Annual Consumer Report On the Quality of Tap Water

DLA San Joaquin 2019

Este informe contiene información muy importante sobre su agua potable. Tradúzcalo o hable con alguien que lo entienda bien.

The domestic water supply for this area is provided by a state small water system. Regulatory requirements for the operation of a state small water system are less extensive than requirements for larger public water systems. Mr. James Paslak, Environmental Protection Specialist, prepared this Consumer Confidence Report. If you have questions concerning your water supply, you should contact:

DDJC Service Desk 839-4541 DDJC Water/Wastewater Program Manager Mr. James Paslak, 839-4081 Your local Health Department

Introduction

This is an annual report on water quality prepared by the DLA San Joaquin Environmental Office. Community water systems are required to report water quality information to the consuming public under the "Consumer Confidence Reporting Rule" of the federal Safe Drinking Water Act (SDWA). This report presents information on the source of our water, its constituents and the health risks associated with any contaminants.

The drinking water delivered to you is pumped from the *Tulare Aquifer*, a groundwater source, by three (3) wells located on the Tracy facility.

Source Water Assessment

The 1996 Amendments to the SDWA established related programs for states, called the Source Water Assessment Program (SWAP). The key elements of this program are protection area and zone delineation, inventory of possible contaminating activities (PCAs), and vulnerability analysis.

EPA's guidance indicates that the intent of the 1996 SDWA amendments was to promote source water protection, with assessments being the initial step.

An assessment of the drinking water sources for the DDJC Tracy Site was completed on April 5, 2001. The sources are considered most vulnerable to the following activities: military installation activities, sewer collection systems, known contaminant plumes, and historic landfills and/or waste dumps.

A copy of the complete assessment is available at the State Water Resources Control Board, Division of Drinking Water, Stockton District Office, 31 East Channel Street, Room 270, Stockton, California 95202 or at the DDJC Environmental Protection Office, P.O. Box 960001, Stockton, California 95296-0710. You may request that a summary of the assessment be sent to you by contacting Tahir Mansoor, District Engineer, at (209) 948-3879 or at the DS San Joaquin Environmental Protection Office at (209) 839-4081.

Monitoring of Your Drinking Water

Our water system uses only EPA-approved laboratory methods to analyze your drinking water. Water samples are taken from the water supply wells, distribution system, and elevated storage tank, by personnel employed by an accredited laboratory where a full spectrum of water quality analyses are performed.

Our water system monitors for the contaminant groups listed in Column 1 of the following table using EPA-approved methods. Column 2 of the table specifies the monitoring frequency. The state allows us to monitor for some contaminants less than once per year because the concentration of these contaminants do not change frequently. Some of our data, though representative, are more than one year old.

Analyte Groups and Monitoring Frequency Table

Analyte/Contaminant Group	Monitoring Frequency
Biological contaminants (total coliform group) ¹	Every other week
Lead and copper	Triennially (latest survey – 2019)
General Minerals ² , Inorganic contaminants (IOCs) ³	Quarterly
Nitrates	Quarterly
Secondary Standards – A ⁵ , Secondary Standards – B ⁶	Quarterly
Synthetic Organic Chemicals (SOCs) ⁷	As required by SWRCB (latest survey – 2017)
Unregulated contaminants ⁸	As required by SWRCB (latest survey – 2017)
Volatile Organic Compounds (VOCs) ⁹	Every 6 years (latest survey – 2017)
Disinfection Byproducts ¹⁰	Annually

^{1.} Contaminants in this group include total coliform, fecal coliform and heterotrophic bacteria. 2. Contaminants in this group include carbonates, alkalinity, calcium, magnesium, hardness etc. 3. Contaminants in this group include metals, nitrate, fluoride and asbestos. 4. Contaminants in this group include gross/total alpha particle activity. 5. Contaminants in this group include aluminum, copper, corrosivity, iron, and manganese etc. 6. Contaminants in this group include Total Dissolved Solids pH, Specific Conductivity, etc. 7. Contaminants in this group include DBCP & EDB. 8. Contaminants in this group include such compounds as boron, chromium VI, dichlorodifluoromethane, ETBE, perchlorate, TAME, MTBE, TCP and vanadium. 9. Contaminants in this group include such compounds as benzene, carbon tetrachloride, and trichloroethylene (TCE). 10. Contaminants in this group include Total Trihalomethanes (TTHMs) and 5 Haloacetic Acids (HAA5).

Definitions of Key Terms

To gain a better understanding of the content of this report, several key terms must be defined. They are as follows:

Maximum Contaminant Level (MCL) - The highest level of a contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs (or MCLGs) as is economically and technologically feasible. Secondary MCLs are set to protect the odor, taste, and appearance of drinking water.

Maximum Contaminant Level Goal (MCLG) - The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the U.S. Environmental Protection Agency.

Public Health Goal (PHG) – The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California Environmental Protection Agency.

Primary Drinking Water Standard (PDWS) - MCLs for contaminants that affect health along with their monitoring and reporting requirements, and treatment requirements.

Maximum Residual Disinfectant Level (MRDL): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Maximum Residual Disinfectant Level Goal (MRDLG): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

Treatment Technique (TT) - A required process intended to reduce the level of a contaminant in drinking water.

Regulatory Action Level - The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

Additional Acronyms/Terms Used In This Report

SWRCB The State Water Resources Control Board: The regulatory agency to which primacy has been delegated to enforce provisions of the Safe Drinking Water Act in California

DLR Detection Limits for Purposes of Reporting define the analytical detection of a contaminant in terms of a level at which SWRCB is confident about the quantification of the contaminant's presence in drinking water.

MFL Million Fibers per Liter: a measure of asbestos fibers in

mg/L milligrams per liter: a unit of measure equivalent to parts per million (ppm)

ND Non-Detect: contaminants are in either quantities too low to detect or otherwise non-existent

NTU Nephelometric Turbidity Unit: a measure of turbidity (cloudiness) in water

pCi/L picocuries per liter: a measure of radioactivity in water

ppb parts per billion: or micrograms per liter (ug/L) a unit of measure equivalent to a single penny in \$10,000,000

ppm parts per million: or milligrams per liter (mg/L) a unit of measure equivalent to a single penny in \$10,000

SDWA Safe Drinking Water Act: Federal law, which sets forth drinking water regulations

μg/L micrograms per liter: a unit of measure equivalent to parts per billion (ppb)

Our water system analyzes for additional contaminants (including lead and copper) which are governed by Action Levels (ALs), and not MCLs. Additionally, our water system analyzes for contaminants which are subject to treatment techniques. Therefore, the following definitions of these terms are provided below:

Results Table 1 - Detected Primary Contaminants

The following table presents the analytical results of our monitoring for the calendar year reporting period. A detected contaminant is

any contaminant detected at or above its detection level for purposes of reporting (DLR).

Contaminant	PHG (MCLG)	MCL	Range	Average Level	Exceeded Standard?	Likely Source of Contaminant
Arsenic	0.004 ppb	10 ppb	ND-3.47 ppb	1.03 ppb	No	Erosion of natural deposits
Barium	2000 ppb	1000 ppb	ND-114 ppb	29.5 ppb	No	Erosion of natural deposits
Chromium	(100) ppb	50 ppb	ND-15.9 ppb	4 ppb	No	Erosion of natural deposits
Fluoride	1 ppm	2 ppm	ND-0.27 ppm	0.17ppm	No	Erosion of natural deposits
Nitrate (as N)	10 ppm	10 ppm	ND-7.97 ppm	3 ppm	No	Runoff from fertilizer use

Results Table 2 - Detected Secondary Contaminants

The following table presents the analytical results of our monitoring for the calendar year reporting period. Only those Secondary Standard contaminants at or above its detection level for purposes of reporting (DLR) are listed.

Contaminant	MCLG	MCL or AL	Range	Average Level	Exceeded Standard?	Likely Source of Contaminant
Chloride	none	500 ppm	47.9-247 ppm	127 ppm	No	Runoff of natural deposits
Iron	none	300 ppb	ND-196 ppb	99 ppb	No	Leaching of natural deposits
Manganese	none	50 ppb	ND-1430 ppb	446 ppb	Yes*	Leaching of natural deposits
Specific Conductance	none	1600 umhos	847-1660 umhos	1156 umhos	No	Substances that form ions when in water
Sulfate	none	500 ppm	149-215 ppm	176 ppm	No	Leaching of natural deposits
Total Dissolved Solids	none	1000 ppm	515-1660 ppm	764 ppm	No	Runoff of natural deposits
Turbidity	N/A	TT	0.6-3.1 NTU	1.46 NTU	No	Soil runoff
Zinc	none	5000 ppb	ND-753 ppb	218 ppb	No	Leaching of natural deposits

^{*} Secondary MCLs are set on the basis of aesthetics.

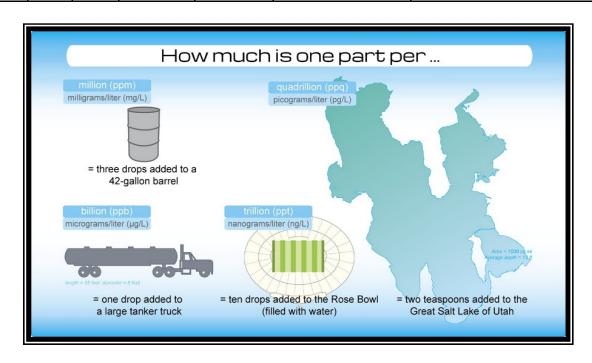
Results Table 3 - Detected Unregulated Contaminants

teodito Table o	saits Table 3 - Detected Officegulated Contaminants								
Contaminant	Action Level	Range	Average	Health Effects					
Boron	1000 ppb	681-1440 ppb	1018 ppb	The babies of some pregnant women who drink water containing boron in excess of the notification level may have an increased risk of developmental effects, based on studies in laboratory animals.					
Vanadium	50 ppb	ND-7.97 ppb	1.98 ppb	The babies of some pregnant women who drink water containing vanadium in excess of the notification level may have an increased risk of developmental effects, based on studies of laboratory animals.					

Results Table 4 - Disinfection Byproducts

Contaminant	Action Level	Average Level	Likely Source of Contaminant
Total Trihalomethanes	80 ppb	54.6 ppb	Byproduct of drinking water chlorination
5 Haloacetic Acids	60 ppb	6.9 ppb	Byproduct of drinking water disinfection

^{*} These samples are taken annually from the distribution system


Results Table 5 - Detected Lead and Copper*

Contaminant	MCLG	Action Level	Number of Sites Sampled	90 th Percentile	Number of Sites Exceeding AL	Likely Source of Contaminant
Lead	2 ppb	15 ppb	10	<10.2 ppb	none	Internal corrosion of household water plumbing systems; discharges from industrial manufacturers; erosion of natural
Copper	170 ppb	1300 ppb	10	159 ppb	none	Internal corrosion of household water plumbing systems; erosion of natural deposits; leaching from wood

^{*} Lead & Copper monitoring is required every 3 years. Results shown are for monitoring in 2019.

Results Table 6 - Sodium and Hardness

Constituent	PHG	MCL	Range	Average Level	Exceeded Standard?	Likely Source of Contaminant
Sodium	None	None	96.5-112 ppm	105 ppm	No	Generally found in ground and surface water
Hardness (as CaCO ₃)	None	None	139-390 ppm	224 ppm	No	Generally found in ground and surface water

Educational Information

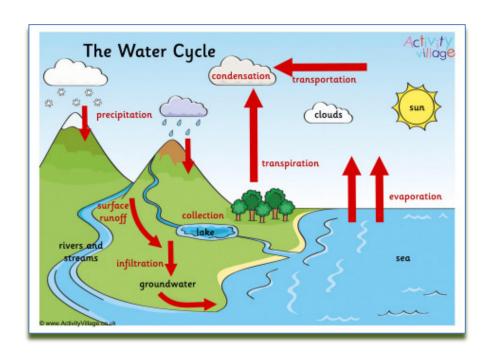
Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the EPA's Safe Drinking Water Hotline (1-800-426-4791).

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. USEPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Drinking Water Hotline (1-800-426-4791).

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity. Contaminants that may be present in source water include:

- Microbial contaminants, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- Inorganic contaminants, such as salts and metals, that can be naturally-occurring or result from urban storm water runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.

- Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban storm water runoff, and residential uses.
- Organic chemical contaminants, including synthetic and volatile organic chemicals, that are byproducts of industrial processes and petroleum production, and can also come from gas stations, urban storm water runoff, and septic systems.
- Radioactive contaminants, which can be naturally-occurring or be the result of oil and gas production and mining activities.


In order to ensure that tap water is safe to drink, USEPA and the State Water Resources Control Board (State Board) prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. State Board regulations also establish limits for contaminants in bottled water that must provide the same protection for public health.

Information on Nitrate

Nitrate in drinking water at levels above 10 mg/L is a health risk for infants of less than six months of age. Such nitrate levels in drinking water can interfere with the capacity of the infant's blood to carry oxygen, resulting in a serious illness; symptoms include shortness of breath and blueness of the skin. Nitrate levels above 10 mg/L may also affect the ability of the blood to carry oxygen in other individuals, such as pregnant women and those with certain specific enzyme deficiencies. If you are caring for an infant, or you are pregnant, you should ask advice from your health care provider.

Public Involvement

We are always available daily to answer the comments and questions raised by our consumers. Consumers may visit the Environmental Protection Office located in Bldg. 100 or call the phone numbers listed on page 1 of this document.

DLA SAN JOAQUIN ANNUAL CONSUMER CONFIDENCE REPORT

January 2019 to December 2019

PARAMETER	UNITS	DLR	PHG	MCLG	MCL	RANGE	AVERAGE
INORGANIC CHEMICALS	•						
Aluminum	ug/L	50	600	N/A	1000	ND	ND
Antimony	ug/L	6.0	20	6.0	6	ND	ND
Arsenic	ug/L	2.0	0.004	0	10	ND-3.47	1.03
Asbestos	MFL	0.2	7.0	7.0	7	ND	ND
Barium	ug/L	100	2000	2000	1000	ND-114	29.5
Beryllium	ug/L	1.0	1.0	4.0	4	ND	ND
Boron	ug/L	100	N/A	N/A	1000	681-1440	1018
Cadmium	ug/L	1.0	0.04	5.0	5	ND	ND
Chromium	ug/L	10	N/A	100	50	ND-15.9	4
Copper *	ug/L	50.0	300.00	1300.0	1300	ND	ND
Cyanide	ug/L	100	150	200	150	ND	ND
Iron *	ug/L	100	N/A	N/A	300	ND-196	99
Lead	ug/L	5	0.2	0.0	15	ND	ND
Manganese *	ug/L	20.0	N/A	N/A	50	ND-1430	446
Mercury	ug/L	1	1.2	2.0	2	ND	ND
Nickel	ug/L	10.0	12.0	N/Α	100	ND	ND
Selenium	ug/L	5	30	50.0	50	ND	ND
Silica	mg/L	0.0	N/A	N/A	N/A	14.2-18.3	16
Silver	ug/L	10.0	N/A	N/A	100	ND	ND
Thallium	ug/L	1	0.1	0.5	2	ND	ND
Vanadium	ug/L	3.0	N/A	N/A	N/A	ND-7.97	1.98
Zinc *	ug/L	50.0	N/A	N/A	5000	ND-753	218
* Denotes Secondary Drinking W	ater Standards (SDWS) th	at are gov	erned by th	e Departme	ent of Health Servi	ces	

PHYSICAL							
Color *	Units	N/A	N/A	N/A	15	ND	ND
Odor Threshold *	Units	N/A	N/A	N/A	3	ND	ND
Turbidity *	NTU '	0.0	N/A	N/A	TT	0.6-3.1	1.46
pН	Units	N/A	N/A	N/A	N/A	6.9-8.1	7.75
Corrosivity (agressiveness)	Units	N/A	N/A	N/A	N/A	11.58-12.44	12.21
Corrosivity (LSI)	Units	N/A	N/A	N/A	N/A	-0.55-0.48	0.09
Specific Conductance *	Umho/Cm	00095	N/A	N/A	900 - 1600	847-1660	1158
Foaming Agents (MBAS) *	ug/L '	0.0	N/A	N/A	500	ND	ND
Total Filterable Residue (TDS) *	mg/L	10	N/A	N/A	500 - 1000	515-1660	764
* Denotes Secondary Drinking Water Standar	ds (SDWS) that	are gover	ned by the	Departm	ent of Health Serv	ices	

CHEMICAL								
Alkalinity CaCO₃	mg/L	0.0	N/A	N/A	N/A	133-174	141	
Bicarbonate	mg/L	0.0	N/A	N/A	N/A	137-212	163	
Carbonate	mg/L	0.0	N/A	N/A	N/A	ND	ND	
Chloride *	mg/L	1.0	N/A	N/A	500	47.9-247	127	
Fluoride	mg/L	0.1	1.0	2.0	2	ND-0.27	0.17	
Hydroxide	mg/L	10	N/A	N/A	N/A	ND	ND	
Nitrate (as N)	mg/L	2.0	45.0	10.0	45	ND-7.97	3	
Nitrite (as N)	ug/L	400	1000	1000	1000	ND	ND	
Nitrate + Nitrite (as N)	ug/L	4.0	N/A	N/A	10,000	ND-7.97	3	
Phosphate	mg/L	0.0	N/A	N/A	N/A	ND-0.68	0.11	
Sulfate *	mg/L	500	N/A	N/A	250	149-215	176	
* Denotes Secondary Drinking Water Sta	ndards (SDWS) th	nat are gove	erned by th	e Departme	nt of Health Sen	ices		

Hardness (CaCO ₃)	mg/L	0.0	N/A	N/A	N/A	139-390	224
Sodium	mg/L	0.0	N/A	N/A	N/A	96.5-112	105
Calcium	mg/L	0.0	N/A	N/A	N/A	34-98	55
Perchlorate	ug/L	4	6	N/A	6	ND	ND
Potassium	mg/L	0.0	N/A	N/A	N/A	3.5-4.1	3.75
Magnesium	mg/L	0.0	N/A	N/A	N/A	12.4-36	21
Total Anions	meq/L	N/A	N/A	N/A	N/A	7.4-14.1	10.28
Total Cations	meq/L	N/A	N/A	N/A	N/A	7.08-12.7	9.13

N/A

0

1.0

Positive

Coliform Bacteria

ABBREVIATIONS					
DLR	Detection Limit for the				
	purpose of Reporting				
PHG	Public Health Goals				
MCLG	Maximum Contaminant				
	Level Goal				
MCL	Maximum Contaminant				
	Level				
MFL	Millions of Fibers per Liter				
ND	Not Detected				
N/A	Not Applicable				
NT	Not Tested				
NTU	Nephelometric				
	Turbidity Unit				
TT	Treatment Technique				
ug/L	micrograms per liter				
mg/L	milligrams per liter				
pCi/L	Picocuries per Liter				
meg/L	Milliequivalent per liter				
Umho/Cm	Micromhos per				
	Centimeter				

Notes:

One ppm (mg/L) is equal to:

- -- 1 minute in 2 years
- -- 1 inch in 16 miles
- -- 1 cent in \$10,000
- -- 1 pinch of salt in 416 bags of potato chips

One ppb (ug/L) is equal to:

- -- 1 second in 32 years
- -- 1 inch in 16,000 miles
- -- 1 cent in \$10,000,000 -- 1 pinch of salt in 84
- 1 pinch of salt in 84 tons of potato chips

DLR - The detection level of a particular chemical at which DHS is confident about the contaminant's presence in drinking water

MCL - The highest level of a contaminant that is allowed in drinking water. The EPA establishes the MCLs for compliance purposes.

MCLG - The level of a contaminant in drinking water below which there is no known or expected risk to health. Established by the U.S. Environmental Protection Agency.

PHG - The level of a contaminant in drinking water below which there is no known or expected risk to health. Established by the California Environmental Protection Agency.

Secondary Drinking Water
Standards address constituents that
may adversely affect the taste, odor or
appearance of drinking water but are not
generally hazardous to health.

Absent

Absent

10

DLA SAN JOAQUIN ANNUAL CONSUMER CONFIDENCE REPORT

January 2019 to December 2019

PARAMETER	UNITS	DLR	PHG	MCLG		MCL	RANGE	AVERAGE
VOLATILE ORGANIC CHEMICALS	(VOCs)							
Bromodichloromethane	ug/L	0.5	N/A	0		N/A	ND	ND
Bromoform	ug/L	0.5	N/A	0		N/A	ND	ND
Chloroform	ug/L	0.5	N/A	0		N/A	ND	ND
Dibromochloromethane	ug/L	0.5	N/A	0		100	ND	ND
Total Trihalomethanes	ug/L	0.5	N/A	0		80	ND	ND
Benzene	ug/L	0.5	1.5	0		1	ND	ND
Carbon Tetrachloride	ug/L	0.5	0.1	0		0.5	ND	ND
1,2-Dichlorobenzene	ug/L	0.5	600	N/A		600	ND	ND
1.4-Dichlorobenzene	ug/L	0.5	6.0	N/A	•	5	ND	ND
1,1-Dichloroethane	ug/L	0.5	3.0	N/A		5	ND	ND
1,2-Dichloroethane	ug/L	0.5	0.4	0		0.5	ND	ND
1,1-Dichloroethylene	ug/L	0.5	10	7.0		6	ND	ND
Cis-1,2-Dichloroethylene	ug/L	0.5	100.0	70		6	ND	ND
Trans-1,2-Dichloroethylene	ug/L	0.5	60.0	100		10	ND	ND
Dichloromethane	ug/L	0.5	4.0	0		5	ND	ND
1,2-Dichloropropane	ug/L	0.5	0.5	0		5	ND ND	ND ND
Total 1,3-Dichloropropene	ug/L ug/L	0.5	0.3	N/A		0.5	ND	ND ND
Ethylbenzene	ug/L	0.5	300	700	•	300	ND ND	ND
Methyl tertiary-Butyl Ether (MTBE)	ug/L ug/L	3.0	13	N/A		13	ND ND	ND ND
Monochlorobenzene	ug/L ug/L	0.5	N/A	100		70	ND ND	ND ND
Styrene	ug/L ug/L	0.5	0.5	100		100	ND ND	ND ND
,								
1,1,2,2-Tetrachloroethane Tetrachloroethylene (PCE)	ug/L ug/L	0.5 0.5	0.1	N/A 0		1 5	ND ND	ND ND
Tetrachioroethylene (PCE) Toluene								
	ug/L	0.5	150	100		150	ND	ND
1,2,4-Trichlorobenzene	ug/L	0.5	5.0	70		5	ND	ND
1,1,1-Trichloroethane	ug/L	0.5	1000.0	200		200	ND	ND
1,1,2-Trichloroethane	ug/L	0.5	0.3	3.0		5	ND	ND
Trichloroethylene (TCE)	ug/L	0.5	1.7	0		5	ND	ND
Trichlorofluoromethane	ug/L	0.5	700	1300		150	ND	ND
1,1,2-Trichloro-1,2,2-Trifluoroethane	•	0.5	4,000	N/A		1200	ND	ND
Vinyl Chloride (VC)	ug/L	0.5	0.05	0		0.5	ND	ND
m,p-Xylene	ug/L	0.5	1,800	10,000		N/A	ND	ND
o-Xylene	ug/L	0.5	1,800	10,000		N/A	ND	ND
Total Xylenes (m,p, and o)	ug/L	0.5	1,800	10,000		1750	ND	ND
NOTE: This testing is required every 3 years. The	se are the re	sults for tes	ting in 2017	7 (Annual te	esting	g of Total Trih	alomethanes are s	hown in Table 4)
UNREGULATED ORGANIC CHEMIC	CALS*							
Bromobenzene	ug/L	0.5	N/A	N/A		N/A	ND	ND
Bromochloromethane	ug/L	0.5	N/A	N/A		N/A	ND	ND
Bromomethane	ug/L	0.5	N/A	N/A		N/A	ND	ND
n-Butylbenzene	ug/L	0.5	N/A	N/A		N/A	ND	ND
sec-Butylbenzene	ug/L	0.5	N/A	N/A		N/A	ND	ND
tert-Butylbenzene	ug/L	0.5	N/A	N/A		N/A	ND	ND
Chloroethane	ug/L	0.5	N/A	N/A		N/A	ND	ND
2-Chloroethylvinyl Ether	ug/L	1.0	N/A	N/A		N/A	ND ND	ND ND
Chloromethane	ug/L	0.5	N/A	N/A		N/A	ND	ND
2-Chlorotoluene	/1	0.5	N/A	N/A		N/A	ND ND	ND ND
4-Chlorotoluene	ug/L		N/A	N/A		N/A	ND	ND ND
4-Chlorotoluene Dibromomethane	ug/L	0.5	N/A	N/A		N/A	ND ND	ND ND
	ug/L					N/A		ND ND
1,3-Dichlorobenzene	ug/L	0.5	N/A	N/A			ND	
Dichlorodifluoromethane	ug/L	0.5	N/A	N/A		N/A	ND	ND
1,3-Dichloropropane	ug/L	0.5	N/A	N/A		N/A	ND	ND
2,2-Dichloropropane	ug/L	0.5	N/A	N/A		N/A	ND	ND
1,1-Dichloropropene	ug/L	0.5	N/A	N/A		N/A	ND	ND
Hexachlorobutadiene	ug/L	0.5	N/A	N/A		N/A	ND	ND
Isopropylbenzene	ug/L	0.5	N/A	N/A		N/A	ND	ND
p-Isopropyltoluene	ug/L	0.5	N/A	N/A		N/A	ND	ND
n-Propylbenzene	ug/L	0.5	N/A	N/A		N/A	ND	ND
1,1,1,2-Tetrachloroethane	ug/L	0.5	N/A	N/A		N/A	ND	ND
1,2,3-Trichlorobenzene	ug/L	0.5	N/A	N/A		N/A	ND	ND
101T: " "	ug/L	0.5	N/A	N/A		N/A	ND	ND
1,2,4-Trimethylbenzene	ug/L	0.5	14// (14//		1471		

NON - VOLATILE SYNTHETIC ORGANIC CHEMICALS (SOCs)

NOTE: This testing is required every 3 years. These are the results for testing in 2017

ug/L

ug/L

0.01 1.7

0.01

0.02

Dibromochloropropane (DBCP)

Ethylene Dibromide (EDB)

ABBREVIATIONS					
DLR	Detection Limit for the				
	purpose of Reporting				
PHG	Public Health Goals				
MCLG	Maximum Contaminant				
	Level Goal				
MCL	Maximum Contaminant				
	Level				
MFL	Millions of Fibers per Lite				
ND	Not Detected				
N/A	Not Applicable				
NT	Not Tested				
NTU	Nephelometric				
	Turbidity Unit				
TT	Treatment Technique				
ug/L	micrograms per liter				
mg/L	milligrams per liter				
pCi/L	Picocuries per Liter				
meg/L	Milliequivalent per liter				
Umho/Cm	Micromhos per				
	Centimeter				

Notes:

One ppm (mg/L) is equal to:

- -- 1 minute in 2 years
- -- 1 inch in 16 miles
- -- 1 cent in \$10,000
- 1 pinch of salt in 416 bags of potato chips

One ppb (ug/L) is equal to:

- 1 second in 32 years
- -- 1 inch in 16,000 miles
- 1 cent in \$10,000,000
- 1 pinch of salt in 84 tons of potato chips

DLR - The detection level of a particular chemical at which DHS is confident about the contaminant's presence in drinking water

MCL - The highest level of a contaminant that is allowed in drinking water. The EPA establishes the MCLs for compliance purposes.

MCLG - The level of a contaminant in drinking water below which there is no known or expected risk to health.
Established by the U.S. Environmental Protection Agency.

PHG - The level of a contaminant in drinking water below which there is no known or expected risk to health.
Established by the California
Environmental Protection Agency.

Secondary Drinking Water Standards address constituents that may adversely affect the taste, odor or appearance of drinking water but are not generally hazardous to health.

ND

ND

ND

ND

0.2

0.05