ANNUAL WATER QUALITY REPORT **Reporting Year 2021** Presented By City of Paso Robles ## We've Come a Long Way nce again, we are proud to present our annual water quality report covering the period between January 1 and December 31, 2021. In a matter of only a few decades, drinking water has become exponentially safer and more reliable than at any other point in human history. Our exceptional staff continues to work hard every day—at all hours—to deliver the highest-quality drinking water without interruption. Although the challenges ahead are many, we feel that by relentlessly investing in customer outreach and education, new treatment technologies, system upgrades, and training, the payoff will be reliable, high-quality tap water delivered to you and your family. ### Water: Use it Wisely. Although the state of California drought emergency mandates are no longer in place, similar conditions may return, and it's always important for our community to use water wisely. With regular maintenance and attention to water-using fixtures and irrigation systems, most homeowners and businesses can achieve significant water savings. Try these basic steps: # Reduce Outdoor Water Use with Irrigation System Maintenance and Scheduling - 1. Periodically turn on your system manually, look for geysers, and fix any breaks. - 2. Look for sunken and tilted heads that misdirect spray. Dig out and straighten heads, or add an extension to raise the head to the proper height. Trim plants that block spray from getting to the target area. - 3. Turn on drip lines and walk each line to check and repair leaks. Make sure each emitter has flowing water. Unclog or replace clogged emitters. ### **Irrigation Scheduling Tips** Many of us unknowingly use more water than our landscaping needs. Follow these basic rules of thumb to avoid overwatering: - 1. Water no more than two or three days per week. - 2. Water in the early morning hours (5:00 to 9:00 a.m.), when winds and temperatures are low and you can see problems like stuck valves and breaks. - 3. Learn how to use your timer and adjust duration throughout the irrigation season. - To avoid water runoff on steep slopes, break the total watering time for sprinklers into two or three shorter runs. ### **Indoor Water Savings** Indoor water use is generally a small part of our community's overall usage; however, it's important to be mindful of how we use water both outdoors and indoors. Turn off taps when not in use, and periodically inspect toilets for leaking valves. If you hear a toilet filling when no one has flushed, you may have a leaking flap valve. For more information on customer rebate programs and ways to save water, visit www.prcity.com/469/Conservation or call (805) 227-7250. ### Where Does My Water Come From? Water sources for the City of Paso Robles include 19 groundwater wells and surface water from Lake Nacimiento, which is treated at our water treatment plant. Water that is not immediately used in the system goes into storage tanks with approximately 12 million gallons of capacity. These tanks provide for system emergencies, firefighting, and maintaining system pressure. ### **Community Participation** We welcome your comments, questions, and concerns regarding your drinking water. We encourage you to contact the Utilities Department directly at (805) 237-3861, or you can voice your concerns at the City of Paso Robles city council meetings during the public comment portion. The meetings are held on the first and third Tuesday of each month at 6:30 p.m. at the City Hall/Library Complex, 1000 Spring Street. To view a copy of this report or get more information regarding the City of Paso Robles Water Division, visit www. prcity.com/424/About-Our-Water. ### **Important Health Information** Some people may be more vulnerable to contaminants in drinking water than the general population. Immunocompromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants may be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. The U.S. EPA/CDC (Centers for Disease Control and Prevention) guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* and other microbial contaminants are available from the Safe Drinking Water Hotline at (800) 426-4791 or http://water.epa.gov/drink/hotline. For more information about this report, or for any questions relating to your drinking water, please call Colton Young at (805) 237-3866 or email us at water@prcity.com. ### **Lead in Home Plumbing** If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. We are responsible for providing high-quality drinking water, but we cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to two minutes before using water for drinking or cooking. (If you do so, you may wish to collect the flushed water and reuse it for another beneficial purpose, such as watering plants.) If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline at (800) 426-4791 or at www. epa.gov/safewater/lead. ### Source Water Assessment The City of Paso Robles has completed an assessment of our drinking water sources. The assessment found our sources potentially vulnerable to agricultural drainage, auto repair shops, gas stations, home manufacturing, low-density septic systems, sewer collection systems, metal plating/finishing/fabricating, animal operations, agriculture and irrigation wells, and plastic and synthetics producers. This simply means that these activities take place in the general vicinity of some wells. It does not mean there are any problems resulting from these activities, only that a potential vulnerability exists. If you would like to view the completed assessment reports or have questions regarding them, please contact Colton Young at the Paso Robles Water Division at (805) 237-3866. ### **Substances That Could Be in Water** The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity. In order to ensure that tap water is safe to drink, the U.S. Environmental Protection Agency (U.S. EPA) and the State Water Resources Control Board (State Board) prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. The U.S. Food and Drug Administration regulations and California law also establish limits for contaminants in bottled water that provide the same protection for public health. Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. Contaminants that may be present in source water include: Microbial Contaminants, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife; Inorganic Contaminants, such as salts and metals, that can be naturally occurring or can result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming; Pesticides and Herbicides that may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses; Organic Chemical Contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and which can also come from gas stations, urban stormwater runoff, agricultural applications, and septic systems; Radioactive Contaminants that can be naturally occurring or can be the result of oil and gas production and mining activities. More information about contaminants and potential health effects can be obtained by calling the U.S. EPA's Safe Drinking Water Hotline at (800) 426-4791. ### **Test Results** Our water is monitored for many different kinds of substances on a very strict sampling schedule, and the water we deliver must meet specific health standards. Here, we only show those substances that were detected in our water (a complete list of all our analytical results is available upon request). Remember that detecting a substance does not mean the water is unsafe to drink; our goal is to keep all detects below their respective maximum allowed levels. The state recommends monitoring for certain substances less than once per year because the concentrations of these substances do not change frequently. In these cases, the most recent sample data are included, along with the year in which the sample was taken. | REGULATED SUBSTANCES | | | | | | | | | | |--|------------------|------------------------------------|-----------------------------------|--------------------|---|-----------|---|--|--| | SUBSTANCE
(UNIT OF MEASURE) | YEAR
SAMPLED | MCL
[MRDL] | PHG (MCLG)
[MRDLG] | AMOUNT
DETECTED | RANGE
LOW-HIGH | VIOLATION | TYPICAL SOURCE | | | | Arsenic (ppb) | 2021 | 10 | 0.004 | 1.4 | ND-7.9 | No | Erosion of natural deposits; runoff from orchards; glass and electronics production wastes | | | | Barium (ppm) | 2021 | 1 | 2 | 0.02594 | ND-0.31 | No | Discharges of oil drilling wastes and from metal refineries; erosion of natural deposits | | | | Chlorine (ppm) | 2021 | [4.0 (as Cl2)] | [4 (as Cl2)] | 1.2 | 0.55–2.5 | No | Drinking water disinfectant added for treatment | | | | Fluoride (ppm) | 2021 | 2.0 | 1 | 0.19 | ND-0.4 | No | Erosion of natural deposits; water additive that promotes strong teeth; discharge from fertilizer and aluminum factories | | | | Gross Alpha Particle Activity (pCi/L) | 2021 | 15 | (0) | 1.48 | ND-7.2 | No | Erosion of natural deposits | | | | HAA5 [sum of 5 haloacetic acids]-Stage 2 (ppb) | 2021 | 60 | NA | 11.26 | 1.7–23.8 | No | By-product of drinking water disinfection | | | | Nickel (ppb) | 2021 | 100 | 12 | 0.95 | ND-18.3 | No | Erosion of natural deposits; discharge from metal factories | | | | Nitrate [as nitrogen] (ppm) | 2021 | 10 | 10 | 0.88 | ND-6.8 | No | Runoff and leaching from fertilizer use; leaching from septic tanks and sewage; erosion of natural deposits | | | | Nitrate + Nitrite [as N] (ppb) | 2021 | 10,000 | 10,000 | 1,150 | 400–4,900 | No | Runoff and leaching from fertilizer use; leaching from septic tanks sewage; erosion of natural deposits | | | | Selenium (ppb) | 2021 | 50 | 30 | 9.65 | ND-30 | No | Discharge from petroleum, glass, and metal refineries; erosion of natural deposits; discharge from mines and chemical manufacturers; runoff from livestock lots (feed additive) | | | | Thallium (ppb) | 2021 | 2 | 0.1 | 0.0002 | ND-1.1 | No | Leaching from ore-processing sites; discharge from electronics, glass, and drug factories | | | | TTHMs [Total
Trihalomethanes]–Stage 2 (ppb) | 2021 | 80 | NA | 22.34 | 8.8–37.5 | No | By-product of drinking water disinfection | | | | Turbidity (NTU) | 2021 | TT | NA | 0.084 | 0.005-0.084 | No | Soil runoff | | | | Turbidity [lowest monthly percent of samples meeting limit] | 2021 | TT = 95% of samples meet the limit | NA | 100 | NA | No | Soil runoff | | | | Uranium (pCi/L) | 2021 | 20 | 0.43 | 0.34 | ND-6.6 | No | Erosion of natural deposits | | | | Tap water samples were collected for lead and copper analyses from sample sites throughout the community (There were no detections of lead). | | | | | | | | | | | SUBSTANCE YEAR (UNIT OF MEASURE) SAMPLED | PHG
AL (MCLG) | AMOUNT
DETECTED
(90TH %ILE) | SITES
ABOVE AL/
TOTAL SITES | VIOLATION | TYPICAL SOURCE | | | | | | Copper (ppm) 2019 | 1.3 0.3 | 0.3 | 0/30 | No | Internal corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives | | | | | ### **SECONDARY SUBSTANCES** SUBSTANCE YEAR PHG **AMOUNT** RANGE LOW-HIGH (UNIT OF MEASURE) SAMPLED **SMCL** (MCLG) DETECTED VIOLATION TYPICAL SOURCE Aluminum (ppb) 2021 NS 0.005 ND-51 No Erosion of natural deposits; residual from some surface water treatment processes 2021 Runoff/leaching from natural deposits; seawater influence Chloride (ppm) 500 NS 32.47 9.3 - 130No Leaching from natural deposits; industrial wastes Iron (ppb) 2021 NS 34.8 ND-650 No 300 ND-24.4 Manganese (ppb) 2021 50 NS 2.37 No Leaching from natural deposits Odor, Threshold (units) 2021 3 NS 1.59 1 - 3No Naturally occurring organic materials Substances that form ions when in water; seawater influence **Specific Conductance** (µS/cm) 2021 1,600 NS 601.92 230-960 No Sulfate (ppm) 2021 500 NS 86.96 18-150 No Runoff/leaching from natural deposits; industrial wastes Total Dissolved Solids (ppm) 2021 1,000 NS 390.62 120-630 No Runoff/leaching from natural deposits **Turbidity** (NTU) 2021 5 NS 0.28 0.08 - 2No Soil runoff | UNREGULATED SUBSTANCES 1 | | | | | | |---|-----------------|--------------------|-------------------|----------------|--| | SUBSTANCE
(UNIT OF MEASURE) | YEAR
SAMPLED | AMOUNT
DETECTED | RANGE
LOW-HIGH | TYPICAL SOURCE | | | Bicarbonate (ppm) | 2021 | 222.91 | 93–360 | NA | | | Boron (ppb) | 2021 | 96.46 | ND-800 | NA | | | Calcium (ppm) | 2021 | 59.71 | 21–92 | NA | | | Chromium-6 (ppb) | 2021 | 0.19 | ND-2.6 | NA | | | Hardness, Total [as CaCO3] (grains/gal) | 2021 | 14.52 | 5.2–21.6 | NA | | | pH (units) | 2021 | 7.75 | 7.4–8.2 | NA | | | Potassium (ppm) | 2021 | 1.54 | 1.3–2.5 | NA | | | Sodium (ppm) | 2021 | 35.25 | 10-130 | NA | | | Total Alkalinity (ppm) | 2021 | 183.82 | 76–296.7 | NA | | | Vanadium (ppb) | 2021 | 7.97 | ND-64 | NA | | ¹Unregulated contaminant monitoring helps U.S. EPA and the State Water Resources Control Board determine where certain contaminants occur and whether the contaminants need to be regulated. ### **Definitions** **90th %ile:** The levels reported for lead and copper represent the 90th percentile of the total number of sites tested. The 90th percentile is equal to or greater than 90% of our lead and copper detections. AL (Regulatory Action Level): The concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow. grains/gal (grains per gallon): Grains of compound per gallon of water. MCL (Maximum Contaminant Level): The highest level of a contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs (or MCLGs) as is economically and technologically feasible. Secondary MCLs (SMCLs) are set to protect the odor, taste, and appearance of drinking water. MCLG (Maximum Contaminant Level Goal): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the U.S. EPA. MRDL (Maximum Residual Disinfectant Level): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants. MRDLG (Maximum Residual Disinfectant Level Goal): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants. NA: Not applicable. **ND** (Not detected): Indicates that the substance was not found by laboratory analysis. NS: No standard. NTU (Nephelometric Turbidity Units): Measurement of the clarity, or turbidity, of water. Turbidity in excess of 5 NTU is just noticeable to the average person. **pCi/L** (**picocuries per liter**): A measure of radioactivity. PDWS (Primary Drinking Water Standard): MCLs and MRDLs for contaminants that affect health, along with their monitoring and reporting requirements and water treatment requirements. PHG (Public Health Goal): The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California EPA. **ppb (parts per billion):** One part substance per billion parts water (or micrograms per liter). **ppm (parts per million):** One part substance per million parts water (or milligrams per liter). **TT** (**Treatment Technique**): A required process intended to reduce the level of a contaminant in drinking water. **μS/cm (microsiemens per centimeter):** A unit expressing the amount of electrical conductivity of a solution.