water users who may not be customers receiving communications directly from Montecito Water District.

Este informe contiene información muy importante sobre su agua potable. Tradúzcalo o hable con alguien que lo entienda bien. Para información en español llame al 805.969.2271.

Bill message

Included on printed bill

GREAT NEWS! The Annual Drinking Water Consumer Confidence Report is now available online at www.montecitowater.com/doc/CCR2024 and shows that water quality meets or exceeds all State and Federal standards. Find more information on the enclosed flyer.

Included on emailed bills

HTML

GREAT NEWS! The Annual Drinking Water Consumer Confidence Report is now available online at www.montecitowater.com/doc/CCR2024 and shows that water quality meets or exceeds all State and Federal standards. Find more information on the enclosed flyer.

From: Montecito Water District <info@montecitowater.com>
Sent: Tuesday, June 3, 2025 1:09 PM
To:
Subject: IMPORTANT MESSAGE! Your Annual Consumer Confidence Report (2024) is Now Available

Annual Drinking Water Consumer Confidence Report (2024)
Now Available Online at
www.montecitowater.com/doc/CCR2024

Dear Montecito Water District Customer,

Montecito Water District is pleased to provide you with the Annual Drinking Water Consumer Confidence Report. This report explains where your water comes from, provides information on water quality and how it is measured, and presents the District's 2024 test results which show that drinking water met, or was better than, state and federal water quality standards.

We encourage you to view the report and learn more about your drinking water by visiting: www.montecitowater.com/doc/CCR2024

To view the report on your computer you must have Adobe Acrobat Reader installed.

We now deliver the annual report electronically rather than by mail to reduce costs and environmental impacts. If you would like to receive a

printed version, please reply to this email info@montecitowater.com with your mailing address, or call us at [805-969-2271](tel:805-969-2271) with your request.

Estimada Cliente,

El Reporte Anual de Calidad de agua del 2024 ya esta disponible.

Por favor visite www.montecitowater.com/doc/CCR2024 para que revise El Reporte Anual de Calidad de agua y aprende información importante acerca de su agua potable. Para acceder a esta página debe tener Adobe Acrobat Reader instalado en su computadora.

Este reporte contiene información importante sobre el origen y la calidad de su agua potable. Si usted desea una copia por escrito del Reporte Anual de Calidad de agua 2024 por correo, por favor llame al [805.969.2271](tel:805.969.2271) o por correo electronico escriba á info@montecitowater.com.

Este informe contiene información muy importante sobre su agua potable. Tradúzcalo o hable con alguien que lo entienda bien.

**Attention landlords, businesses, schools and other groups:
Please share this information with tenants, students, and other water
users at your location who may not be customers receiving
communications directly from Montecito Water District.**

Annual Water Quality Report

Great News! As in prior years, the District confirms that it meets or exceeds water quality standards in the Annual Consumer Confidence Report.

[View Current Report »](#)

FOLLOW US

Questions? Contact us
phone: 1.805.969.2271 • email: info@montecitowater.com

BOARD OF DIRECTORS:

Kenneth Coates, President | Brian Goebel, Vice President
Cori Hayman, Director | Tobe Plough, Director | Floyd Wicks, Director
General Manager and Board Secretary: Nick Turner

[Unsubscribe](#)

This message was sent to xxx from info@montecitowater.com

Montecito Water District
583 San Ysidro Road
Montecito, CA 93108

The iContact logo features the word "iContact" in a lowercase, sans-serif font. The "i" is stylized with a curved line above it. A registered trademark symbol (®) is positioned at the top right of the "t". Below the main text, the tagline "Engage, WOW, and grow your audience" is written in a smaller, all-caps font.

WATER QUALITY CONTINUES TO MEET OR EXCEED STANDARDS!

2024 Annual Drinking Water Consumer Confidence Report*
now available online at:
montecitowater.com/doc/CCR2024

Attention landlords, businesses, schools & other groups:
Please share this information with tenants, students, and other water users who may not be customers receiving communications directly from Montecito Water District.

*This report explains where your water comes from, provides information on water quality and how it is measured, and presents the District's 2024 test results which show that drinking water met, or was better than, state and federal water quality standards. To receive a printed version please email info@montecitowater.com or call us at 805.969.2271.

Sign up for e-news:
www.montecitowater.com | [f](#) [t](#)

BUILDING FINE HOMES
IN SANTA BARBARA SINCE 1989

NEW HOMES, ADDITIONS & REMODELS

LYNCH CONSTRUCTION, INC.

P.O. BOX 20183 SANTA BARBARA, CA 93120
805-451-3459 | BLYNCHCONSTRUCTION@GMAIL.COM
WWW.LYNCHCONSTRUCTIONS.B.COM | LICENSE #596612

WATER QUALITY CONTINUES TO MEET OR EXCEED STANDARDS!

2024 Annual Drinking Water Consumer Confidence Report*
now available online at:
montecitowater.com/doc/CCR2024

Attention landlords, businesses, schools & other groups:
Please share this information with tenants, students, and other water users who may not be customers receiving communications directly from Montecito Water District.

*This report explains where your water comes from, provides information on water quality and how it is measured, and presents the District's 2024 test results which show that drinking water met, or was better than, state and federal water quality standards. To receive a printed version please email info@montecitowater.com or call us at 805.969.2271.

Sign up for eNews:
www.montecitowater.com | [f](#) [t](#)

Our Town

Annual Graduation Coverage Week 2:

The Laguna Blanca Lower School 4th grade 2025 graduates with their instructors Susanne Richter and Ademola Oyewole-Davis (photo by Joanne A Calitri)

by Joanne A Calitri

Laguna Blanca Lower School

The Laguna Blanca Lower School 2025 Graduation, "Go Owls!" was held on Friday, June 6 at 9am, outside at the Lower Campus Pavilion. The graduates processed in to "Little Prelude in E minor" by Bach and took their places on bleachers in the front facing their families and friends seated in the lawn sports field area.

In attendance from the school were Head of the Lower School and Laguna Blanca alumni **Brooke Green**, Head of Laguna Blanca School **Ron Cino**, Fourth Grade instructors **Susanne Richter** and **Ademola Oyewole-Davis**, and the ever together cornerstone of the school, **Darla McDavid**, Assistant to the Head of Lower School for over 25 years.

Green welcomed the guests and provided her commencement remarks for the graduates, "I am incredibly proud of this graduating class of fourth graders. Together, they form a vibrant community of unique individuals, each bringing their own special gifts to the Lower School. As student council members, they led three impactful service initiatives this year: a Warm Blanket Drive supporting our local unhoused community, a clothing and goods drive for victims of the L.A. fires, and a Food Drive benefiting the Santa Barbara Food Bank. Beyond their outreach efforts, they stepped up as leaders within our school, championing social-emotional learning by organizing cross-grade games during

recess and sharing thoughtful messages of kindness and fairness at our assemblies. A particularly memorable moment this year was the Citizenship Breakfast, where each fourth grader hosted and honored a special guest. What stood out during this event was their poise and confidence in public speaking, as well as their comfort in engaging meaningfully with the adults they honored. Their speeches reflected not only gratitude, but also a deep sense of connection to the broader community beyond our school walls. This remarkable group of students has demonstrated a true passion for helping others, grounded in empathy and responsibility. I look forward to seeing how their compassion and leadership will continue to grow as they transition to Middle School and beyond. Congratulations to our graduating fourth grade class!"

The program included the grads singing their class songs, "Count on Me" and "High Hopes." Then Richter read the traditional "candy" vignettes about each student, where she relates each student's qualities to a particular candy bar – think Junior Mints. While reading the script she wrote for one of the students, "To the AlphGens, I've been waiting all year to say this, you slay!"

Richter, Green, and Cino awarded each student their diploma as the Presentation of Certificates, along with the school's owl necklace and a gerbera daisy. Each student presented their gerbera daisy to their parents and processed back to the stage area.

After Green declared the students graduated, it was time for photo ops.

Our Town Page 25 ▶

SOCIAL MEDIA

 Montecito Water District
2m -

2024 Annual Consumer Confidence Report Available Now online at
www.montecitowater.com/doc/CCR2024

MONTECITO
WATER DISTRICT
A Reliable Supply Since 1921

WATER QUALITY CONTINUES TO MEET OR EXCEED STANDARDS!

2024 Annual Drinking Water Consumer Confidence Report* now available online at: montecitowater.com/doc/CCR2024

Attention landlords, businesses, schools & other groups:
Please share this information with tenants, students, and other water users who may not be customers receiving communications directly from Montecito Water District.

*This report explains where your water comes from, provides information on water quality and how it is measured, and presents the District's 2024 test results which show that drinking water met, or was better than, state and federal water quality standards. To receive a printed version please email info@montecitowater.com or call us at 805.969.2271.

Sign up for e-news:
www.montecitowater.com |

 Like Comment

Montecito Water District Posts 2024 Consumer Confidence Report

SOURCE: MONTECITO WATER DISTRICT

June 3, 2025 | 2:22 pm

Montecito Water District has published its Annual Drinking Water Consumer Confidence Report for 2024, and customers can view it online.

The report explains where residents' water comes from; provides information on water quality and how it is measured; and presents the district's 2024 test results, which show that drinking water met, or was better than, state and federal water quality standards.

Montecito Water customers can view the report online and learn more about their drinking water at www.montecitowater.com/doc/CCR2024. (To view the report on a computer, it is necessary to have Adobe Acrobat Reader installed.)

The Water District now delivers the annual report electronically rather than by mail to reduce costs and environmental impacts.

To receive a printed version, email info@montecitowater.com with your mailing address, or call 805-969-2271 to make a request.

ELECTRONIC COMMUNITY NEWSLETTER (Montecito Association)

Important and Timely Community Updates

Montecito Association <execdirector@montecitoassociation.org>

This email was sent from montecitoassociation.org from [attribute your organization](#).
If there are members with host this message if displayed, [click here to view it in a web browser](#).

Annual Drinking Water

Consumer Confidence Report (2024)

Montecito Water District is pleased to provide you with the Annual Drinking Water Consumer Confidence Report. This report explains where your water comes from, provides information on water quality and how it is measured, and presents the District's 2024 test results which show that drinking water met, or was better than, state and federal water quality standards.

You are encouraged to view the report and learn more about your drinking water by visiting: www.montecitowater.com/doc/ccr2024

To view the report on your computer you must have Adobe Acrobat Reader installed.

The annual report is now delivered electronically rather than by mail to reduce costs and environmental impacts. If you would like to receive a printed version, please email info@montecitowater.com with your mailing address, or call Montecito Water at [805-969-2271](tel:805-969-2271) with your request.

Montecito Water District CCR 2024 Cert Form Attachments:

- Page 1-3 Cert Form
- Page 4-7 CCR
- Page 8 Bill Insert (mailed / emailed with all invoices)
- Page 9 Bill message (included on all invoices)
- Page 10-12 Email Notification
- Page 13-14 Press Placement / Advertisement
- Page 15 Social Media Placement
- Page 16 Newspaper article
- Page 17 Community electronic newsletter