Consumer Confidence Report Certification Form

(to be submitted with a copy of the CCR)

(to certify electronic delivery of the CCR, use the certification form on the State Water Board's website at <u>http://www.swrcb.ca.gov/drinking_water/certlic/drinkingwater/CCR.shtml</u>)

Water System Name:	EXXON, LAS FLORES CYN PROJECT
Water System Number:	CA4200743

The water system named above hereby certifies that its Consumer Confidence Report was distributed on

(date) to customers (and appropriate notices of availability have been given). Further, the system certifies that the information contained in the report is correct and consistent with the compliance monitoring data previously submitted to the State Water Resources Control Board, Division of Drinking Water.

Certified By:	Name:	Steve Shively	
	Signature:		
	Title:	Enviromental Advisor	
	Phone Number:	(805) 567-9515	Date: 4/28/2024

To summarize report delivery used and good-faith efforts taken, please complete the form below by checking all items that apply and fill-in where appropriate:

CCR was distributed by mail or other direct delivery methods. Specify other direct delivery methods used:

2023 Consumer Confidence Report

Water System Name: EXXON, LAS FLORES CYN PROJECT

April 2024 Report Date:

We test the drinking water quality for many constituents as required by state and federal regulations. This report shows the results of our monitoring for the period of January 1 - December 31, 2023.

Este informe contiene información muy importante sobre su agua potable. Tradúzcalo ó hable con alguien que lo entienda bien.

Type of water source(s) in use: According to SWRCB records, this Source is Groundwater. This Assessment was done using the Default Groundwater System Method.

Your water comes from 3 source(s): WELL 3P, WELL 7P and WELL11P

Opportunities for public participation in decisions that affect drinking water guality: Regularly-scheduled water board or city/county council meetings currently are not held.

For more information about this report, or any questions relating to your drinking water, please call 805-567-9515 and ask for Steve Shively or email sshively@sableoffshore.com.

TERMS USED IN THIS REPORT

Maximum Contaminant Level (MCL): The highest level of contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs (or MCLGs) as is economically feasible. Secondary MCLs are set to protect the odor, taste, and appearance of drinking water.

Maximum Contaminant Level Goal (MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the U.S. Environmental Protection Agency (USEPA).

Public Health Goal (PHG): The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California Environmental Protection Agency.

Maximum Residual Disinfectant Level (MRDL): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Maximum Residual Disinfectant Level Goal (MRDLG): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

Primary Drinking Water Standards (PDWS): MCLs and MRDLs for the contaminants that affect health along with their monitoring and reporting requirements, and water treatment requirements.

Secondary Drinking Water Standards (SDWS): MCLs for the contaminants that affect taste, odor, or appearance of the drinking water. Contaminants with SDWSs do not affect the health at the MCL levels

Treatment Technique (TT): A required process intended to reduce the level of a contaminant in drinking water.

Regulatory Action Level (AL): The concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow.

Level 1 Assessment: A Level 1 assessment is a study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system.

Level 2 Assessment: A Level 2 assessment is a very detailed study of the water system to identify potential problems and determine (if possible) why an E. coli MCL violation has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions.

ND: not detectable at testing limit

mg/L: milligrams per liter or parts per million (ppm)

ug/L: micrograms per liter or parts per billion (ppb)

pCi/L: picocuries per liter (a measure of radiation)

NTU: Nephelometric Turbidity Units

umhos/cm: micro mhos per centimeter

The sources of drinking water: (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include:

- *Microbial contaminants,* such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- *Inorganic contaminants,* such as salts and metals, that can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- *Pesticides and herbicides,* that may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses.
- Organic chemical contaminants, including synthetic and volatile organic chemicals, that are by-products if industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, agricultural application, and septic systems.
- *Radioactive contaminants,* that can be naturally-occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, the USEPA and the State Water Resource Control Board (State Water Board) prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. State Water Board regulations also establish limits for contaminants in bottled water that provide the same protection for public health.

Tables 1, 2, 3, 4, 5, 6, 7 and 8 list all of the drinking water contaminants that were detected during the most recent sampling for the constituent. The presence of these contaminants in the water does not necessarily indicate that the water poses a health risk. The State Water Board allows us to monitor for certain contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of the data, though representative of the water quality, are more than one year old.

Any violation of MCL, AL or MRDL is highlighted. Additional information regarding the violation is provided later in this report.

Table 1 - SAMPLING RESULTS SHOWING THE DETECTION OF COLIFORM BACTERIA									
licrobiological ontaminants omplete if bacteria detected)Highest No. of Detections		No. of Months in Violation	MCL	MCLG	Typical Sources of Contaminant				
Total Coliform Bacteria	2/year (2023)	0	no more than 1 positive monthly sample		Naturally present in the environment.				

Table 2 - SAMPLING RESULTS SHOWING THE DETECTION OF LEAD AND COPPER										
Lead and Copper (complete if lead or copper detected in last sample set)	Sample Date	No. of Samples	90th percentile level detected	No. Sites Exceeding AL	AL	PHG	Typical Sources of Contaminant			
Copper (mg/L)	(2020)	5	0.10	0	1.3	.3	Internal corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives			

	Table 3 - SAMPLING RESULTS FOR SODIUM AND HARDNESS										
Chemical or Constituent (and reporting units)	Sample Date	Average Level Detected	Range of Detections	MCL	PHG (MCLG)	Typical Sources of Contaminant					
Sodium (mg/L)	(2017 - 2019)	55	24 - 97	none		Salt present in the water and is generally naturally occurring					
Hardness (mg/L)	(2017 - 2019)	380	233 - 509	none	none	Sum of polyvalent cations present in the water, generally magnesium and calcium, and are usually naturally occurring					

Table 4 - DETECTION OF CONTAMINANTS WITH A PRIMARY DRINKING WATER STANDARD										
Chemical or Constituent (and reporting units)	Sample Date	Average Level Detected	Range of Detections	MCL [MRDL]		Typical Sources of Contaminant				
Fluoride (mg/L)	(2019 - 2022)	0.3	0.2 - 0.4	2	1	Erosion of natural deposits; water additive that promotes strong teeth; discharge from fertilizer and aluminum factories.				
Gross Alpha (pCi/L)	(2023)	1.45	1.24 - 1.66	15	(0)	Erosion of natural deposits.				

Table 5 - DETE	Table 5 - DETECTION OF CONTAMINANTS WITH A <u>SECONDARY</u> DRINKING WATER STANDARD											
Chemical or Constituent (and reporting units)	Sample Date	Average Level Detected	Range of Detections	MCL	PHG (MCLG)	Typical Sources of Contaminant						
Chloride (mg/L)	(2017 - 2019)	32	19 - 45	500	n/a	Runoff/leaching from natural deposits; seawater influence						
Iron (ug/L)	(2017 - 2019)	986	ND - 4700	300	n/a	Leaching from natural deposits; Industrial wastes						
Manganese (ug/L)	(2017 - 2019)	37	10 - 80	50	n/a	Leaching from natural deposits						
Odor Threshold at 60 °C (TON)	(2017 - 2019)	1	ND - 2	3	n/a	Naturally-occurring organic materials.						
Specific Conductance (umhos/cm)	(2017 - 2019)	935	535 - 1330	1600	n/a	Substances that form ions when in water; seawater influence						
Sulfate (mg/L)	(2017 - 2019)	253	100 - 404	500	n/a	Runoff/leaching from natural deposits; industrial wastes						
Total Dissolved Solids (mg/L)	(2017 - 2019)	653	360 - 930	1000	n/a	Runoff/leaching from natural deposits						
Turbidity (NTU)	(2017 - 2019)	9.1	0.2 - 25.5	5	n/a	Soil runoff						
Zinc (mg/L)	(2017 - 2019)	2.59	ND - 7.77	5	n/a	Runoff/leaching from natural deposits						

Table 6 - DETECTION OF UNREGULATED CONTAMINANTS										
Chemical or Constituent (and reporting units)	Sample Date	Average Level Detected	Range of Detections	Notification Level	Typical Sources of Contaminant					
Boron (mg/L)	(2017 - 2019)	ND	ND - 0.1	1	Boron exposures resulted in decreased fetal weight (developmental effects) in newborn rats.					
Strontium (ug/L)	(2019)	2430	250 - 4610	n/a	n/a					

Table 7 - ADDITIONAL DETECTIONS											
Chemical or Constituent (and reporting units)	Sample Date	Average Level Detected	Range of Detections		Typical Sources of Contaminant						
Calcium (mg/L)	(2017 - 2019)	119	85 - 146	n/a	n/a						
Magnesium (mg/L)	(2017 - 2019)	20	5 - 48	n/a	n/a						
pH (units)	(2017)	7.3	7.2 - 7.4	n/a	n/a						
Alkalinity (mg/L)	(2017)	233	180 - 270	n/a	n/a						
Aggressiveness Index	(2017)	12.1	11.9 - 12.2	n/a	n/a						
Langelier Index	(2017)	0.23	0.03 - 0.3	n/a	n/a						

Table 8 - DETECTION OF DISINFECTANT/DISINFECTANT BYPRODUCT RULE									
Chemical or Constituent (and reporting units)	Sample Date	Average Level Detected	Range of Detections	MCL (MRDL)	PHG (MCLG)	Violation	Typical Sources of Contaminant		
Total Trihalomethanes (TTHMs) (ug/L)	(2023)	2	n/a	80	n/a		By-product of drinking water disinfection		

Haloacetic Acids (five) (ug/L)	(2023)	2	n/a	60	n/a	No	By-product of drinking water disinfection
-----------------------------------	--------	---	-----	----	-----	----	---

Additional General Information on Drinking Water

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts if some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the USEPA's Safe Drinking Water Hotline (1-800-426-4791).

Some people may be more vulnerable to contaminants in drinking water than the general population. Immunocompromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. USEPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* and other microbial contaminants are available from the Safe Drinking Water Hotline (1-800-426-4791).

Lead Specific Language for Community Water Systems: If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with the service lines and home plumbing. *ExxonMobil* is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/lead.

Summary Information for Violation of a MCL, MRDL, AL, TT, or Monitoring and Reporting Requirement

VIOLATION C	OF A MCL,MRDL,AL,TT, OR N	MONITORING A	AND REPORTING	REQUIREMENT
Violation	Explanation	Duration	Actions Taken To Correct the Violation	Health Effects Language
Total Coliform Bacteria				Coliforms are bacteria that are naturally present in the environment and are used as an indicator that other, potentially harmful, waterborne pathogens may be present or that a potential pathway exists through which contamination may enter the drinking water distribution system. We found coliforms indicating the need to look for potential problems in water treatment or distribution. When this occurs, we are required to conduct assessment(s) to identify problems and to correct any problems that were found during these assessments.

Iron		Iron was found at levels that exceed the secondary MCL. The Iron MCL was set to protect you against unpleasant aesthetic affects such as color, taste, odor and the staining of plumbing fixtures (e.g., tubs and sinks), and clothing while washing. Violating this MCL does not pose a risk to public health.
Manganese		Manganese exposures resulted in neurological effects. High levels of manganese in people have been shown to result in adverse effects to the nervous system.
Turbidity		Turbidity is Secondary Drinking Water Standards and has found no health effects. However, high levels of turbidity can interfere with disinfection and provide a medium for microbial growth. Turbidity may indicate the presence of disease-causing organisms. These organisms include bacteria, viruses, and parasites that can cause symptoms such as nausea, cramps, diarrhea and associated headaches.
Zinc		Zinc was found at levels that exceed the secondary MCL. The Zinc MCL was set to protect you against unpleasant aesthetic affects such as color, taste, odor and the staining of plumbing fixtures (e.g., tubs and sinks), and clothing while washing. Violating this MCL does not pose a risk to public health.

2023 Consumer Confidence Report

Drinking Water Assessment Information

Assessment Information

A Source Water Assessment was conducted for WELL 03P, WELL 07P, and WELL 11P of the EXXON LAS FLORES CYN PROJECT water system in August, 2002

- WELL 3P is not considered vulnerable to any potentially contaminating activities at this time.
- WELL 7P $\,$ is considered most vulnerable to the following activities not associated with any detected contaminants: Wells Water supply
- WELL11P is not considered vulnerable to any potentially contaminating activities at this time.

Discussion of Vulnerability

There have been no other contaminants detected in the water supply, however the source is still considered vulnerable

to activities located near the drinking water source.

Assessment summaries are not available for some sources. This is because:

The Assessment has not been completed. Contact the local Department of Health Services (DHS) Drinking Water field office or the water system to find out when the Assessment is scheduled to be done.

□ The source is not active. It may be out of service, or new and not yet in service.

[] The Assessment was not submitted electronically. The site used to obtain Assessments only provides access to Assessment summaries submitted electronically.

Acquiring Information

A copy of the complete assessment may be viewed at: Environmental Health Services 123 E. Anapamu St. Santa Barbara, CA 93101

You may request a summary of the assessment be sent to you by contacting: Katie Nall Planner Office: 805-884-8050 nallk@countyofsb.org

ExxonMobil Analytical Results By FGL - 2023

		MICROB	IOLOGIC	AL CONTAM	IINANT	S			
		Units	MCLG	CA-MCL	PHG	Sampled	Result	Avg. Result(a)	Range (b)
Total Coliform Bacteria			0	5%	n/a			0	-
LFC-2nd Floor Admin (Kitchen S	SP 2303300-4					2023-03-07	<1		
LFC-Bld A Kitchen Sink	SP 2308370-2					2023-05-22	<1		
LFC-Building A Kitchen Sink	SP 2320211-1					2023-12-07	Absent		
LFC-Building A Kitchen Sink	SP 2318498-1					2023-11-03	Absent		
LFC-Building A Kitchen Sink	SP 2317328-1					2023-10-12	Absent		
LFC-Building A Kitchen Sink	SP 2315430-1					2023-09-12	Absent		
LFC-Building A Kitchen Sink	SP 2313677-1					2023-08-10	Absent		
LFC-Building A Kitchen Sink	SP 2312242-1					2023-07-18	Absent		
LFC-Building A Kitchen Sink	SP 2309521-1					2023-06-08	Absent		
LFC-Building A Kitchen Sink	SP 2308117-1					2023-05-17	Present		
LFC-Building A Kitchen Sink	SP 2305066-1					2023-04-06	Absent		
LFC-Building A Kitchen Sink	SP 2303131-1					2023-03-03	Absent		
LFC-Building A Kitchen Sink	SP 2301555-1					2023-02-01	Absent		
LFC-Building A Kitchen Sink	SP 2300886-1					2023-01-19	Absent		
LFC-Building B Kitchen Sink	SP 2308370-3					2023-05-22	<1		
LFC-Hosebib at Water Filter	SP 2308370-4					2023-05-22	<1		
LFC-Kitchen Sink	SP 2320212-1					2023-12-07	Absent		
LFC-Kitchen Sink	SP 2318497-1					2023-11-03	Absent		
LFC-Kitchen Sink	SP 2317330-1					2023-10-12	Absent		
LFC-Kitchen Sink	SP 2315428-1					2023-09-12	Absent		
LFC-Kitchen Sink	SP 2314715-1					2023-08-29	<1		
LFC-Kitchen Sink	SP 2313676-1					2023-08-10	Absent		
LFC-Kitchen Sink	SP 2312244-1					2023-07-18	Absent		
LFC-Kitchen Sink	SP 2310018-1					2023-06-14	Absent		
LFC-Kitchen Sink	SP 2309522-1					2023-06-08	Absent		
LFC-Kitchen Sink	SP 2308120-1					2023-05-17	Absent		
LFC-Kitchen Sink	SP 2305060-1					2023-04-06	Absent		
LFC-Kitchen Sink	SP 2303300-3					2023-03-07	<1		
LFC-Kitchen Sink	SP 2303132-1					2023-03-03	Present		
LFC-Kitchen Sink	SP 2302839-1					2023-02-27	Absent		
LFC-Kitchen Sink	SP 2301554-1					2023-02-01	Absent		
LFC-Kitchen Sink	SP 2300887-1					2023-01-19	Absent		
LFC-Men`s Restroom	SP 2303300-2					2023-03-07	<1		
Well #3P Hose Bibb	SP 2320213-1					2023-12-07	<1		
Well #3P Hose Bibb	SP 2315432-1					2023-09-12	<1		
Well #3P Hose Bibb	SP 2309524-1					2023-06-08	<1		
Well #3P Hose Bibb	SP 2303115-1					2023-03-03	<1		
Well 11-P	SP 2315433-2					2023-09-12	<1		
Well 11-P	SP 2312246-2				1	2023-07-18	<1		
Well 3	SP 2308370-1					2023-05-22	<1		
Well 7	SP 2303300-1					2023-03-07	<1		
Well 8P-2	SP 2315433-1	1	1		1	2023-09-12	<1		
Well 8P-2	SP 2312246-1					2023-07-18	<1		

LEAD AND COPPER RULE											
		Units	MCLG	CA-MCL	PHG	Sampled	Result	90th Percentile	# Samples		
Copper		mg/L		1.3	.3			0.095	5		
LFC-1st Floor Laundry	SP 2008539-3	mg/L				2020-06-27	0.10				
LFC-1st Floor Mens Room	SP 2008539-1	mg/L				2020-06-27	0.07				
LFC-2nd Floor Mens Room	SP 2008539-2	mg/L				2020-06-27	0.09				
LFC-2nd Floor Sink	SP 2008539-5	mg/L				2020-06-27	0.08				

LFC-Lunch Room West Sink	SP 2008539-4	mg/L		2020-06-27	0.08	

	SAMPLI	NG RESU	ULTS FOR	SODIUM A	ND HAI	RDNESS			
		Units	MCLG	CA-MCL	PHG	Sampled	Result	Avg. Result(a)	Range (b)
Sodium		mg/L		none	none			55	24 - 97
WELL 3P	SP 1909754-2	mg/L				2019-07-24	24		
WELL 7P	SP 1701134-2	mg/L				2017-01-26	44		
WELL11P	SP 1909754-1	mg/L				2019-07-24	97		
Hardness		mg/L		none	none			380	233 - 509
WELL 3P	SP 1909754-2	mg/L				2019-07-24	233		
WELL 7P	SP 1701134-2	mg/L				2017-01-26	397		
WELL11P	SP 1909754-1	mg/L				2019-07-24	509		

	PRIMA	RY DRIN	KING WA	TER STANI	DARDS (PDWS)			
		Units	MCLG	CA-MCL	PHG	Sampled	Result	Avg. Result(a)	Range (b)
Fluoride		mg/L		2	1			0.3	0.2 - 0.4
WELL 3P	SP 2208317-1	mg/L				2022-05-17	0.3		
WELL 7P	SP 2208317-2	mg/L				2022-05-17	0.2		
WELL11P	SP 1909754-1	mg/L				2019-07-24	0.4		
Gross Alpha		pCi/L		15	(0)			1.45	1.24 - 1.66
WELL 3P	SP 2308118-1	pCi/L				2023-05-17	1.24		
WELL 7P	SP 2308118-2	pCi/L				2023-05-17	1.66		

	SECONI	DARY DRINK	KING WA	TER STANI	DARDS	(SDWS)			
		Units	MCLG	CA-MCL	PHG	Sampled	Result	Avg. Result(a)	Range (b)
Chloride		mg/L		500	n/a			32	19 - 45
WELL 3P	SP 1909754-2	mg/L				2019-07-24	19		
WELL 7P	SP 1701134-2	mg/L				2017-01-26	33		
WELL11P	SP 1909754-1	mg/L				2019-07-24	45		
Iron		ug/L		300	n/a			986	ND - 4700
WELL 3P	SP 1909754-2	ug/L				2019-07-24	40		
WELL 3P	SP 1909754-2	ug/L				2019-07-24	ND		
WELL 7P	SP 1701134-2	ug/L				2017-01-26	190		
WELL11P	SP 1909754-1	ug/L				2019-07-24	4700		
WELL11P	SP 1909754-1	ug/L				2019-07-24	ND		
Manganese	-	ug/L		50	n/a			37	10 - 80
WELL 3P	SP 1909754-2	ug/L				2019-07-24	10		
WELL 7P	SP 1701134-2	ug/L				2017-01-26	20		
WELL11P	SP 1909754-1	ug/L				2019-07-24	80		
Odor Threshold at 60 °C		TON		3	n/a			1	ND - 2
WELL 3P	SP 1909754-2	TON				2019-07-24	ND		
WELL 7P	SP 1701134-2	TON				2017-01-26	ND		
WELL11P	SP 1909754-1	TON				2019-07-24	2		
Specific Conductance	•	umhos/cm		1600	n/a			935	535 - 1330
WELL 3P	SP 1909754-2	umhos/cm				2019-07-24	535		
WELL 7P	SP 1701134-2	umhos/cm				2017-01-26	939		
WELL11P	SP 1909754-1	umhos/cm				2019-07-24	1330		
Sulfate	•	mg/L		500	n/a			253	100 - 404
WELL 3P	SP 1909754-2	mg/L				2019-07-24	100		
WELL 7P	SP 1701134-2	mg/L				2017-01-26	255		
WELL11P	SP 1909754-1	mg/L				2019-07-24	404		
Total Dissolved Solids		mg/L		1000	n/a			653	360 - 930
WELL 3P	SP 1909754-2	mg/L				2019-07-24	360		
WELL 7P	SP 1701134-2	mg/L				2017-01-26	670		
WELL11P	SP 1909754-1	mg/L				2019-07-24	930		
Turbidity	•	NTU		5	n/a			9.1	0.2 - 25.5

WELL 3P	SP 1909754-2	NTU			2019-07-24	0.2		
WELL 7P	SP 1701134-2	NTU			2017-01-26	1.5		
WELL11P	SP 1909754-1	NTU			2019-07-24	25.5		
Zinc		mg/L	5	n/a			2.59	ND - 7.77
WELL 3P	SP 1909754-2	mg/L			2019-07-24	ND		
WELL 7P	SP 1701134-2	mg/L			2017-01-26	7.77		
WELL11P	SP 1909754-1	mg/L			2019-07-24	ND		

		UNREG	ULATED	CONTAMIN	IANTS		UNREGULATED CONTAMINANTS										
		Units	MCLG	CA-MCL	PHG	Sampled	Result	Avg. Result(a)	Range (b)								
Boron		mg/L		NS	n/a			ND	ND - 0.1								
WELL 3P	SP 1909754-2	mg/L				2019-07-24	ND										
WELL 7P	SP 1701134-2	mg/L				2017-01-26	ND										
WELL11P	SP 1909754-1	mg/L				2019-07-24	0.1										
Strontium		ug/L		NS	n/a			2430	250 - 4610								
WELL 3P	SP 1909754-2	ug/L				2019-07-24	250										
WELL11P	SP 1909754-1	ug/L				2019-07-24	4610										

		ADI	DITIONAL	DETECTIO	NS				
		Units	MCLG	CA-MCL	PHG	Sampled	Result	Avg. Result(a)	Range (b)
Calcium		mg/L			n/a			119	85 - 146
WELL 3P	SP 1909754-2	mg/L				2019-07-24	85		
WELL 7P	SP 1701134-2	mg/L				2017-01-26	146		
WELL11P	SP 1909754-1	mg/L				2019-07-24	125		
Magnesium	-	mg/L			n/a			20	5 - 48
WELL 3P	SP 1909754-2	mg/L				2019-07-24	5		
WELL 7P	SP 1701134-2	mg/L				2017-01-26	8		
WELL11P	SP 1909754-1	mg/L				2019-07-24	48		
pH	-	units			n/a			7.3	7.2 - 7.4
WELL 3P	SP 1701134-1	units				2017-01-26	7.2		
WELL 7P	SP 1701134-2	units				2017-01-26	7.3		
WELL11P	SP 1707049-5	units				2017-06-12	7.3		
WELL11P	SP 1701134-4	units				2017-01-26	7.4		
Alkalinity	•	mg/L			n/a			233	180 - 270
WELL 3P	SP 1701134-1	mg/L				2017-01-26	180		
WELL 7P	SP 1701134-2	mg/L				2017-01-26	210		
WELL11P	SP 1707049-5	mg/L				2017-06-12	270		
WELL11P	SP 1701134-4	mg/L				2017-01-26	270		
Aggressiveness Index					n/a			12.1	11.9 - 12.2
WELL 3P	SP 1701134-1					2017-01-26	11.9		
WELL 7P	SP 1701134-2					2017-01-26	12.2		
WELL11P	SP 1707049-5					2017-06-12	12.2		
WELL11P	SP 1701134-4					2017-01-26	12.2		
Langelier Index					n/a			0.23	0.03 - 0.3
WELL 3P	SP 1701134-1					2017-01-26	0.03		
WELL 7P	SP 1701134-2					2017-01-26	0.3		
WELL11P	SP 1707049-5					2017-06-12	0.3		
WELL11P	SP 1701134-4					2017-01-26	0.3		

DETECTION OF DISINFECTANT/DISINFECTANT BYPRODUCT RULE										
		Units	MCLG	CA-MCL	PHG	Sampled	Result	Avg. Result(a)	Range (b)	
Total Trihalomethanes (TTHMs)		ug/L		80	n/a			2	2.00 - 2.00	
LFC-Modular D Kitchen	SP 2313678-1	ug/L				2023-08-10	2.00			
Average LFC-Modular D Kitchen								2		
Haloacetic Acids (five)	-	ug/L		60	n/a			2	2 - 2	
LFC-Modular D Kitchen	SP 2313678-1	ug/L				2023-08-10	2			

Average LFC-Modular D Kitchen 2			-			
	TAVELAUE LI'C-MOUULAI D'NICHEIL				2	

ExxonMobil CCR Login Linkage - 2023

FGL Code	Lab ID	Date_Sampled	Method	Description	Property		
LFC PbCu 03	SP 2008539-3	2020-06-27	Metals, Total	LFC-1st Floor Laundry	LFC - Lead & Copper		
LFC PbCu 01	SP 2008539-1	2020-06-27	Metals, Total	LFC-1st Floor Mens Room	LFC - Lead & Copper		
2nd Floor Admin	SP 2303300-4	2023-03-07	Coliform	LFC-2nd Floor Admin (Kitchen S	ExxonMobil		
LFC PbCu 02	SP 2008539-2	2020-06-27	Metals, Total	LFC-2nd Floor Mens Room	LFC - Lead & Copper		
LFC PbCu 05	SP 2008539-5	2020-06-27	Metals, Total	LFC-2nd Floor Sink	LFC - Lead & Copper		
		2023-05-22	Coliform	LFC-Bld A Kitchen Sink	LFC-Upper Peanut Complex Routine Bacteriological		
	SP 1800764-1	2018-01-17	Coliform	LFC-Building A Kitchen Sink	LFC-Upper Peanut Complex Routine Bacteriological		
	SP 2300886-1	2023-01-19	Coliform	LFC-Building A Kitchen Sink	LFC-Upper Peanut Complex Routine Bacteriological		
	SP 2301555-1	2023-02-01	Coliform	LFC-Building A Kitchen Sink	LFC-Upper Peanut Complex Routine Bacteriological		
	SP 2303131-1	2023-03-03	Coliform	LFC-Building A Kitchen Sink	LFC-Upper Peanut Complex Routine Bacteriological		
	SP 2305066-1	2023-04-06	Coliform	LFC-Building A Kitchen Sink	LFC-Upper Peanut Complex Routine Bacteriological		
	SP 2308117-1	2023-05-17	Coliform	LFC-Building A Kitchen Sink	LFC-Upper Peanut Routine Bacti		
	SP 2309521-1	2023-06-08	Coliform	LFC-Building A Kitchen Sink	LFC Upper Peanut Routine Bacti		
	SP 2312242-1	2023-07-18	Coliform	LFC-Building A Kitchen Sink	LFC-Upper Peanut Routine Bacti		
	SP 2313677-1	2023-08-10	Coliform	LFC-Building A Kitchen Sink	LFC-Upper Peanut Complex Routine Bacteriological		
	SP 2315430-1	2023-09-12	Coliform	LFC-Building A Kitchen Sink	LFC-Upper Peanut Complex Routine Bacteriological		
	SP 2317328-1	2023-10-12	Coliform	LFC-Building A Kitchen Sink	LFC-Upper Peanut Complex Routine Bacteriological		
	SP 2318498-1	2023-11-03	Coliform	LFC-Building A Kitchen Sink	LFC-Upper Peanut Complex Routine Bacteriological		
	SP 2320211-1	2023-12-07	Coliform	LFC-Building A Kitchen Sink	LFC-Upper Peanut Routine Bacteriological		
LFC-BLD B KIT S	SP 2308370-3	2023-05-22	Coliform	LFC-Building B Kitchen Sink	LFC - Drinking Water Monitoring		
LFC HB @ WaterF	SP 2308370-4	2023-05-22	Coliform	LFC-Hosebib at Water Filter	LFC - Drinking Water Monitoring		
LFC-KITCHEN SIN	SP 1800765-1	2018-01-17	Coliform	LFC-Kitchen Sink	LFC Administration Bldg. Routine Bacteriological		
	SP 2117679-1	2021-12-10	Coliform	LFC-Kitchen Sink	LFC Administration Bldg. Routine Bacteriological		
	SP 2300887-1	2023-01-19	Coliform	LFC-Kitchen Sink	LFC Administration Bldg. Routine Bacteriological		
	SP 2301554-1	2023-02-01	Coliform	LFC-Kitchen Sink	LFC Administration Bldg. Routine Bacteriological		
	SP 2302839-1	2023-02-27	Coliform	LFC-Kitchen Sink	LFC Administration Bldg. Routine Bacteriological		
	SP 2303132-1	2023-03-03	Coliform	LFC-Kitchen Sink	LFC Administration Bldg. Routine Bacteriological		
Kitchen Sink	SP 2303300-3	2023-03-07	Coliform	LFC-Kitchen Sink	ExxonMobil		
LFC-KITCHEN SIN	SP 2305060-1	2023-04-06	Coliform	LFC-Kitchen Sink	LFC Administration Bldg. Routine Bacteriological		
	SP 2308120-1	2023-05-17	Coliform	LFC-Kitchen Sink	LFC Admin Bldg. Routine		
	SP 2309522-1	2023-06-08	Coliform	LFC-Kitchen Sink	LFC Administration Bldg. Routine		
	SP 2310018-1	2023-06-14	Coliform	LFC-Kitchen Sink	LFC Administration Bldg. Routine		
	SP 2312244-1	2023-07-18	Coliform	LFC-Kitchen Sink	LFC Admin Bldg. Routine		
	SP 2313676-1	2023-08-10	Coliform	LFC-Kitchen Sink	LFC Administration Bldg. Routine Bacteriological		
	SP 2314715-1	2023-08-29	Coliform	LFC-Kitchen Sink	LFC Administration Bldg. Routine Bacteriological		
	SP 2315428-1	2023-09-12	Coliform	LFC-Kitchen Sink	LFC Administration Bldg. Routine Bacteriological		
	SP 2317330-1	2023-10-12	Coliform	LFC-Kitchen Sink	LFC Administration Bldg. Routine Bacteriological		

	SP 2318497-1 2023-11-03 Coliform		LFC-Kitchen Sink	LFC Administration Bldg. Routine Bacteriological		
	SP 2320212-1	2023-12-07	Coliform	LFC-Kitchen Sink	LFC Administration Bldg. Routine	
LFC PbCu 04	SP 2008539-4	2020-06-27	Metals, Total	LFC-Lunch Room West Sink	LFC - Lead & Copper	
Men's Restroom	SP 2303300-2	2023-03-07	Coliform	LFC-Men`s Restroom	ExxonMobil	
LFC-Mod D Kit			LFC-Modular D Kitchen	LFC Modular - DBP Monitoring		
	SP 2313678-1	2023-08-10	EPA 551.1	LFC-Modular D Kitchen	LFC Modular - DBP Monitoring	
LFC-Well 03P	SP 2303115-1	2023-03-03	Coliform	Well #3P Hose Bibb	LFC-Raw Water Monitoring	
	SP 2309524-1	2023-06-08	Coliform	Well #3P Hose Bibb	LFC-Raw Water Monitoring	
	SP 2315432-1	2023-09-12	Coliform	Well #3P Hose Bibb	LFC-Raw Water Monitoring	
	SP 2320213-1	2023-12-07	Coliform	Well #3P Hose Bibb	LFC-Raw Water Monitoring	
LFC-Well 11P	SP 2312246-2	2023-07-18	Coliform	Well 11-P	Water Well Monitoring	
	SP 2315433-2	2023-09-12	Coliform	Well 11-P	EXXON LAS FLORES CANYON	
LFC-Well 03P	SP 2308370-1	2023-05-22	Coliform	Well 3	EXXON LAS FLORES CANYON	
	SP 1305282-1	2013-05-28	Metals, Total	WELL 3P	Env Health Serv (EHS) Permit #0743 - Triennial	
	SP 1701134-1	2017-01-26 General Mineral		WELL 3P	LFC - Water Quality Monitoring	
	SP 1800766-1	2018-01-17	Wet Chemistry	WELL 3P	LFC - Water Quality Monitoring	
	SP 1909754-2	2019-07-24	Std. Minerals	WELL 3P	Special Well Testing	
	SP 1909754-2	2019-07-24	Wet Chemistry	WELL 3P	Special Well Testing	
	SP 1909754-2	2019-07-24	Metals, Diss	WELL 3P	Special Well Testing	
	SP 1909754-2	2019-07-24	Metals, Total	WELL 3P	Special Well Testing	
	SP 2016722-1	2020-12-03	Coliform	WELL 3P	LFC-Raw Water Monitoring	
	SP 2208317-1	2022-05-17	Asbestos	WELL 3P	LFC Wells - VOC/IOC	
	SP 2208317-1	2022-05-17	Wet Chemistry	WELL 3P	LFC Wells - VOC/IOC	
	SP 2308118-1	2023-05-17	Radio Chemistry	WELL 3P	LFC-Radio Monitoring	
Well 7	SP 2303300-1	2023-03-07	Coliform	Well 7	ExxonMobil	
LFC-Well 07P	SP 1305282-2	2013-05-28	Metals, Total	WELL 7P	Env Health Serv (EHS) Permit #0743 - Triennial	
	SP 1701134-2	2017-01-26	General Mineral	WELL 7P	LFC - Water Quality Monitoring	
	SP 1701134-2	2017-01-26	Wet Chemistry	WELL 7P	LFC - Water Quality Monitoring	
	SP 2208317-2	2022-05-17	Wet Chemistry	WELL 7P	LFC Wells - VOC/IOC	
	SP 2308118-2	2023-05-17	Radio Chemistry	WELL 7P	LFC-Radio Monitoring	
LFC-Well 8P-2	SP 2312246-1	2023-07-18	Coliform	Well 8P-2	Water Well Monitoring	
	SP 2315433-1	2023-09-12	Coliform	Well 8P-2	EXXON, LAS FLORES CYN PROJECT	
LFC-Well 11P	SP 1305282-4	2013-05-28	Metals, Total	WELL11P	Env Health Serv (EHS) Permit #0743 - Triennial	
	SP 1701134-4	2017-01-26	General Mineral	WELL11P	LFC - Water Quality Monitoring	
EXXON Well 11P	SP 1707049-5	2017-06-12	General Mineral	WELL11P	GWMP Monitoring	
LFC-Well 11P	SP 1909754-1	2019-07-24	Wet Chemistry	WELL11P	Special Well Testing	
PT 0- MEII 111	SP 1909754-1	2019-07-24	Metals, Diss	WELL11P	Special Well Testing	
	SP 1909754-1	2019-07-24	Metals, Total	WELL11P	Special Well Testing	
	SP 1909754-1	2019-07-24	Std. Minerals	WELL11P	Special Well Testing	