Consumer Confidence Report Certification Form (To be submitted with a copy of the CCR) | Water | System Name: | Center of Effort Winery | |------------------------------|--------------------------------------|---| | Water | System Number: | 4000831 | | on 6/24
system
complia | 1/2021 to custome certifies that the | above hereby certifies that its Consumer Confidence Report was distributed rs (and appropriate notices of availability have been given). Further, the information contained in the report is correct and consistent with the ta previously submitted to the State Water Resources Control Board, Division | | Certifie | d by: | | | Name | : Nathan R. Carlso | Title: General Manager | | Signat | ure: | Date: 6/24/2021 | | | number: 805 71 | 2 0735 nathan@coewine.com | | all item | s that apply and fill | ery used and good-faith efforts taken, please complete this page by checking
-in where appropriate: | | | | by mail or other direct delivery methods (attach description of other direct | | | elivery methods use | | | | | using electronic delivery methods described in the Guidance for Electronic | | | | umer Confidence Report (water systems utilizing electronic delivery methods | | | ust complete the se | | | | | vere used to reach non-bill paying consumers. Those efforts included the | | tc | ollowing methods: | D - (II - (II - ' - LID) | | | _ | R at the following URL: www | | | _ | R to postal patrons within the service area (attach zip codes used) | | | _ | availability of the CCR in news media (attach copy of press release) | | L | | the CCR in a local newspaper of general circulation (attach a copy of the | | | | e, including name of newspaper and date published) R in public places (attach a list of locations) | | | | | | | | tiple copies of CCR to single-billed addresses serving several persons, such businesses, and schools | | | _ | nmunity organizations (attach a list of organizations) | | | _ | he CCR in the electronic city newsletter or electronic community newsletter | | _ | | ch a copy of the article or notice) | | Г | - | ouncement of CCR availability via social media outlets (attach list of social | | | media outlets u | • | | Г | _ | list of other methods used) | | | • | at least 100,000 persons: Posted CCR on a publicly-accessible internet site | | | the following URL: | | | | • | utilities: Delivered the CCR to the California Public Utilities Commission | ### **Consumer Confidence Report Electronic Delivery Certification** Water systems utilizing electronic distribution methods for CCR delivery must complete this page by checking all items that apply and fill-in where appropriate. Water system mailed a notification that the CCR is available and provides a direct URL to the CCR on a publicly available website where it can be viewed (attach a copy of the mailed CCR notification). URL: WWW. Water system emailed a notification that the CCR is available and provides a direct URL to the CCR on a publicly available site on the Internet where it can be viewed (attach a copy of the emailed **CCR** notification). **URL**: www. Water system emailed the CCR as an electronic file email attachment. Water system emailed the CCR text and tables inserted or embedded into the body of an email, not as an attachment (attach a copy of the emailed CCR). Requires prior DDW review and approval. Water system utilized other electronic delivery method that meets the direct delivery requirement. Provide a brief description of the water system's electronic delivery procedures and include how the water system ensures delivery to customers unable to receive electronic delivery. Employees and clients of our business are the only users of our system. Posted at main break rooms, emailed to clients per their official notice address. Addressed with employees in morning meeting 6/24/2021 # **2020 Consumer Confidence Report** #### **Water System Information** Water System Name: Center of Effort Winery Report Date: June 21, 2021 Type of Water Source(s) in Use: Groundwater Well Name and General Location of Source(s): **Well 1 is located onsite at 2195 Corbett Canyon Road in Arroyo Grande.** Drinking Water Source Assessment Information: The Water Well Completion Report was completed by Cleath Harris Geologists in September of 1996; a copy is available for review upon written request submitted to Center of Effort Winery. Time and Place of Regularly Scheduled Board Meetings for Public Participation: **We have regularly scheduled** departmental meetings for admin, production, hospitality, vineyards, and maintenance staff; employees are free to contact their supervisors with questions regarding the water system at any time. For More Information, Contact: Nathan Carlson, (805) 782-9463 x 106 #### **About This Report** We test the drinking water quality for many constituents as required by state and federal regulations. This report shows the results of our monitoring for the period of January 1 to December 31, 2020 and may include earlier monitoring data. # Importance of This Report Statement in Five Non-English Languages (Spanish, Mandarin, Tagalog, Vietnamese, and Hmong) Language in Spanish: Este informe contiene información muy importante sobre su agua para beber. Favor de comunicarse Center of Effort Winery a 2195 Corbett Canyon Road, Arroyo Grande, CA 93420 o (805) 782-9463 x 106 para asistirlo en español. Language in Mandarin: 这份报告含有关于您的饮用水的重要讯息。请用以下地址和电话联系 Center of Effort Winery以获得中文的帮助: 2195 Corbett Canyon Road, Arroyo Grande, CA 93420, (805) 782-9463 x 106. Language in Tagalog: Ang pag-uulat na ito ay naglalaman ng mahalagang impormasyon tungkol sa inyong inuming tubig. Mangyaring makipag-ugnayan sa Center of Effort Winery, 2195 Corbett Canyon Road, Arroyo Grande, CA 93420 o tumawag sa (805) 782-9463 x 106 para matulungan sa wikang Tagalog. Language in Vietnamese: Báo cáo này chứa thông tin quan trọng về nước uống của bạn. Xin vui lòng liên hệ Center of Effort Winery tại 2195 Corbett Canyon Road, Arroyo Grande, CA 93420, (805) 782-9463 x 106 để được hỗ trợ giúp bằng tiếng Việt. Language in Hmong: Tsab ntawv no muaj cov ntsiab lus tseem ceeb txog koj cov dej haus. Thov hu rau Center of Effort Winery ntawm 2195 Corbett Canyon Road, Arroyo Grande, CA 93420, (805) 782-9463 x 106 rau kev pab hauv lus Askiv. # **Terms Used in This Report** | Term | Definition | |--|---| | Level 1 Assessment | A Level 1 assessment is a study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system. | | Level 2 Assessment | A Level 2 assessment is a very detailed study of the water system to identify potential problems and determine (if possible) why an <i>E. coli</i> MCL violation has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions. | | Maximum Contaminant Level (MCL) | The highest level of a contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs (or MCLGs) as is economically and technologically feasible. Secondary MCLs are set to protect the odor, taste, and appearance of drinking water. | | Maximum Contaminant Level Goal (MCLG) | The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the U.S. Environmental Protection Agency (U.S. EPA). | | Maximum Residual Disinfectant Level (MRDL) | The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants. | | Maximum Residual Disinfectant Level Goal (MRDLG) | The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants. | | Primary Drinking Water
Standards (PDWS) | MCLs and MRDLs for contaminants that affect health along with their monitoring and reporting requirements, and water treatment requirements. | | Public Health Goal
(PHG) | The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California Environmental Protection Agency. | | Regulatory Action Level (AL) | The concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow. | | Secondary Drinking Water
Standards (SDWS) | MCLs for contaminants that affect taste, odor, or appearance of the drinking water. Contaminants with SDWSs do not affect the health at the MCL levels. | | Treatment Technique (TT) | A required process intended to reduce the level of a contaminant in drinking water. | | Variances and Exemptions | Permissions from the State Water Resources Control Board (State Board) to exceed an MCL or not comply with a treatment technique under certain conditions. | | ND | Not detectable at testing limit. | | ppm | parts per million or milligrams per liter (mg/L) | | ppb | parts per billion or micrograms per liter (µg/L) | | ppt | parts per trillion or nanograms per liter (ng/L) | | ppq | parts per quadrillion or picogram per liter (pg/L) | | pCi/L | picocuries per liter (a measure of radiation) | ## Sources of Drinking Water and Contaminants that May Be Present in Source Water The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity. Contaminants that may be present in source water include: - Microbial contaminants, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife. - Inorganic contaminants, such as salts and metals, that can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming. - Pesticides and herbicides, that may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses. - Organic chemical contaminants, including synthetic and volatile organic chemicals, that are byproducts of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, agricultural application, and septic systems. - Radioactive contaminants, that can be naturally-occurring or be the result of oil and gas production and mining activities. #### Regulation of Drinking Water and Bottled Water Quality In order to ensure that tap water is safe to drink, the U.S. EPA and the State Board prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. The U.S. Food and Drug Administration regulations and California law also establish limits for contaminants in bottled water that provide the same protection for public health. # **About Your Drinking Water Quality** #### **Drinking Water Contaminants Detected** Tables 1, 2, 3, 4, 5, 6, and 8 list all of the drinking water contaminants that were detected during the most recent sampling for the constituent. The presence of these contaminants in the water does not necessarily indicate that the water poses a health risk. The State Board allows us to monitor for certain contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of the data, though representative of the water quality, are more than one year old. Any violation of an AL, MCL, MRDL, or TT is asterisked. Additional information regarding the violation is provided later in this report. Table 1. Sampling Results Showing the Detection of Coliform Bacteria Complete if bacteria are detected. | Microbiological
Contaminants | Highest No. of Detections | No. of
Months in
Violation | MCL | MCLG | Typical Source of Bacteria | |--|---------------------------|----------------------------------|--|------|--------------------------------------| | Total Coliform Bacteria (State Total Coliform Rule) | (In a month) | 0 | 1 positive monthly sample | 0 | Naturally present in the environment | | Fecal Coliform or <i>E.</i> coli (State Total Coliform Rule) | (In the year)
0 | 0 | A routine sample and a repeat sample are total coliform positive, and one of these is also fecal coliform or <i>E. coli</i> positive | None | Human and animal fecal waste | | E. coli
(Federal Revised
Total Coliform Rule) | (In the year)
0 | 0 | (b) | 0 | Human and animal fecal waste | ⁽a) Two or more positive monthly samples is a violation of the MCL Table 2. Sampling Results Showing the Detection of Lead and Copper Complete if lead or copper is detected in the last sample set. | Lead and Copper | Sample Date | No. of Samples
Collected | 90th Percentile
Level Detected | No. Sites
Exceeding AL | AL | PHG | No. of Schools
Requesting Lead
Sampling | Typical Source of
Contaminant | |-----------------|-------------|-----------------------------|-----------------------------------|---------------------------|-----|-----|---|---| | Lead
(ppb) | N/A | N/A | N/A | N/A | 15 | 0.2 | N/A | Internal corrosion of household water plumbing systems; discharges from industrial manufacturers; erosion of natural deposits | | Copper (ppm) | N/A | N/A | N/A | N/A | 1.3 | 0.3 | Not
applicable | Internal corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives | ⁽b) Routine and repeat samples are total coliform-positive and either is *E. coli*-positive or system fails to take repeat samples following *E. coli*-positive routine sample or system fails to analyze total coliform-positive repeat sample for *E. coli*. Table 3. Sampling Results for Sodium and Hardness | Chemical or
Constituent (and
reporting units) | Sample
Date | Level
Detected | Range of Detections | MCL | PHG
(MCLG) | Typical Source of Contaminant | |---|----------------|-------------------|---------------------|------|---------------|--| | Sodium (ppm) | 5/9/19 | 100 | N/A | None | None | Salt present in the water and is generally naturally occurring | | Hardness (ppm) | 5/9/19 | 990 | N/A | None | None | Sum of polyvalent cations present in the water, generally magnesium and calcium, and are usually naturally occurring | Table 4. Detection of Contaminants with a Primary Drinking Water Standard | Chemical or
Constituent
(and reporting units) | Sample
Date | Level
Detected | Range of Detections | MCL
[MRDL] | PHG
(MCLG)
[MRDLG] | Typical Source of
Contaminant | |---|----------------|-------------------|---------------------|---------------|--------------------------|--| | Barium (ppm) | 5/9/19 | 0.055 | N/A | 1 | 2 | Discharge of oil drilling wastes
and from metal refineries;
erosion of natural deposits | | Fluoride (ppm) | 5/9/19 | 0.36 | N/A | 2.0 | 1 | Erosion of natural deposits;
water additive which promotes
strong teeth; discharge from
fertilizer and aluminum factories | | Nitrate as Nitrogen, N
(ppm) – Distribution | 11/10/20 | 2 | N/A | 10 | 10 | Runoff and leaching from fertilizer use; leaching from septic tanks and sewage; erosion of natural deposits | | Nitrate as Nitrogen, N
(ppm) – Raw Well | 11/10/20 | 1.2 | N/A | 10 | 10 | Runoff and leaching from fertilizer use; leaching from septic tanks and sewage; erosion of natural deposits | Table 5. Detection of Contaminants with a Secondary Drinking Water Standard | Chemical or
Constituent (and
reporting units) | Sample
Date | Level
Detected | Range of Detections | SMCL | PHG
(MCLG) | Typical Source
of
Contaminant | |---|------------------|-------------------|---------------------|------|---------------|---| | Chloride (ppm) | 5/9/19 | 130 | N/A | 500 | N/A | Runoff/leaching from natural deposits; seawater influence | | Color (units) | 5/9/19 | 10 | N/A | 15 | N/A | Naturally-occurring organic materials | | Iron (ppb) –
Distribution | 4/2/19
5/9/19 | 17.5 | ND – 35 | 300 | N/A | Leaching from natural deposits; industrial wastes | | Iron (ppb) – Raw
Well | 5/9/19 | 180 | N/A | 300 | N/A | Leaching from natural deposits; industrial wastes | Table 6. Detection of Contaminants with a Secondary Drinking Water Standard, Continued | Chemical or
Constituent (and
reporting units) | Sample
Date | Level
Detected | Range of Detections | SMCL | PHG
(MCLG) | Typical Source
of
Contaminant | |---|------------------|-------------------|---------------------|-------|---------------|---| | Manganese (ppb) –
Distribution | 4/2/19
5/9/19 | 7.5 | ND – 15 | 50 | N/A | Leaching from natural deposits | | Manganese* (ppb)
– Raw Well | 5/9/19 | 240 | N/A | 50 | N/A | Leaching from natural deposits | | Odor – Threshold
(units) | 5/9/19 | 3 | N/A | 3 | N/A | Naturally-occurring organic materials | | Specific
Conductance*
(µS/cm) | 5/9/19 | 2,100 | N/A | 1,600 | N/A | Substances that form ions when in water; seawater influence | | Sulfate (ppm) | 5/9/19 | 490 | N/A | 500 | N/A | Runoff/leaching from natural deposits; industrial wastes | | Total Dissolved
Solids – TDS –
Distribution (ppm) | 4/2/19
5/9/19 | 48.5 | 18 – 79 | 1,000 | N/A | Runoff/leaching from natural deposits | | Total Dissolved
Solids* – TDS –
Raw Well (ppm) | 5/9/19 | 1,400 | N/A | 1,000 | N/A | Runoff/leaching from natural deposits | | Turbidity* (NTU) | 5/9/19 | 17 | N/A | 5 | N/A | Soil runoff | ^{*}Any violation of an MCL, MRDL, or TT is asterisked. Additional information regarding the violation is provided later in this report. #### **Additional General Information on Drinking Water** Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the U.S. EPA's Safe Drinking Water Hotline (1-800-426-4791). Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. U.S. EPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* and other microbial contaminants are available from the Safe Drinking Water Hotline (1-800-426-4791). If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Center of Effort Winery is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you do so, you may wish to collect the flushed water and reuse it for another beneficial purpose, such as watering plants. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline (1-800-426-4791) or at http://www.epa.gov/lead. Manganese, Specific Conductance, Total Dissolved Solids, and Turbidity were found at levels that exceeded the secondary MCL (Maximum Contaminant Level) standards in raw well samples. The secondary MCLs were set to protect you against unpleasant aesthetic effects (e.g., color, taste, and odor) and the staining of plumbing fixtures (e.g., tubs and skinks) and clothing while washing. The high levels are most likely due to leaching from natural deposits, soil runoff, and substances that form ions when in water or seawater influence. The notification level for Manganese is used to protect consumers from neurological effects. Manganese exposures have resulted in neurological effects. High levels of manganese in people have been shown to result in adverse effects to the nervous system. The notification level for Manganese is 500 ppb.