

2023 Pismo Beach Water System Consumer Confidence Report

Pismo Beach Water Division (805)773-7054 www.pismobeach.org

Delivering Excellence

The City of Pismo Beach Water System met all Federal and State standards for drinking water during 2023.

Your 2023 Water Quality Report

The City of Pismo Beach is pleased to present this annual report describing the quality of your drinking water. Included are details about where your water comes from, what it contains, and how it compares to State standards. We sincerely hope this report gives you the information you seek and have a right to know.

WATER CONSERVATION REMINDER AVOID WASTEFUL USE: www.ThinkH20now.com

How Much Water Do We Use?

In 2023, the residents and visitors of Pismo Beach used approximately 1502 acre feet or 489 million gallons of water.

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and can pick up substances resulting from the presence of animals or human activity.

Where the Residents and Consumers of Pismo Beach get their water?

Surface Water

Lopez Lake – The City is entitled to receive 892 acre feet per year, approximately 291 million gallons of water.

State Water

The City is entitled to receive 1240 acre feet per year, approximately 404 million gallons of water.

Groundwater

Santa Maria Ground Water Basin – The City is entitled to extract 700 acre feet per year, approximately 228 million gallons of water.

EN ESPANOL

Este informe contiene informacion muy importante sober la calidad del agua que usted consume. Por favor de traducirlo, o hable con alguien que lo entiende bien.

Consumer Confidence Report

Pismo Beach Water Division (805)773-7054 www.pismobeach.org

Delivering Excellence

Contaminants that may potentially be present in untreated source water, surface water and well water include:

- Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- Inorganic contaminants such as salts and metals, which can be naturally occurring or result from urban storm runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- Pesticides and herbicides, which may come from a variety of sources such as agricultural, urban storm runoff, and residential uses.
- Organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, from gas stations, urban storm water runoff, and septic systems.
- Radioactive contaminants, which occur naturally or from oil and gas production and mining activities.

Other Health risks

While your drinking water meets the federal and state standard for arsenic, it does contain low levels of arsenic. The arsenic standard balances the current understanding of arsenic's possible health affects against the costs of removing arsenic from drinking water. The U.S. Environmental Protection Agency continues to research the health effect of low levels of arsenic which is a mineral known to cause cancer in humans at high concentrations and is linked to other health effects such as skin damage and circulatory problems.

EN ESPANOL

Este informe contiene informacion muy importante sobre la calidad del agua que usted consume. Por favor de traducirlo, o hable con alguien que lo entiende bien.

2023 Water Quality Data for Lopez Treatment Plant / State Water Project

Contaminants with a Primary Drinking Water Standard		
Table 1 - Treatment of surface water sources, combined filter Effluent Turbidity		
Turbidity Performance Standard - Turbidity is a measure of the cloudiness of the water. We monitor it because it is a good indicator of the effectiveness of the filtration system. Turbidity of combined filter effluent water must: 1. Lopez 0.15 & CCWA 0.3, less than or equal to in 95% of measurements in a month 2. Not exceed 1.0 NTU for more than eight consecutive hours	Treatment Technique for	Treatment Technique for Central Coast Water Authority (State Water) Conventional Treatment
Lowest monthly percentage of samples that met Turbidity Performance Standard 1	100%	100%
Turbidity (NTU) measurement during the year	0.08-0.09	0.04-0.12
The number of violations of any surface water treatment requirement	0	0

Table 2 - Microbiological Contaminants			Delivered and State		CCWA	PPWTP	Lopez	WTP	
Contaminant (reporting units)	MCL	PHG(MCLG) or (MRDLG)		Average	Range	Average	Range	Average	Potential Source of Contamination
Total Coliform Bacteria (MPN/100mL)	>5.0% of monthly samples are positive	0		ND	0	0.00%		ND	Naturally present in the environment
Heterotrophic plate count (CFU/mL)	TT = adequate disinfection < 500		ND- <mark>640</mark>	13.5	0-29	2	ND-4	ND	Naturally present in the environment
Table 3 - Inorganic Contaminants	•			<u> </u>		<u>n</u>	<u>.</u>	<u>.</u>	-
Aluminum (ppm)	1 (b)	0.6	ND-0.083	ND	ND-ND	ND	ND	ND	Erosion of natural deposits; residue from some surface water treatment presses
Arsenic (ppb)	10	0.004	1.3-3.1	2.4	ND	ND	2.0- <mark>5.2</mark>	3.6	Erosion of natural deposits, runoff from orchards; glass and electronic production
Fluoride (ppm)	2.0	1.0		0.32	ND	ND		0.320	Erosion of natural deposits
Barium(ppm)	1	2		0.032	ND	ND		0.031	Discharge of oil drilling
Table 4 - Radioactive Contaminants	•					•			· · · ·
Gross Alpha Particle Activity (pCi/L)	15	0	3.1-4.7	3.9	ND	ND	1.08-	3	Decay of natural and man-made deposits
Table 5 - Disinfectant Byproducts, D	-	-	(2022)	(2022)			4.92	(2022)	
			Delivered and State	l (Lopez		PPWTP	Lopez	z WTP	
Contaminant (reporting units)	MCL	PHG(MCLG) or (MRDLG)	Range	Average	Range	Average	Range	Average	Potential Source of Contamination
Chlorite (ppm)	1	0.05	0.10-0.84	0.57			0.43-0.84	0.71	By-product of drinking water disinfection
Chlorate (ppm)	RAL = 800		ND-420	251					By-product of drinking water disinfection
Chlorine Dioxide (ppb)	MRDL = 800 as Cl02	800	ND-90	ND			ND-680	116	Drinking water disinfectant added for treatment
Table 6 - Regulated Contaminants w	vith Secondary N	ICL's							
Chloride (ppm)	500			28	13-105	48		27	Runoff/leaching from natural deposits
Color (CU)	15		3-4	3.7	ND	ND	3-4	3.7	Naturally occurring organic materials
Copper (ppm) Corrosivity (LI)	1.0 Noncorrosive			0.073	ND 11.2	ND 11.2		ND 	Erosion of natural deposits Balance of hydrogen, carbon and oxygen in water
Geosmin (ppt)	NA	NA		80	ND-2	0.3			An organic compound mainly produced by bacterial growth in surface water
Odor - Threshold (TON)	3		ND-3.0	1.4	ND	ND	ND-3.0	1.5	Naturally occurring organic materials
Specific Conductance (uS/cm)	1600			660	152-611	381		740	Runoff/leaching from natural deposits
Sulfate (mg/L)	500			100	42	42		100	Runoff/leaching from natural deposits
Turbidity (NTU)	5 units			0.12	ND-0.25	6%		0.09	Soil Runoff
Total Dissolved Solids (ppm) Table 7 - Contaminants with no MCI	1000			430	150	150	<u> </u>	430	Runoff/leaching from natural deposits
Alkalinity as CaCO3 (ppm)	NA	NA		174	28-86	54		163	Runoff/leaching from natural deposits; seawater influence
Calcium (ppm)	NA	NA	44-100	62	13.4	13.4	53-98	75	Runoff/leaching from natural deposits; seawater influence
Hardness as CaCO3	NA	NA	190-470	274	28-134	78	230-450	324	Generally found in ground and surface water
Magnesium (ppm)	NA	NA	19-51	28	5.75	5.75	25-49	33	Runoff/leaching from natural deposits; seawater influence
рН	NA	NA		7.99	7.7-8.9	8.4		7.84	Runoff/leaching from natural deposits; seawater influence
Potassium (ppm)	NA	NA		4.7	2.2	2.2		4.7	Runoff/leaching from natural deposits; seawater influence
Sodium (ppm)	NA	NA		28	31	31		28	Runoff/leaching from natural deposits; seawater influence
Total Organic Carbon (f) (TOC) (ppm)	TT	NA			1-3.1	2.1			Various natural and man-made sources

2023 WATER QUALITY DATA FOR PISMO BEACH

Table #1 DISTRIBUTION SYSTEM WATER SAMPLING RESULTS SHOWING DETECTION OF COLIFORM BACTERIA									
Contaminants	Highest No. of Detections	No. of Month	is in Violation	ation MCL			MCLG	Typical Source of Contaminant	
Total Coliform Bacteria	0		0	More than 1 positive monthly sample			0	Naturally present in the environment	
Fecal Coliform Bacteria of E. Coli	0		0		nple and a repea and one is also f			0	Human and animal fecal waste
Table #2 - 2020 HOME SAMPLING RES	ULTS SHOW	ING THE DE	TECTION O	F LEAD AND	COPPER				
Contaminants (CCR UNITS)	No. of Samples		entile Level ected	No. of Sites Exceeding RAL PHG RAL				Ţ	vpical Source of Contaminant
Lead (ppb)	20	١	1D	0	15	0.2			ousehold plumbing system; discharges from rs; erosion of natural deposits
Copper (ppm)	20	0	.21	0	1.3	0.3			ousehold plumbing systems; erosion of natural n wood preservatives
Table #3 - 2017 LEAD SAMPLING RESU	JLTS FOR SO	HOOLS K-	12 (2 SCHOO)	•	-		
Contaminants (CCR UNITS)	No. of Samples		entile Level ected	No. of Sites Exceeding RAL	Exceeding RAL PHG			Ţ	vpical Source of Contaminant
Lead (ppb)	10	3	1.5	0	15 0.2 Internal corrosion of household plumbing system industrial manufacturers; erosion of natural depo				
Table #4 - GROUND WATER SAMPLING	G TEST RESU	ILTS FOR D	ETECTION	OF CONTAM	NANTS				
PRIMARY DRINKING WATER STANDARDS WELL #5 WELL #23									
PRIMARY CONTAMINANT	MCL	MCLG PHG	RANGE	RANGE	POTENTIAL C	ONTAMINANT	ION SOURCE		
Arsenic (ppb)	10	0.004	4	2	Erosion of natural deposits				
Chromium (total) (ppb)	50	100 ug/l	20	ND	Erosion of natural deposits				
Nitrate (as N) (ppm)	10	10	NC (h) (see table #6)	1.4	Runoff and leaching from fertilizer use; leaching from septic tanks and sewage; erosion of natural deposits				
Nitrite (as N) (ppm)	1	1	ND	0.4	Runoff and leaching from fertilizer use; leaching from septic tanks and sewage; erosion of natural deposits			septic tanks and sewage; erosion of natural	
Fluoride (ppm)	2	1	0.10	0.2	Erosion of natural deposits; water additive that promotes strong teeth; discharge from fertilizer and aluminum factories			tes strong teeth; discharge from fertilizer and	
MTBE (ug/I)	13	13	ND	ND	gasoline additiv	/e methyl tertiar	ry butyl ether		
Gross Alpha Particle Activity (pCi/I)	15	NA	6.63	10.1	Erosion of natu	ıral deposits			
Uranium (pCi/I)	20	0.43	2.15	4.38	Erosion of natu	ral deposits			
SECONDARY DRINKING WATER STAN	DARDS		WELL #5	WELL #23					
SECONDARY CONTAMINANT	мс	:L	RANGE	RANGE	POTENTIAL C	ONTAMINANT	ION SOURCE		
Chloride (ppm)	50	0	84	53	Runoff; leachin	g from natural o	deposits; seaw	ater	
Iron (ppb)	30	0	140	70	Natural or industrial				
Manganese (ppb)	50)	30	20	Natural or industrial				
Sulfate (as SO4) (ppm)	50	0	174	199	199 Runoff; leaching from natural from natural deposits; industrial				dustrial
Total Dissolved Solids (ppm)	100	00	840	760	760 Soil runoff; leaching from natural deposits				
Zinc (ppb)	500	00	ND	ND	Improper waste disposal				
Color	15	5	ND	5	Naturally occurr	ring organic ma	aterials.		

2023 WATER QUALITY DATA FOR PISMO BEACH

MCL	RANGE	RANGE	POTENTIAL CO				
	440		POTENTIAL CONTAMINANTION SOURCE				
	440	380	Runoff; leaching from natural deposits; seawater				
NA	127	102	Runoff; leaching	from natural o	leposits; seawa	ter	
NA	57	57	Runoff; leaching	from natural o	leposits; seawa	ater	
NA	52	47	Runoff; leaching	from natural o	leposits; seawa	ater	
	WELL #5	WELL #23					
NA	12.1	13	NA				
MCL=1600	1290	1050	Substances that form ions when in water; seawater influence				
NA	531	488	Generally found in ground and surface water				
NA	7.04(g)	7.07	NA				
MCL=5	0.3(g)	0.35	Soil runoff; leaching from natural deposits				
ater. The City monitors th	is because it is	a good indicator	r of water quality	. High turbidity	can hinder the	effectiveness of disinfectants.	
MCL	MRDL	AVERAGE	RANGE	SAMPLE DATE	VIOLATION	PORTENTIAL CONTAMINATION SOURCE	
80	NA	70	45 <mark>-93</mark>	2023	NO	Byproduct of drinking water disinfection	
60	NA	66.7 (see Table #6)	45- <mark>120</mark>	2023	YES	Byproduct of drinking water disinfection	
4.0	4.0	NA	1.16-2.07	2023	NO	Disinfection	
	NA NA MCL=1600 NA MCL=5 ater. The City monitors the MCL=5 ater. The City monitors the MCL=6 MCL 60	NA 52 NA 52 WELL #5 NA 12.1 MCL=1600 1290 NA 531 NA 531 NA 531 MCL=5 0.3(g) ater. The City monitors this because it is MCL MRDL A 80 NA 60	NA 52 47 NA 52 47 WELL #5 WELL #23 NA 12.1 13 MCL=1600 1290 1050 NA 531 488 NA 7.04(g) 7.07 MCL=5 0.3(g) 0.35 ater. The City monitors this because it is a good indicator MCL MRDL AVERAGE 80 NA 60 NA	NA 52 47 Runoff; leaching NA 52 47 Runoff; leaching NA 12.1 13 NA MCL=1600 1290 1050 Substances that NA 531 488 Generally found NA 7.04(g) 7.07 NA MCL=5 0.3(g) 0.35 Soil runoff; leach ater. The City monitors this because it is a good indicator of water quality AMCL MRDL AVERAGE RANGE MCL MRDL AVERAGE RANGE 60 NA 66.7 45-93	NA 52 47 Runoff; leaching from natural of WELL #5 WELL #23 WELL #23 WELL #23 NA 12.1 13 NA MCL=1600 1290 1050 Substances that form ions whe NA 531 488 Generally found in ground and NA 7.04(g) 7.07 NA MCL=5 0.3(g) 0.35 Soil runoff; leaching from natural of ater. The City monitors this because it is a good indicator of water quality. High turbidity High turbidity Ater. The City monitors this because it is a good indicator of water quality. High turbidity Ater Ater Ater Ater Ater Ater Ater Ater	NA 52 47 Runoff; leaching from natural deposits; seawa NA 52 47 Runoff; leaching from natural deposits; seawa NA 12.1 13 NA MCL=1600 1290 1050 Substances that form ions when in water; sea NA 531 488 Generally found in ground and surface water NA 7.04(g) 7.07 NA MCL=5 0.3(g) 0.35 Soil runoff; leaching from natural deposits ater. The City monitors this because it is a good indicator of water quality. High turbidity can hinder the MCL MRDL AVERAGE RANGE SAMPLE DATE VIOLATION 80 NA 70 45-93 2023 NO 60 NA 66.7 (see Table #6) 45-120 2023 YES	

Table #5 - WELL SAMPLING RESULTS SHOWING DETECTION OF UNREGULATED CHEMICALS							
UNREGULATED CHEMICALS	Avg. Level Detected	Range of Detections Low- High	MCL	RAL	Typical Source of Contaminants		
Boron (ppm)	0.2	ND21	NS		Naturally-occurring; element found in soil and water in the form of boric acid and sodium tetraborate		
Vanadium (ppb)	3	N/A	NS	50	Naturally-occurring; has been found in association with hazardous waste sites		

* Table #6 - VIOLATIO	<u>NS</u>			
Violation	Explanation	Duration	Actions Taken to Correct Violation	Potential Adverse Health Effects
Failure to monitor for Nitrates- Well #5	We are required to monitor your drinking water for specific contaminants on a regular basis. Results of regular monitoring are an indicator of whether or not your drinking water meets health standards. During the calendar year 2023, we did not monitor for nitrate from Well 05 and therefore, cannot be sure of the quality of your drinking water during that time.	2023	Once Pismo Beach water department became aware of the missing sample, A sample was collected and delivered to the lab. Results from the lab indicated Non- Detect meaning there was not a reportable amount of nitrates detected in the drinking water. Thus no further action was required. Issues in your sample notification process have been identified and corrected.	Infants below the age of 6 months who drink water containing Nitrate above the MCL, may quickly become seriously ill, and if untreated, may die because high levels of nitrate can interfere with the capacity of the infant's blood to carry oxygen. Symptoms include shortness of breath and blueness of the skin. High nitrate levels may also affect the oxygen carrying capability of the blood of pregnant women.
MCL exceedance of Haloacetic Acids (HAA ₅)	We are required to monitor for disinfection byproducts (DBP's) on a quarterly basis. In Q2 of 2023 we exceeded the MCL of 60 ppb, due to an algae bloom at Lake Lopez. As a result, the water quality did not meet state standards. Letters were mailed to customers in the affected areas.	2023	A state approved action plan has been created and implemented to address the MCL exceedance. We are currently taking monthly samples as apposed to quarterly samples to closely monitor our water quality. Our most recent samples are below the MCL.	Some people who drink water containing haloacetic acids in excess of the MCL over many years may have an increased risk of getting cancer.

USEPA/CDC Provides guidelines on appropriate means to the risk of infection by Cryptosporidium and other microbial contaminants, for information call - Safe Drinking Water Hotline (1-800-426- 4791). This hotline operates from 9 a.m. to 5 p.m. EST, Monday through Friday. For more information contact: • The Office of Ground Water and Drinking at EPA • www.water.epa.gov/drink/index.cfm • American Water Works Association http://www.awwa.org • County Board of Supervisors http://slocounty.ca.gov/bos.html	I ou can provide input regarding water quality
---	--

State and Lopez Water Footnotes:

(a) Distribution system samples. (b) Aluminum has a Secondary MCL of 0.2 ${\rm ppm}$

(c) Compliance based on the running annual average of samples computed quarterly. (d) TOCs are taken at the treatment plant's combined filter effluent.

(e) The MRDL for chlorine is based on a running annual average of distribution system samples. (f) Increases in odor have been associated with algae blooms. During times of increased

algae blooms an odor in the algae	is controlled with algaecides and the odor is reduced to acceptable levels by treating water with powder activated carbon.
(g) Laboratory sample	(h) Nitrates samples not collected in 2023 (l) not sampled in reporting year
Maximum Contaminant Level	The highest level of contaminant that is allowed in drinking water
(MCL)	•
Regulatory Action Level (RAL)	The concentration of a contaminat that, if exceeded, triggers treatement or other requirements that a water system must follow
Maximum Contaminant Level	The level of contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the United States Environmental Protection
Goal (MCLG and Public Health	Agency and PHGs are set by the California Environmental Protection Agency
Goal (PHG)	
	The level of a disinfectant added for water treatment that may not be exceeded at the consumer's faucet
Level (MRDL)	
Maximum Residual Disinfectant Level Goal (MRDLG)	The level of a disinfectant added for water treatment below which there is no known or expected risk to health. MRDLGs are set by the U.S. Environmental Protection Agency
	MCLs for contaminants that affect health along with their monitoring and reporting requirements, and water treatment requirements. Primary MCLs are set as close to the PHGs (or MCLGs) as is economically and technologically feasible
	MCLs for contaminants to protect the taste, odor, or appearance of the drinking water. Contaminants with SDWSs do not affect health at the MCL levels
Standards (SDWS)	
	A required process intended to reduce the level of a contaminant in drinking water
	The concentration of a contaminant that, if exceeded, triggers treatment of other requirement which a water system must follow
(NL)	-/ -02
Running Annual Average (RAA)	An arithmetic average of all sample is computed quarterly. The quarterly average is then averaged against the previous three quarters worth of data to provide an
	annual running average. The highest running average over a twelve month period used for compliance
Not Collected (NC)	A sample was not collected for this contaminant
Not Reported (NR)	Contaminant was not reported
Not Standard (NS)	Contaminant for which there is no established MCL
Not Detected (ND)	Contaminant is not detectable at testing limit
Not Analyzed (NA)	Contaminant was not analyzed
WAIVED	On September 4, 2007, the CDPH granted the TOC waiver to the Lopez WTP. The facility upgraded to Membrane Treatment
pCi/L	PICOCURIES PER LITER (A MEASURE OF RADIOACTIVITY)
ppm	PARTS PER MILLION, OR MILLIGRAMS PER LITER (MG/L)
ppb	PARTS PER BILLION, OR MICROGRAMS PER LITER (G/L)
-	MICROMHOS PER CENTIMETER (UNIT OF SPECIFIC CONDUCTANCE OF WATER)
cu	COLOR UNITS
NS	NO STANDARD
	COLONY FORMING UNITS PER MILLILITER
	NEPHELOMETRIC TURBIDITY UNIT
	THRESHOLD ODOR NUMBER
	UNITED STATES ENVIORNMENTAL PROTECTION AGENCY
	CENTER FOR DISEASE CONTROL HOTLINE (1-800-426-4791)
	LANGELIER INDEX; NONCORROSIVE = ANY POSITIVE VALUE, CORROSIVE = ANY NEGATIVE VALUE
	LOPEZ WATER TREATMENT PLANT
PPWTP	POLANIO PASS WATER TREATMENT PLANT
	TOTAL ORGANIC CARBON

In order to ensure that tap water is safe to drink, EPA, and the California State Water Reserouces Control Board, prescribes regulations which limit the amount of certain contaminants in water provided by public water systems. Food and Drug Administration (FDA) regulations establish limits for contaminants in bottled water which must provide the same protection for public health.

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence does not necessarily indicate that water poses a health risk.

More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's State Drinking Water Hotline (1-800-416-4791). Some people may be more vulnerable to contaminants in drinking water then the general population. Immune-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplant, people with HIV/AIDS or other immune system deficiencies, some elderly, and infants can be particularly at risk of infections. These people should seek

FOR THE WEB BROWSERS: www

www.pismobeach.org www.thinkh2onow.com

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components