2024 Consumer Confidence Report

Water System Information

Water System Name: Las Ventanas Ranch Mutual Water Company

Report Date: June 9, 2025

Type of Water Source(s) in Use: Groundwater Wells

Name and General Location of Source(s): Well A and Well B are located off of Lopez Drive

Drinking Water Source Assessment Information: Las Ventanas Ranch was issued a renewed drinking water permit on June 25, 2018. Source assessment information is available from the SLO County Environmental Health Office.

Time and Place of Regularly Scheduled Board Meetings for Public Participation: The board meets annually in May and quarterly as needed; meeting time/place is announced in advance.

For More Information, Contact: Las Ventanas Ranch Mutual Water Company, (805) 481-5664

About This Report

We test the drinking water quality for many constituents as required by state and federal regulations. This report shows the results of our monitoring for the period of January 1 to December 31, 2024, and may include earlier monitoring data.

Importance of This Report Statement in Five Non-English Languages (Spanish, Mandarin, Tagalog, Vietnamese, and Hmong)

Este informe contiene información muy importante sobre su agua para beber. Favor de comunicarse Las Ventanas Ranch Mutual Water Company a PO Box 1901, San Luis Obispo, CA 93406 o (805) 481-5664 para asistirlo en español.

这份报告含有关于您的饮用水的重要讯息。请用以下地址和电话联系 Las Ventanas Ranch Mutual Water Company 以获得中文的帮助: PO Box 1901, San Luis Obispo, CA 93406, (805) 481-5664.

Ang pag-uulat na ito ay naglalaman ng mahalagang impormasyon tungkol sa inyong inuming tubig. Mangyaring makipagugnayan sa Las Ventanas Ranch Mutual Water Company, PO Box 1901, San Luis Obispo, CA 93406 o tumawag sa (805) 481-5664 para matulungan sa wikang Tagalog.

Báo cáo này chứa thông tin quan trọng về nước uống của bạn. Xin vui lòng liên hệ Las Ventanas Ranch Mutual Water Company tại PO Box 1901, San Luis Obispo, CA 93406, (805) 481-5664 để được hỗ trợ giúp bằng tiếng Việt.

Tsab ntawv no muaj cov ntsiab lus tseem ceeb txog koj cov dej haus. Thov hu rau Las Ventanas Ranch Mutual Water Company ntawm PO Box 1901, San Luis Obispo, CA 93406, (805) 481-5664 rau kev pab hauv lus Askiv.

Terms Used in This Report

Term	Definition
Level 1 Assessment	A Level 1 assessment is a study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system.
Level 2 Assessment	A Level 2 assessment is a very detailed study of the water system to identify potential problems and determine (if possible) why an <i>E. coli</i> MCL violation has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions.
Maximum Contaminant Level (MCL)	The highest level of a contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs (or MCLGs) as is economically and technologically feasible. Secondary MCLs are set to protect the odor, taste, and appearance of drinking water.
Maximum Contaminant Level Goal (MCLG)	The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the U.S. Environmental Protection Agency (U.S. EPA).
Maximum Residual Disinfectant Level (MRDL)	The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.
Maximum Residual Disinfectant Level Goal (MRDLG)	The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.
Primary Drinking Water Standards (PDWS)	MCLs and MRDLs for contaminants that affect health along with their monitoring and reporting requirements, and water treatment requirements.
Public Health Goal (PHG)	The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California Environmental Protection Agency.
Regulatory Action Level (AL)	The concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow.
Secondary Drinking Water Standards (SDWS)	MCLs for contaminants that affect taste, odor, or appearance of the drinking water. Contaminants with SDWSs do not affect the health at the MCL levels.
Treatment Technique (TT)	A required process intended to reduce the level of a contaminant in drinking water.
Variances and Exemptions	Permissions from the State Water Resources Control Board (State Board) to exceed an MCL or not comply with a treatment technique under certain conditions.
ND	Not detectable at testing limit.
ppm	parts per million or milligrams per liter (mg/L)
ppb	parts per billion or micrograms per liter (µg/L)
ppt	parts per trillion or nanograms per liter (ng/L)
ppq	parts per quadrillion or picogram per liter (pg/L)
pCi/L	picocuries per liter (a measure of radiation)

Sources of Drinking Water and Contaminants that May Be Present in Source Water

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include:

- Microbial contaminants, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- Inorganic contaminants, such as salts and metals, that can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- Pesticides and herbicides, that may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses.
- Organic chemical contaminants, including synthetic and volatile organic chemicals, that are byproducts of industrial
 processes and petroleum production, and can also come from gas stations, urban stormwater runoff, agricultural
 application, and septic systems.
- Radioactive contaminants, that can be naturally-occurring or be the result of oil and gas production and mining activities.

Regulation of Drinking Water and Bottled Water Quality

In order to ensure that tap water is safe to drink, the U.S. EPA and the State Board prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. The U.S. Food and Drug Administration regulations and California law also establish limits for contaminants in bottled water that provide the same protection for public health.

About Your Drinking Water Quality

Drinking Water Contaminants Detected

Tables 1, 2, 3, 4, 5, 6, and 7 list all of the drinking water contaminants that were detected during the most recent sampling for the constituent. The presence of these contaminants in the water does not necessarily indicate that the water poses a health risk. The State Board allows us to monitor for certain contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of the data, though representative of the water quality, are more than one year old. Any violation of an AL, MCL, MRDL, or TT is asterisked. Additional information regarding the violation is provided later in this report.

Table 1. Sampling Results Showing the Detection of Coliform Bacteria

Microbiological Contaminants	Highest No. of Detections	No. of Months in Violation	MCL	MCLG	Typical Source of Bacteria
E. coli	(In the year)	0	(a)	0	Human and animal fecal waste

⁽a) Routine and repeat samples are total coliform-positive and either is *E. coli*-positive or system fails to take repeat samples following *E. coli*-positive routine sample or system fails to analyze total coliform-positive repeat sample for *E. coli*.

Table 2. Sampling Results Showing the Detection of Lead and Copper

Lead and Copper	Sample Date	No. of Samples Collected	90 th Percentile Level Detected	No. Sites Exceeding AL	AL	PHG	Typical Source of Contaminant
Lead (ppb)	September 2022	5	ND	0	15	0.2	Internal corrosion of household water plumbing systems; discharges from industrial manufacturers; erosion of natural deposits
Copper (ppm)	September 2022	5	0.340	0	1.3	0.3	Internal corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives

Table 3. Sampling Results for Sodium and Hardness

Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	MCL	PHG (MCLG)	Typical Source of Contaminant
Sodium – Distribution (ppm)	8/21/2020	36	N/A	Nana	None	Salt present in the water and is
Sodium – Wells (ppm)	8/11/2022	32	31 – 33	None	None	generally naturally occurring
Hardness – Wells (ppm)	8/11/2022	445	430 – 460	None	None	Sum of polyvalent cations present in the water, generally magnesium and calcium, and are usually naturally occurring

Table 4. Detection of Contaminants with a Primary Drinking Water Standard

Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	MCL [MRDL]	PHG (MCLG) [MRDLG]	Typical Source of Contaminant
Arsenic – Wells (ppb)	8/11/2022	2.5	2.2 – 2.8	10	0.004	Erosion of natural deposits; runoff from orchards; glass and electronics production wastes
Barium – Distribution (ppm)	8/21/2020	0.043	0.015 – 0.06	1	2	Discharges of oil drilling wastes and from metal
Barium – Wells (ppm)	8/11/2022	0.053	0.052 – 0.054	'	2	refineries; erosion of natural deposits
Cadmium – Distribution (ppb)*	8/21/2020 9/3/2020	2.88	ND – 9.4			Internal corrosion of galvanized pipes; erosion of natural deposits;
Cadmium – Wells (ppb)	8/11/2022	2.0	1.2 – 2.8	5	0.04	discharge from electroplating and industrial chemical factories, and metal refineries; runoff from waste batteries and paints
Chromium – Wells (ppb)	8/11/2022	6.50	5.7 – 7.3	50	(100)	Discharge from steel and pulp mills and chrome plating; erosion of natural deposits
Copper – Distribution (ppm)	8/21/2020	0.0015	0.0081 – 0.028	AL 42 02		Internal corrosion of household plumbing
Copper – Wells (ppm)	8/11/2022	0.001	ND - 0.002	AL = 1.3	0.3	systems; erosion of natural deposits; leaching from wood preservatives
Fluoride – Wells (ppm)	8/11/2022	0.37	0.35 – 0.38	2.0	1	Erosion of natural deposits; water additive that promotes strong teeth; discharge from fertilizer and aluminum factories
Gross Alpha Particle Activity – Wells (pCi/L)	8/11/2022	2.21	1.70 – 2.71	15	(0)	Erosion of natural deposits
Haloacetic Acids – Distribution (ppb)	8/5/2024	12	N/A	60	N/A	Byproduct of drinking water disinfection

Table 5. Detection of Contaminants with a Primary Drinking Water Standard, Continued

Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	MCL [MRDL]	PHG (MCLG) [MRDLG]	Typical Source of Contaminant
Lead – Distribution (ppb)	8/21/2020	0.56	ND – 1.7	AL = 15	0.2	Internal corrosion of household water plumbing systems; discharges from industrial manufacturers; erosion of natural deposits
Nickel – Distribution (ppb)	8/21/2020	12.73	5.1 – 27	100	12	Erosion of natural deposits; discharge from metal
Nickel – Wells (ppb)	8/11/2022	8.5	6 – 11	100	12	factories
Nitrate as N – Distribution (ppm)	2024 (various)	1.48	0.9 – 2.3	10	10	Runoff and leaching from fertilizer use; leaching from
Nitrate as N – Wells (ppm)	2024 (various)	1.94	0.8 – 4.2	(as N)	N) (as N)	septic tanks and sewage; erosion of natural deposits
Radium 226 – Wells (pCi/L)	8/11/2022	0.036	-0.148 – 0.219	5	0.05	Erosion of natural deposits
Radium 228 – Wells (pCi/L)	8/11/2022	0.340	0.284 - 0.396	5	0.019	Erosion of natural deposits
Selenium – Wells (ppb)	8/11/2022	18.95	7.9 – 30	50	30	Discharge from petroleum, glass, and metal refineries; erosion of natural deposits; discharge from mines and chemical manufacturers; runoff from livestock lots (feed additive)
Total Organic Carbon – TOC – Wells (mg/L)	8/11/2022	6.5	ND – 13	TT	N/A	Various natural and manmade sources
Total Trihalomethanes – Distribution (ppb)	8/5/2024	48	N/A	80	N/A	Byproduct of drinking water disinfection
Uranium – Wells (pCi/L)	8/11/2022	2.25	2.2 – 2.3	20	0.43	Erosion of natural deposits

Table 6. Detection of Contaminants with a Secondary Drinking Water Standard

Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	SMCL	PHG (MCLG)	Typical Source of Contaminant	
Chloride – Wells (ppm)	8/11/2022	23	22 – 24	500	N/A	Runoff/leaching from natural deposits; seawater influence	
Color – Wells (CU)	8/11/2022	1.5	ND – 3	15	N/A	Naturally-occurring organic materials	
Copper – Distribution (ppm)	8/21/2020	0.0015	0.0081 – 0.028	1.0	N/A	Internal corrosion of household plumbing systems;	
Copper – Wells (ppm)	8/11/2022	0.001	ND - 0.002	1.0	IN/A	erosion of natural deposits; leaching from wood preservatives	
Iron – Distribution (ppb)	2024 (various)	ND	ND	200	NI/A	Leaching from natural	
Iron – Wells (ppb)*	2024 (various)	330	ND – 3,100	300	N/A	deposits; industrial wastes	
Manganese – Distribution (ppb)*	2024 (various)	83.2	ND – 280	50	N/A	Leaching from natural	
Manganese – Wells (ppb)*	2024 (various)	168.9	58 – 300			deposits	
Specific Conductance – Wells (µS/cm)	8/11/2022	940	910 – 970	1,600	N/A	Substances that form ions when in water; seawater influence	
Sulfate – Wells (ppm)	8/11/2022	170	150 – 190	500	N/A	Runoff/leaching from natural deposits; industrial wastes	
Total Dissolved Solids – TDS – Wells (ppm)	12/9/2024	495	440 – 550	1,000	N/A	Runoff/leaching from natural deposits	
Turbidity – Wells (NTU)	12/9/2024	0.15	0.15	5	N/A	Soil runoff	
Zinc – Distribution (ppm)	8/21/2020	0.07	ND – 0.11	5	N/A	Runoff/leaching from natural deposits; industrial wastes	

^{*}Any violation of an MCL, MRDL, or TT is asterisked. Additional information regarding the violation is provided later in this report.

Table 7. Detection of Unregulated Contaminants

Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	Notification Level	Health Effects
Arsenic V (ppb)	8/11/2022	0.61	0.45 – 0.77	N/A	N/A
Salinity (ppm)	8/11/2022	6.2	6.1 – 6.3	N/A	N/A
Vanadium (ppb)	8/11/2022	2.6	ND – 5.2	50	Vanadium exposures resulted in developmental and reproductive effects in rats

Additional General Information on Drinking Water

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the U.S. EPA's Safe Drinking Water Hotline (1-800-426-4791).

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. U.S. EPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* and other microbial contaminants are available from the Safe Drinking Water Hotline (1-800-426-4791).

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Las Ventanas Ranch Mutual Water Company is responsible for providing high quality drinking water but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you do so, you may wish to collect the flushed water and reuse it for another beneficial purpose, such as watering plants. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline (1-800-426-4791) or at http://www.epa.gov/lead.

Manganese was found at levels that exceeded the secondary MCL (Maximum Contaminant Level) standards. The secondary MCLs were set to protect you against unpleasant aesthetic effects (e.g., color, taste, and odor) and the staining of plumbing fixtures (e.g., tubs and sinks) and clothing while washing. The high levels are most likely due to the leaching of natural deposits. The notification level for manganese is used to protect consumers from neurological effects. High levels of manganese in people have been shown to result in adverse effects to the nervous system. (The notification level for manganese is 500 ppb.) The Las Ventanas Ranch Mutual Water Company received Compliance Order Number $04_70_22R_001$ from the San Luis Obispo County Public Health Department in April 2022, requiring the system to install treatment for manganese, which was completed in December 2024. The maximum level of manganese detected in 2024 in the water distribution system that reaches our customers was measured at 280 ppb in our distribution pipelines, and 230

ppb in our water storage tank, which are both above the secondary MCL (50 ppb), but below the US EPA lifetime health advisory (HA) level (300 ppb). So far in 2025, there have been no detections of manganese in our distribution pipelines, and the maximum level detected in in our water storage tank was 16 ppb, which is in compliance with the secondary MCL.

Iron was found at a level that exceeded the secondary MCL (Maximum Contaminant Level) standard in a single raw well sample; all other raw well sample results for iron were in compliance with the secondary MCL during 2024. The secondary MCLs were set to protect you against unpleasant aesthetic effects (e.g., color, taste, and odor) and the staining of plumbing fixtures (e.g., tubs and sinks) and clothing while washing. The high result was most likely due to the leaching of natural deposits and/or industrial wastes. There were no detections of iron in samples collected from the water distribution system that reaches our customers during 2024.

Following system flushing on August 21, 2020, Cadmium was found at levels that exceeded the primary MCL (Maximum Contaminant Level) standards. Samples were collected from a hydrant at a dead-end within the system before and after flushing; samples collected prior to flushing were below the notification level and primary MCL. Las Ventanas Ranch Mutual Water Company suspects that flushing disturbed accumulations of these materials in the dead end, resulted in the higher than expected results.