2022 Consumer Confidence Report

Water System Information

Water System Name: H2O, Inc.

Report Date: April 6, 2023

Type of Water Source(s) in Use: Groundwater

Name and General Location of Source(s): Well 02 – Standby, Well 03, Arroyo Grande (35.180858, -120.566911)

Drinking Water Source Assessment Information: A source water assessment was conducted on Well 02 and Well 03 for the H2O, Inc. water system in January 2022. A copy of the complete assessment may be viewed at Environmental Health Services, 2156 Sierra Way, San Luis Obispo, CA 93401.

Time and Place of Regularly Scheduled Board Meetings for Public Participation: April 16, 2023, 10:00 am at 735 Tank Farm Road in San Luis Obispo, CA 93401.

For More Information, Contact: Ron Alers, President, 805-471-7069.

About This Report

We test the drinking water quality for many constituents as required by state and federal regulations. This report shows the results of our monitoring for the period of January 1 to December 31, 2022 and may include earlier monitoring data.

Importance of This Report Statement in Five Non-English Languages (Spanish, Mandarin, Tagalog, Vietnamese, and Hmong)

Language in Spanish: Este informe contiene información muy importante sobre su agua para beber. Favor de comunicarse H2O, Inc a 1730 Condado Vista, Arroyo Grande, CA 93420 or 805-471-7069 para asistirlo en español.

Language in Mandarin: 这份报告含有关于您的饮用水的重要讯息。请用以下地址和电话联系 [Enter Water System Name]以获得中文的帮助: 1730 Condado Vista, Arroyo Grande, CA 93420 or 805-471-7069.

Language in Tagalog: Ang pag-uulat na ito ay naglalaman ng mahalagang impormasyon tungkol sa inyong inuming tubig. Mangyaring makipag-ugnayan sa 1730 Condado Vista, Arroyo Grande, CA 93420 o tumawag sa 805-471-7069 para matulungan sa wikang Tagalog.

Language in Vietnamese: Báo cáo này chứa thông tin quan trọng về nước uống của bạn. Xin vui lòng liên hệ H2O, Inc tại 1730 Condado Vista, Arroyo Grande, CA 93420 or 805-471-7069 để được hỗ trợ giúp bằng tiếng Việt.

Language in Hmong: Tsab ntawv no muaj cov ntsiab lus tseem ceeb txog koj cov dej haus. Thov hu rau H2O, Inc ntawm 1730 Condado Vista, Arroyo Grande, CA 93420 or 805-471-7069 rau kev pab hauv lus Askiv.

Terms	Used	in	This	Report
-------	------	----	------	--------

Term	Definition
Level 1 Assessment	A Level 1 assessment is a study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system.
Level 2 Assessment	A Level 2 assessment is a very detailed study of the water system to identify potential problems and determine (if possible) why an <i>E. coli</i> MCL violation has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions.
Maximum Contaminant Level (MCL)	The highest level of a contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs (or MCLGs) as is economically and technologically feasible. Secondary MCLs are set to protect the odor, taste, and appearance of drinking water.
Maximum Contaminant Level Goal (MCLG)	The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the U.S. Environmental Protection Agency (U.S. EPA).
Maximum Residual Disinfectant Level (MRDL)	The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.
Maximum Residual Disinfectant Level Goal (MRDLG)	The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.
Primary Drinking Water Standards (PDWS)	MCLs and MRDLs for contaminants that affect health along with their monitoring and reporting requirements, and water treatment requirements.
Public Health Goal (PHG)	The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California Environmental Protection Agency.
Regulatory Action Level (AL)	The concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow.
Secondary Drinking Water Standards (SDWS)	MCLs for contaminants that affect taste, odor, or appearance of the drinking water. Contaminants with SDWSs do not affect the health at the MCL levels.
Treatment Technique (TT)	A required process intended to reduce the level of a contaminant in drinking water.
Variances and Exemptions	Permissions from the State Water Resources Control Board (State Board) to exceed an MCL or not comply with a treatment technique under certain conditions.
ND	Not detectable at testing limit.
ppm	parts per million or milligrams per liter (mg/L)
ppb	parts per billion or micrograms per liter (µg/L)

Term Definition						
ppt	parts per trillion or nanograms per liter (ng/L)					
ppq	parts per quadrillion or picogram per liter (pg/L)					
pCi/L	picocuries per liter (a measure of radiation)					

Sources of Drinking Water and Contaminants that May Be Present in Source Water

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include:

- Microbial contaminants, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- Inorganic contaminants, such as salts and metals, that can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- Pesticides and herbicides, that may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses.
- Organic chemical contaminants, including synthetic and volatile organic chemicals, that are byproducts of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, agricultural application, and septic systems.
- Radioactive contaminants, that can be naturally-occurring or be the result of oil and gas production and mining activities.

Regulation of Drinking Water and Bottled Water Quality

In order to ensure that tap water is safe to drink, the U.S. EPA and the State Board prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. The U.S. Food and Drug Administration regulations and California law also establish limits for contaminants in bottled water that provide the same protection for public health.

About Your Drinking Water Quality

Drinking Water Contaminants Detected

Tables 1, 2, 3, 4, 5, 6, and 8 list all of the drinking water contaminants that were detected during the most recent sampling for the constituent. The presence of these contaminants in the water does not necessarily indicate that the water poses a health risk. The State Board allows us to monitor for certain contaminants less than once per year because the concentrations of these contaminants do

not change frequently. Some of the data, though representative of the water quality, are more than one year old. Any violation of an AL, MCL, MRDL, or TT is asterisked. Additional information regarding the violation is provided later in this report.

Table 1. Sampling Results Showing the Detection of Coliform Bacteria

Complete if bacteria are detected.

Microbiological Contaminants	Highest No. of Detections	No. of Months in Violation	MCL	MCLG	Typical Source of Bacteria
E. coli	(In the year) 0	0	(a)	0	Human and animal fecal waste

(a) Routine and repeat samples are total coliform-positive and either is *E. coli*-positive or system fails to take repeat samples following *E. coli*-positive routine sample or system fails to analyze total coliform-positive repeat sample for *E. coli*.

Table 2. Sampling Results Showing the Detection of Lead and Copper

Complete if lead or copper is detected in the last sample set.

Lead and Copper	Sample Date	No. of Samples Collected	90 th Percentile Level Detected	No. Sites Exceeding AL	AL	рнс	Typical Source of Contaminant
Lead (ppb)	2021	5	0	0	15	0.2	Internal corrosion of household water plumbing systems; discharges from industrial manufacturers; erosion of natural deposits
Copper (ppm)	2021	5	0.175	0	1.3	0.3	Internal corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives

Table 3. Sampling Results for Sodium and Hardness

Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	MCL	PHG (MCLG)	Typical Source of Contaminant
Sodium (ppm)	2020	58.5	49 – 68	None		Salt present in the water and is generally naturally occurring

Hardness (ppm)	2020	360	-	None	None	Sum of polyvalent cations present in the water, generally magnesium and calcium, and are usually naturally occurring
----------------	------	-----	---	------	------	--

Table 4. Detection of Contaminants with a Primary Drinking Water Standard

Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	MCL [MRDL]	PHG (MCLG) [MRDLG]	Typical Source of Contaminant
Arsenic (µg/L)	2017 (Well 2)	9.1	-	10	0.004	Erosion of natural deposits; runoff from orchards; glass and electronics production wastes
Barium (µg/L)	2020 (Well 3)	200	-	1000	2000	Discharges of oil drilling wastes and from metal refineries; erosion of natural deposits
Cadmium (µg/L)	2017 (Well 2)	1.7	-	5	0.04	Internal corrosion of galvanized pipes; erosion of natural deposits; discharge from electroplating and industrial chemical factories, and metal refineries; runoff from waste batteries and paints
Fluoride (µg/L)	2020 (Well 3)	310	-	2000	1000	Erosion of natural deposits; water

						additive that promotes strong teeth; discharge from fertilizer and aluminum factories
Gross Alpha Particle Activity (pCi/L)	2019	7.2	4.6 – 9.8	15	0	Erosion of natural deposits
Nitrate – Nitrite (µg/L)	2021 (Well 3)	500	-	10,000	10,000	Runoff and leaching from fertilizer use; leaching from septic tanks and sewage; erosion of natural deposits
Total Trihalomethane (μg/L)	2022	38	-	80	N/A	Byproduct of drinking water disinfection
Total Haloacetic Acids (µg/L)	2022	6	-	60	N/A	Byproduct of drinking water disinfection

Table 5. Detection of Contaminants with a Secondary Drinking Water Standard

Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	SMCL	PHG (MCLG)	Typical Source of Contaminant
Color (units)	2017 (Well 2)	5	-	15	N/A	Naturally-occurring organic materials
lron (μg/L)	2017 (Well 2)	540*	-	300	N/A	Leaching from natural deposits; industrial wastes
Manganese (µg/L)	2020 (Well 3)	50	-	50	N/A	Leaching from natural deposits
Odor Threshold (units)	2020 (Well 3)	3	-	3	N/A	Naturally-occurring organic materials
Turbidity (NTU)	2020 (Well 3)	0.54	-	5	N/A	Soil runoff
Total Dissolved Solids (TDS) (mg/L)	2020 (Well 3)	520	-	1000	N/A	Runoff/leaching from natural deposits

Conductivity (umho/cm)	2022 (Well 3)	930	-	1600	N/A	Substances that form ions when in water; seawater influence
Chloride (mg/L)	2020 (Well 3)	84	-	500	N/A	Runoff/leaching from natural deposits; seawater influence
Sulfate (mg/L)	2020 (Well 3)	44	-	500	N/A	Runoff/leaching from natural deposits; industrial wastes

Table 6. Detection of Unregulated Contaminants

Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	Notification Level	Health Effects
N/A	N/A	N/A	N/A	N/A	N/A

Additional General Information on Drinking Water

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the U.S. EPA's Safe Drinking Water Hotline (1-800-426-4791).

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. U.S. EPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* and other microbial contaminants are available from the Safe Drinking Water Hotline (1-800-426-4791).

Lead-Specific Language: If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. [Enter Water System's Name] is responsible for providing high quality drinking water but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. [Optional: If you do so, you may wish to collect the flushed water and reuse it for another beneficial purpose, such as watering plants.] If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline (1-800-426-4791) or at http://www.epa.gov/lead.

While your drinking water meets the federal and state standard for arsenic, it does contain low levels of arsenic. The arsenic standard balances the current understanding of arsenic's possible health effects against the cost of removing arsenic from drinking water. The U.S. Environmental Protection Agency continues to research the health effects of low levels of arsenic, which is a mineral known to cause cancer in humans at high concentrations and is linked to other health effects such as skin damage and circulatory problems. Please note that arsenic has only been detected in Well 02, which is a stand-by well. Well 03, which is the primary production well, is non-detect for arsenic.

Summary Information for Violation of a MCL, MRDL, AL, TT, or Monitoring and Reporting Requirement

Violation	Explanation	Duration	Actions Taken to Correct Violation	Health Effects Language
Iron SMCL	Iron was found at levels that exceed the secondary MCL of 300 µg/L. The iron MCL was set to protect you against unpleasant aesthetic effects (e.g., color, taste, and odor) and the staining of plumbing fixtures (e.g., tubs and sinks) and clothing while washing. The high iron levels are due to leaching of natural deposits."		Iron was only detected in Well 02, which is a standby well and not in production. Well 02 continues to be a standby well. Well 03, the primary production well, is non-detect for iron.	N/A

Table 7. Violation of a MCL, MRDL, AL, TT or Monitoring Reporting Requirement

For Water Systems Providing Groundwater as a Source of Drinking Water

 Table 8. Sampling Results Showing Fecal Indicator-Positive Groundwater Source Samples

Microbiological Contaminants (complete if fecal- indicator detected)	Total No. of Detections	Sample Dates	MCL [MRDL]	PHG (MCLG) [MRDLG]	Typical Source of Contaminant
E. coli	(In the year) 0	-	0	(0)	Human and animal fecal waste
Enterococci	(In the year) 0	-	ТТ	N/A	Human and animal fecal waste
Coliphage	(In the year) 0	-	TT	N/A	Human and animal fecal waste

Summary Information for Fecal Indicator-Positive Groundwater Source Samples, Uncorrected Significant Deficiencies, or Violation of a Groundwater TT

Special Notice of Fecal Indicator-Positive Groundwater Source Sample: N/A

Special Notice for Uncorrected Significant Deficiencies: N/A

Table 9. Violation of Groundwater TT

Violation	Explanation	Duration	Actions Taken to Correct Violation	Health Effects Language
N/A				

H2O, INC - WELL 03 (4000741-007)

LAST AND NEXT SAMPLE REPORT

PS Codes	Group Name	Analyte Number	Analyte Name	Detected Level	Less Than	RL	Unit	MCL	DLR	Last Sampled	Frequency	Next Due	Notes
CA4000741_007_007	SECONDARY/ GP	1928	ALKALINITY, BICARBONATE	370.000			MG/L			12-08-2020	36	2023/12	
CA4000741_007_007	SECONDARY/ GP	1919	CALCIUM	81.000			MG/L			12-08-2020	36	2023/12	
CA4000741_007_007	SECONDARY/ GP	1929	ALKALINITY, CARBONATE		<		MG/L			12-08-2020	36	2023/12	
CA4000741_007_007	SECONDARY/ GP	1017	CHLORIDE	84.000			MG/L	500		12-08-2020	36	2023/12	
CA4000741_007_007	SECONDARY/ GP	1905	COLOR		<		UNITS	15		12-08-2020	36	2023/12	
CA4000741_007_007	SECONDARY/ GP	1022	COPPER, FREE		<	50.000	UG/L	1000	50	12-08-2020	36	2023/12	
CA4000741_007_007	SECONDARY/ GP	2905	FOAMING AGENTS (SURFACTANTS)		<		MG/L	.5		12-08-2020	36	2023/12	
CA4000741_007_007	SECONDARY/ GP	1915	HARDNESS, TOTAL (AS CACO3)	360.000			MG/L			12-08-2020	36	2023/12	
CA4000741_007_007	SECONDARY/ GP	1021	HYDROXIDE AS CALCIUM CARBONATE		<		MG/L			12-08-2020	36	2023/12	
CA4000741_007_007	SECONDARY/ GP	1028	IRON		<	100.000	UG/L	300	100	12-08-2020	36	2023/12	
CA4000741_007_007	SECONDARY/ GP	1031	MAGNESIUM	38.000			MG/L			12-08-2020	36	2023/12	
CA4000741_007_007	SECONDARY/ GP	1032	MANGANESE	50.000		20.000	UG/L	50	20	12-08-2020	36	2023/12	
CA4000741_007_007	SECONDARY/ GP	1920	ODOR	3.000		1.000	TON	3	1	12-08-2020	36	2023/12	
CA4000741_007_007	SECONDARY/ GP	1925	PH	7.700			рН			12-08-2020	36	2023/12	
CA4000741_007_007	SECONDARY/ GP	1050	SILVER		<	10.000	UG/L	100	10	12-08-2020	36	2023/12	

PS Codes	Group Name	Analyte Number	Analyte Name	Detected Level	Less Than	RL	Unit	MCL	DLR	Last Sampled	Frequency	Next Due	Notes
CA4000741_007_007	SECONDARY/ GP	1052	SODIUM	49.000			MG/L			12-08-2020	36	2023/12	
CA4000741_007_007	SECONDARY/ GP	1064	CONDUCTIVITY @ 25 C UMHOS/CM	930.000		1.000	UMHO/ CM	1600		04-19-2022	36	2025/04	
CA4000741_007_007	SECONDARY/ GP	1055	SULFATE	44.000		0.500	MG/L	500	.5	12-08-2020	36	2023/12	
CA4000741_007_007	SECONDARY/ GP	1930	TDS	520.000			MG/L	1000		12-08-2020	36	2023/12	
CA4000741_007_007	SECONDARY/ GP	0100	TURBIDITY	0.540		0.100	NTU	5	.1	12-08-2020	36	2023/12	
CA4000741_007_007	SECONDARY/ GP	1095	ZINC		<	50.000	UG/L	5000	50	12-08-2020	36	2023/12	
CA4000741_007_007	INORGANIC	1002	ALUMINUM		<	50.000	UG/L	1000	50	12-08-2020	36	2023/12	
CA4000741_007_007	INORGANIC	1074	ANTIMONY, TOTAL		<	6.000	UG/L	6	6	12-08-2020	36	2023/12	
CA4000741_007_007	INORGANIC	1005	ARSENIC		<	2.000	UG/L	10	2	12-08-2020	36	2023/12	
CA4000741_007_007	INORGANIC	1010	BARIUM	200.000		100.000	UG/L	1000	100	12-08-2020	36	2023/12	
CA4000741_007_007	INORGANIC	1075	BERYLLIUM, TOTAL		<	1.000	UG/L	4	1	12-08-2020	36	2023/12	
CA4000741_007_007	INORGANIC	1015	CADMIUM		<	1.000	UG/L	5	1	12-08-2020	36	2023/12	
CA4000741_007_007	INORGANIC	1020	CHROMIUM		<	10.000	UG/L	50	10	12-08-2020	36	2023/12	
CA4000741_007_007	INORGANIC	1024	CYANIDE		<	100.000	UG/L	150	100	12-08-2020	36	2023/12	
CA4000741_007_007	INORGANIC	1025	FLUORIDE	0.310		0.100	MG/L	2	.1	12-08-2020	36	2023/12	
CA4000741_007_007	INORGANIC	1030	LEAD		<	5.000	UG/L		5	12-08-2020	36	2023/12	
CA4000741_007_007	INORGANIC	1035	MERCURY		<	1.000	UG/L	2	1	12-08-2020	36	2023/12	
CA4000741_007_007	INORGANIC	1036	NICKEL		<	10.000	UG/L	100	10	12-08-2020	36	2023/12	
CA4000741_007_007	INORGANIC	1039	PERCHLORATE		<	2.000	UG/L	6	2	04-19-2022	36	2025/04	
CA4000741_007_007	INORGANIC	1045	SELENIUM		<	5.000	UG/L	50	5	12-08-2020	36	2023/12	
CA4000741_007_007	INORGANIC	1085	THALLIUM, TOTAL		<	1.000	UG/L	2	1	12-08-2020	36	2023/12	
CA4000741_007_007	NITRATE/ NITRITE	1040	NITRATE		<	0.230	MG/L	10	.4	06-14-2022	12	2023/06	
CA4000741_007_007	NITRATE/ NITRITE	1038	NITRATE-NITRITE	0.500		0.100	MG/L	10	.4	11-08-2021	36	2024/11	
CA4000741_007_007	NITRATE/ NITRITE	1041	NITRITE		<	0.100	MG/L	1	.4	11-08-2021	36	2024/11	

PS Codes	Group Name	Analyte Number	Analyte Name	Detected Level	Less Than	RL	Unit	MCL	DLR	Last Sampled	Frequency	Next Due	Notes
CA4000741_007_007	RADIOLOGICAL	4109	GROSS ALPHA PARTICLE ACTIVITY	4.600 +/- 0.936		0.900	PCI/L	15	3	10-08-2019	108	2028/10	
CA4000741_007_007	REGULATED VOC	2981	1,1,1-TRICHLOROETHANE		<	0.500	UG/L	200	.5	12-12-2017	72	2023/12	
CA4000741_007_007	REGULATED VOC	2988	1,1,2,2-TETRACHLOROETHANE		<	0.500	UG/L	1	.5	12-12-2017	72	2023/12	
CA4000741_007_007	REGULATED VOC	2985	1,1,2-TRICHLOROETHANE		<	0.500	UG/L	5	.5	12-12-2017	72	2023/12	
CA4000741_007_007	REGULATED VOC	2978	1,1-DICHLOROETHANE		<	0.500	UG/L	5	.5	12-12-2017	72	2023/12	
CA4000741_007_007	REGULATED VOC	2977	1,1-DICHLOROETHYLENE		<	0.500	UG/L	6	.5	12-12-2017	72	2023/12	
CA4000741_007_007	REGULATED VOC	2378	1,2,4-TRICHLOROBENZENE		<	0.500	UG/L	5	.5	12-12-2017	72	2023/12	
CA4000741_007_007	REGULATED VOC	2968	O-DICHLOROBENZENE		<	0.500	UG/L	600	.5	12-12-2017	72	2023/12	
CA4000741_007_007	REGULATED VOC	2980	1,2-DICHLOROETHANE		<	0.500	UG/L	.5	.5	12-12-2017	72	2023/12	
CA4000741_007_007	REGULATED VOC	2983	1,2-DICHLOROPROPANE		<	0.500	UG/L	5	.5	12-12-2017	72	2023/12	
CA4000741_007_007	REGULATED VOC	2413	1,3-DICHLOROPROPENE		<	0.500	UG/L	.5	.5	12-12-2017	72	2023/12	
CA4000741_007_007	REGULATED VOC	2969	P-DICHLOROBENZENE		<	0.500	UG/L	5	.5	12-12-2017	72	2023/12	
CA4000741_007_007	REGULATED VOC	2990	BENZENE		<	0.500	UG/L	1	.5	12-12-2017	72	2023/12	
CA4000741_007_007	REGULATED VOC	2982	CARBON TETRACHLORIDE		<	0.500	UG/L	.5	.5	12-12-2017	72	2023/12	
CA4000741_007_007	REGULATED VOC	2380	CIS-1,2-DICHLOROETHYLENE		<	0.500	UG/L	6	.5	12-12-2017	72	2023/12	
CA4000741_007_007	REGULATED VOC	2964	DICHLOROMETHANE		<	0.500	UG/L	5	.5	12-12-2017	72	2023/12	
CA4000741_007_007	REGULATED VOC	2992	ETHYLBENZENE		<	0.500	UG/L	300	.5	12-12-2017	72	2023/12	
CA4000741_007_007	REGULATED	2251	METHYL TERT-BUTYL ETHER		<	3.000	UG/L	13	3	12-12-2017	72	2023/12	

PS Codes	Group Name	Analyte Number	Analyte Name	Detected Level	Less Than	RL	Unit	MCL	DLR	Last Sampled	Frequency	Next Due	Notes
	VOC												
CA4000741_007_007	REGULATED VOC	2989	CHLOROBENZENE		<	0.500	UG/L	70	.5	12-12-2017	72	2023/12	
CA4000741_007_007	REGULATED VOC	2996	STYRENE		<	0.500	UG/L	100	.5	12-12-2017	72	2023/12	
CA4000741_007_007	REGULATED VOC	2987	TETRACHLOROETHYLENE		<	0.500	UG/L	5	.5	12-12-2017	72	2023/12	
CA4000741_007_007	REGULATED VOC	2991	TOLUENE		<	0.500	UG/L	150	.5	12-12-2017	72	2023/12	
CA4000741_007_007	REGULATED VOC	2979	TRANS-1,2- DICHLOROETHYLENE		<	0.500	UG/L	10	.5	12-12-2017	72	2023/12	
CA4000741_007_007	REGULATED VOC	2984	TRICHLOROETHYLENE		<	0.500	UG/L	5	.5	12-12-2017	72	2023/12	
CA4000741_007_007	REGULATED VOC	2218	TRICHLOROFLUOROMETHANE		<	5.000	UG/L	150	5	12-12-2017	72	2023/12	
CA4000741_007_007	REGULATED VOC	2904	TRICHLOROTRIFLUOROETHANE		<	10.000	UG/L	1200	10	12-12-2017	72	2023/12	
CA4000741_007_007	REGULATED VOC	2976	VINYL CHLORIDE		<	0.500	UG/L	.5	.5	12-12-2017	72	2023/12	
CA4000741_007_007	REGULATED VOC	2955	XYLENES, TOTAL		<	0.500	UG/L	1750	0.5	12-12-2017	72	2023/12	
CA4000741_007_007	REGULATED SOC	2414	1,2,3-TRICHLOROPROPANE		<		UG/L	0.005		04-23-2020	36	2023/04	DUE NOW
CA4000741_007_007	REGULATED SOC	2050	ATRAZINE		<	0.500	UG/L	1	.5	07-05-2016	108	2025/07	
CA4000741_007_007	REGULATED SOC	2037	SIMAZINE		<	1.000	UG/L	4	1	07-05-2016	108	2025/07	

H2O, INC - WELL 02 (4000741-002)

LAST AND NEXT SAMPLE REPORT

PS Codes	Group Name	Analyte Number	Analyte Name	Detected Level	Less Than	RL	Unit	MCL	DLR	Last Sampled	Frequency	Next Due	Notes
CA4000741_002_002	SECONDARY/ GP	1928	ALKALINITY, BICARBONATE	410.000			MG/L			12-12-2017	108	2026/12	
CA4000741_002_002	SECONDARY/ GP	1919	CALCIUM	130.000			MG/L			12-12-2017	108	2026/12	
CA4000741_002_002	SECONDARY/ GP	1929	ALKALINITY, CARBONATE		<		MG/L			12-12-2017	108	2026/12	
CA4000741_002_002	SECONDARY/ GP	1017	CHLORIDE	130.000			MG/L	500		12-12-2017	108	2026/12	
CA4000741_002_002	SECONDARY/ GP	1905	COLOR	5.000			UNITS	15		12-12-2017	108	2026/12	
CA4000741_002_002	SECONDARY/ GP	1022	COPPER, FREE		<	50.000	UG/L	1000	50	12-12-2017	108	2026/12	
CA4000741_002_002	SECONDARY/ GP	2905	FOAMING AGENTS (SURFACTANTS)		<		MG/L	.5		12-12-2017	108	2026/12	
CA4000741_002_002	SECONDARY/ GP	1915	HARDNESS, TOTAL (AS CACO3)	530.000			MG/L			12-12-2017	108	2026/12	
CA4000741_002_002	SECONDARY/ GP	1021	HYDROXIDE AS CALCIUM CARBONATE		<		MG/L			12-12-2017	108	2026/12	
CA4000741_002_002	SECONDARY/ GP	1028	IRON	540.000		100.000	UG/L	300	100	12-12-2017	108	2026/12	
CA4000741_002_002	SECONDARY/ GP	1031	MAGNESIUM	49.000			MG/L			12-12-2017	108	2026/12	
CA4000741_002_002	SECONDARY/ GP	1032	MANGANESE	220.000		20.000	UG/L	50	20	12-12-2017	108	2026/12	
CA4000741_002_002	SECONDARY/ GP	1920	ODOR	1.000		1.000	TON	3	1	12-12-2017	108	2026/12	
CA4000741_002_002	SECONDARY/ GP	1925	PH	7.700			рН			12-12-2017	108	2026/12	
CA4000741_002_002	SECONDARY/ GP	1050	SILVER		<	10.000	UG/L	100	10	12-12-2017	108	2026/12	

PS Codes	Group Name	Analyte Number	Analyte Name	Detected Level	Less Than	RL	Unit	MCL	DLR	Last Sampled	Frequency	Next Due	Notes
CA4000741_002_002	SECONDARY/ GP	1052	SODIUM	68.000			MG/L			12-12-2017	108	2026/12	
CA4000741_002_002	SECONDARY/ GP	1064	CONDUCTIVITY @ 25 C UMHOS/CM	1200.000			UMHO/ CM	1600		10-08-2019	108	2028/10	
CA4000741_002_002	SECONDARY/ GP	1055	SULFATE	120.000		0.500	MG/L	500	.5	12-12-2017	108	2026/12	
CA4000741_002_002	SECONDARY/ GP	1930	TDS	740.000			MG/L	1000		12-12-2017	108	2026/12	
CA4000741_002_002	SECONDARY/ GP	0100	TURBIDITY	2.800		0.100	NTU	5	.1	12-12-2017	108	2026/12	
CA4000741_002_002	SECONDARY/ GP	1095	ZINC		<	50.000	UG/L	5000	50	12-12-2017	108	2026/12	
CA4000741_002_002	INORGANIC	1002	ALUMINUM		<	50.000	UG/L	1000	50	12-12-2017	108	2026/12	
CA4000741_002_002	INORGANIC	1074	ANTIMONY, TOTAL		<	6.000	UG/L	6	6	12-12-2017	108	2026/12	
CA4000741_002_002	INORGANIC	1005	ARSENIC	9.100		2.000	UG/L	10	2	12-12-2017	108	2026/12	
CA4000741_002_002	INORGANIC	1010	BARIUM		<	100.000	UG/L	1000	100	12-12-2017	108	2026/12	
CA4000741_002_002	INORGANIC	1075	BERYLLIUM, TOTAL		<	1.000	UG/L	4	1	12-12-2017	108	2026/12	
CA4000741_002_002	INORGANIC	1015	CADMIUM	1.700		1.000	UG/L	5	1	12-12-2017	108	2026/12	
CA4000741_002_002	INORGANIC	1020	CHROMIUM		<	10.000	UG/L	50	10	12-12-2017	108	2026/12	
CA4000741_002_002	INORGANIC	1024	CYANIDE		<	100.000	UG/L	150	100	12-12-2017	108	2026/12	
CA4000741_002_002	INORGANIC	1025	FLUORIDE	0.260		0.100	MG/L	2	.1	12-12-2017	108	2026/12	
CA4000741_002_002	INORGANIC	1030	LEAD		<	5.000	UG/L		5	12-12-2017	108	2026/12	
CA4000741_002_002	INORGANIC	1035	MERCURY		<	1.000	UG/L	2	1	12-12-2017	108	2026/12	
CA4000741_002_002	INORGANIC	1036	NICKEL		<	10.000	UG/L	100	10	12-12-2017	108	2026/12	
CA4000741_002_002	INORGANIC	1039	PERCHLORATE		<	4.000	UG/L	6	4	10-08-2019	108	2028/10	
CA4000741_002_002	INORGANIC	1045	SELENIUM		<	5.000	UG/L	50	5	12-12-2017	108	2026/12	
CA4000741_002_002	INORGANIC	1085	THALLIUM, TOTAL		<	1.000	UG/L	2	1	12-12-2017	108	2026/12	
CA4000741_002_002	NITRATE/ NITRITE	1040	NITRATE		<	0.230	MG/L	10	.4	06-14-2022	12	2023/06	
CA4000741_002_002	NITRATE/ NITRITE	1041	NITRITE		<	0.100	MG/L	1	.4	11-08-2021	108	2030/11	
CA4000741_002_002	RADIOLOGICAL	4109	GROSS ALPHA PARTICLE ACTIVITY	9.870 +/- 1.370		1.000	PCI/L	15	3	10-08-2019	108	2028/10	

PS Codes	Group Name	Analyte Number	Analyte Name	Detected Level	Less Than	RL	Unit	MCL	DLR	Last Sampled	Frequency	Next Due	Notes
CA4000741_002_002	REGULATED VOC	2981	1,1,1-TRICHLOROETHANE		<	0.500	UG/L	200	.5	12-12-2017	108	2026/12	
CA4000741_002_002	REGULATED VOC	2988	1,1,2,2-TETRACHLOROETHANE		<	0.500	UG/L	1	.5	12-12-2017	108	2026/12	
CA4000741_002_002	REGULATED VOC	2985	1,1,2-TRICHLOROETHANE		<	0.500	UG/L	5	.5	12-12-2017	108	2026/12	
CA4000741_002_002	REGULATED VOC	2978	1,1-DICHLOROETHANE		<	0.500	UG/L	5	.5	12-12-2017	108	2026/12	
CA4000741_002_002	REGULATED VOC	2977	1,1-DICHLOROETHYLENE		<	0.500	UG/L	6	.5	12-12-2017	108	2026/12	
CA4000741_002_002	REGULATED VOC	2378	1,2,4-TRICHLOROBENZENE		<	0.500	UG/L	5	.5	12-12-2017	108	2026/12	
CA4000741_002_002	REGULATED VOC	2968	O-DICHLOROBENZENE		<	0.500	UG/L	600	.5	12-12-2017	108	2026/12	
CA4000741_002_002	REGULATED VOC	2980	1,2-DICHLOROETHANE		<	0.500	UG/L	.5	.5	12-12-2017	108	2026/12	
CA4000741_002_002	REGULATED VOC	2983	1,2-DICHLOROPROPANE		<	0.500	UG/L	5	.5	12-12-2017	108	2026/12	
CA4000741_002_002	REGULATED VOC	2413	1,3-DICHLOROPROPENE		<	0.500	UG/L	.5	.5	12-12-2017	108	2026/12	
CA4000741_002_002	REGULATED VOC	2969	P-DICHLOROBENZENE		<	0.500	UG/L	5	.5	12-12-2017	108	2026/12	
CA4000741_002_002	REGULATED VOC	2990	BENZENE		<	0.500	UG/L	1	.5	12-12-2017	108	2026/12	
CA4000741_002_002	REGULATED VOC	2982	CARBON TETRACHLORIDE		<	0.500	UG/L	.5	.5	12-12-2017	108	2026/12	
CA4000741_002_002	REGULATED VOC	2380	CIS-1,2-DICHLOROETHYLENE		<	0.500	UG/L	6	.5	12-12-2017	108	2026/12	
CA4000741_002_002	REGULATED VOC	2964	DICHLOROMETHANE		<	0.500	UG/L	5	.5	12-12-2017	108	2026/12	
CA4000741_002_002	REGULATED VOC	2992	ETHYLBENZENE		<	0.500	UG/L	300	.5	12-12-2017	108	2026/12	
CA4000741_002_002	REGULATED VOC	2251	METHYL TERT-BUTYL ETHER		<	3.000	UG/L	13	3	12-12-2017	108	2026/12	
CA4000741_002_002	REGULATED	2989	CHLOROBENZENE		<	0.500	UG/L	70	.5	12-12-2017	108	2026/12	

PS Codes	Group Name	Analyte Number	Analyte Name	Detected Level	Less Than	RL	Unit	MCL	DLR	Last Sampled	Frequency	Next Due	Notes
	VOC												
CA4000741_002_002	REGULATED VOC	2996	STYRENE		<	0.500	UG/L	100	.5	12-12-2017	108	2026/12	
CA4000741_002_002	REGULATED VOC	2987	TETRACHLOROETHYLENE		<	0.500	UG/L	5	.5	12-12-2017	108	2026/12	
CA4000741_002_002	REGULATED VOC	2991	TOLUENE		<	0.500	UG/L	150	.5	12-12-2017	108	2026/12	
CA4000741_002_002	REGULATED VOC	2979	TRANS-1,2- DICHLOROETHYLENE		<	0.500	UG/L	10	.5	12-12-2017	108	2026/12	
CA4000741_002_002	REGULATED VOC	2984	TRICHLOROETHYLENE		<	0.500	UG/L	5	.5	12-12-2017	108	2026/12	
CA4000741_002_002	REGULATED VOC	2218	TRICHLOROFLUOROMETHANE		<	5.000	UG/L	150	5	12-12-2017	108	2026/12	
CA4000741_002_002	REGULATED VOC	2904	TRICHLOROTRIFLUOROETHANE		<	10.000	UG/L	1200	10	12-12-2017	108	2026/12	
CA4000741_002_002	REGULATED VOC	2976	VINYL CHLORIDE		<	0.500	UG/L	.5	.5	12-12-2017	108	2026/12	
CA4000741_002_002	REGULATED VOC	2955	XYLENES, TOTAL		<	0.500	UG/L	1750	0.5	12-12-2017	108	2026/12	
CA4000741_002_002	REGULATED SOC	2414	1,2,3-TRICHLOROPROPANE		<	0.005	UG/L	0.005		04-19-2022	36	2025/04	
CA4000741_002_002	REGULATED SOC	2050	ATRAZINE		<	0.500	UG/L	1	.5	07-05-2016	108	2025/07	
CA4000741_002_002	REGULATED SOC	2037	SIMAZINE		<	1.000	UG/L	4	1	07-05-2016	108	2025/07	

CA Drinking Water Watch

Lead and Copper Next Sampling Due Dates

PS Code Transition

Links

Watan Swatam Dataila	Water System No. :	CA4000741	Federal Type :	С
Water System Details	Water System Name :	H2O, INC	State Type :	С
	Principal County Served :	SAN LUIS OBISPO	Primary Source :	GW
Water System Facilities	Status :	А	Activity Date :	08-08-2016
	Distribution System Classification :	D1	Max Treatment Plant Classification :	TD
Monitoring Schedules				

Monitoring Results

Monitoring	Results	<u>By</u>
Analyte		0

Lead And Copper Sampling

- Summaries
- Next Sampling Due Dates
- All Lead Sampling Results
- All Copper Sampling Results

Violations/Enforcement Actions

Site Visits

Consumer Confidence Reports

Lead Service Line Documents

Return Links

Water System Search

County Map

<u>Glossary</u>

Contact Info

<u>incuties</u>												
esults esults By	Analyte Name	Required # Samples	Frequencies	Last MP Begin	MP		Last Collection End	# Samples Collected	Last 90th Percentile (mg/L)		MP	Sampling
	COPPER	5	3Y	01- 01- 2021	12- 31- 2023	07-27- 2021	07-27- 2021	5	0.175	01- 01- 2022	12- 31- 2024	09-30- 2024
ries mpling	LEAD	5	3Y	01- 01- 2021	12- 31- 2023	07-27- 2021	07-27- 2021	5	0	01- 01- 2022	12- 31- 2024	09-30- 2024
tos												

H2O, INC - DISINFEC...* (4000741-500)

LAST AND NEXT SAMPLE REPORT

PS Codes	Group Name	Analyte Number	Analyte Name	Detected Level	Less Than	RL	Unit	MCL	DLR	Last Sampled	Frequency	Next Due	Notes
CA4000741_DST_500	DISINFECTION BYPRODUCTS	2943	BROMODICHLOROMETHANE	5.900		0.500	UG/ L		1	08-23-2022	36	2025/08	
CA4000741_DST_500	DISINFECTION BYPRODUCTS	2942	BROMOFORM	16.000		0.500	UG/ L		1	08-23-2022	36	2025/08	
CA4000741_DST_500	DISINFECTION BYPRODUCTS	2941	CHLOROFORM	1.600		0.500	UG/ L		1	08-23-2022	36	2025/08	
CA4000741_DST_500	DISINFECTION BYPRODUCTS	2454	DIBROMOACETIC ACID	4.800		1.000	UG/ L		1	08-23-2022	36	2025/08	
CA4000741_DST_500	DISINFECTION BYPRODUCTS	2944	DIBROMOCHLOROMETHANE	15.000		0.500	UG/ L		1	08-23-2022	36	2025/08	
CA4000741_DST_500	DISINFECTION BYPRODUCTS	2451	DICHLOROACETIC ACID	1.100		1.000	UG/ L		1	08-23-2022	36	2025/08	
CA4000741_DST_500	DISINFECTION BYPRODUCTS	2456	TOTAL HALOACETIC ACIDS (HAA5)	6.000		2.000	UG/ L	60		08-23-2022	36	2025/08	
CA4000741_DST_500	DISINFECTION BYPRODUCTS	2453	MONOBROMOACETIC ACID		<	1.000	UG/ L		1	08-23-2022	36	2025/08	
CA4000741_DST_500	DISINFECTION BYPRODUCTS	2450	MONOCHLOROACETIC ACID		<	2.000	UG/ L		2	08-23-2022	36	2025/08	
CA4000741_DST_500	DISINFECTION BYPRODUCTS	2950	ТТНМ	38.000		0.500	UG/ L	80		08-23-2022	36	2025/08	
CA4000741_DST_500	DISINFECTION BYPRODUCTS	2452	TRICHLOROACETIC ACID		<	1.000	UG/ L		1	08-23-2022	36	2025/08	