2019 Consumer Confidence Report

Water System Name: TRACY MATRL RECVRY/SLD WASTE WS Report Date: June 2020

We test the drinking water quality for many constituents as required by state and federal regulations. This report shows the results of our monitoring for the period of January 1 - December 31, 2019.

Este informe contiene información muy importante sobre su agua potable. Tradúzcalo ó hable con alquien que lo entienda bien.

Type of water source(s) in use: This info is not available, please see the Drinking Water Source Assessment Information section located at the end of this report for more details.

Your water comes from 1 source(s): Well

Opportunities for public participation in decisions that affect drinking water quality: Regularly-scheduled water board or city/county council meetings currently are not held. Tracy Material Recovery posts CCR report and other information on company bulletin boards for all employees.

For more information about this report, or any questions relating to your drinking water, please call (209) 838 - 7842 and ask for Quality Service, Inc. or visit our website at www.tracymaterialrecovery.com.

TERMS USED IN THIS REPORT

Maximum Contaminant Level (MCL): The highest level of contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs (or MCLGs) as is economically feasible. Secondary MCLs are set to protect the odor, taste, and appearance of drinking water.

Maximum Contaminant Level Goal (MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the U.S. Environmental Protection Agency (USEPA).

Public Health Goal (PHG): The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California Environmental Protection Agency.

Maximum Residual Disinfectant Level (MRDL): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Maximum Residual Disinfectant Level Goal (MRDLG): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

Primary Drinking Water Standards (PDWS): MCLs and MRDLs for the contaminants that affect health along with their monitoring and reporting requirements, and water treatment requirements.

Treatment Technique (TT): A required process intended to reduce the level of a contaminant in drinking water.

Regulatory Action Level (AL): The concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow.

Level 1 Assessment: A Level 1 assessment is a study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system.

Level 2 Assessment: A Level 2 assessment is a very detailed study of the water system to identify potential problems and determine (if possible) why an E. coli MCL violation has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions.

mg/L: milligrams per liter or parts per million (ppm)

ug/L: micrograms per liter or parts per billion (ppb)

pCi/L: picocuries per liter (a measure of radiation)

The sources of drinking water: (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include:

- Microbial contaminants, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- Inorganic contaminants, such as salts and metals, that can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- Pesticides and herbicides, that may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses.
- Organic chemical contaminants, including synthetic and volatile organic chemicals, that are by-products if industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, agricultural application, and septic systems.
- Radioactive contaminants, that can be naturally-occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, the USEPA and the State Water Resource Control Board (State Water Board) prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. State Water Board regulations also establish limits for contaminants in bottled water that provide the same protection for public health.

Tables 1, 2, 3 and 4 list all of the drinking water contaminants that were detected during the most recent sampling for the constituent. The presence of these contaminants in the water does not necessarily indicate that the water poses a health risk. The State Water Board allows us to monitor for certain contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of the data, though representative of the water quality, are more than one year old.

Any violation of MCL, AL or MRDL is highlighted. Additional information regarding the violation is provided later in this report.

Table 1 - SAMPLING RESULTS SHOWING THE DETECTION OF LEAD AND COPPER									
Lead and Copper (complete if lead or copper detected in last sample set)	Sample Date	90th percentile level detected	No. Sites Exceeding AL	AL	PHG	Typical Sources of Contaminant			
Copper (mg/L)	5 (2019)	0.14	0	1.3	.3	Internal corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives			

Table 2 - 1	Table 2 - DETECTION OF CONTAMINANTS WITH A PRIMARY DRINKING WATER STANDARD											
Chemical or Constituent (and reporting units)	Sample Date	Average Level Detected	Range of Detections	MCL [MRDL]	PHG (MCLG) [MRDLG]	Typical Sources of Contaminant						
Arsenic (ug/L)	(2017)	2	n/a	10	0.004	Erosion of natural deposits; runoff from orchards, glass and electronics production wastes						
Nitrate as N (mg/L)	(2019)	2.3	n/a	10	10	Runoff and leaching from fertilizer use; leaching from septic tanks and sewage; erosion of natural deposits						
Selenium (ug/L)	(2017)	8	n/a	50	30	Discharge from petroleum, glass, and metal refineries; erosion of natural deposits; discharge from mines and chemical manufacturers; runoff from livestock lots(feed additive)						
Gross Alpha (pCi/L)	(2018)	5.05	n/a	15	(0)	Erosion of natural deposits.						
Uranium (pCi/L)	(2018)	3,12	n/a	20	0.43	Erosion of natural deposits						

Table 3 - DETECTION OF UNREGULATED CONTAMINANTS									
Chemical or Constituent (and reporting units)	Sample Date	Average Level Detected	Range of Detections	Notification Level	Typical Sources of Contaminant				
Vanadium (mg/L)	(2017)	0.006	n/a	0.05	Vanadium exposures resulted in developmental and reproductive effects in rats.				

Table	Table 4 - DETECTION OF DISINFECTANT/DISINFECTANT BYPRODUCT RULE										
Chemical or Constituent (and reporting units)	Sample Date	Average Level Detected	Range of Detections	MCL (MRDL)	PHG (MCLG)	Violation	Typical Sources of Contaminant				
Total Trihalomethanes (TTHMs) (ug/L)	(2018)	12	n/a	80	n/a	No	By-product of drinking water disinfection				
Chlorine (mg/L)	(2019)	0,00	n/a	4.0	4,0	ł .	Drinking water disinfectant added for treatment,				
Haloacetic Acids (five) (ug/L)	(2018)	2	n/a	60	n/a		By-product of drinking water disinfection				

Additional General Information on Drinking Water

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts if some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the USEPA's Safe Drinking Water Hotline (1-800-426-4791).

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. USEPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* and other microbial contaminants are available from the Safe Drinking Water Hotline (1-800-426-4791).

Lead Specific Language for Community Water Systems: If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with the service lines and home plumbing. *Tracy Material Recovery & Solid Waste WS* is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/lead.

Summary Information for Violation of a MCL, MRDL, AL, TT, or Monitoring and Reporting Requirement

VIOLATION OF	VIOLATION OF A MCL,MRDL,AL,TT, OR MONITORING AND REPORTING REQUIREMENT								
Violation	Explanation	Duration	Actions Taken To Correct the Violation	Health Effects Language					
Methylene Chloride (Dichloromethane)				Some people who drink water containing dichloromethane in excess of the MCL over many years may experience liver problems, and may have an increased risk of getting cancer.					

2019 Consumer Confidence Report

Drinking Water Assessment Information

Assessment Information

A Drinking Water Source Assessment has not been completed for the WELL of the TRACY MATRL RECVRY/SLD WASTE WS water system.

Well - does not have a completed Source Water Assessment on file.

Discussion of Vulnerability

Assessment summaries are not available for some sources. This is because:

- [] The Assessment has not been completed. Contact the local Department of Health Services (DHS) Drinking Water field office or the water system to find out when the Assessment is scheduled to be done.
- The source is not active. It may be out of service, or new and not yet in service.
- ☐ The Assessment was not submitted electronically. The site used to obtain Assessments only provides access to Assessment summaries submitted electronically.

Acquiring Information

For more info you may visit https://www.waterboards.ca.gov/drinking_water/certlic/drinkingwater/DWSAP.html or contact the health department in the county to which the water system belongs as indicated on this following link: https://www.waterboards.ca.gov/drinking_water/programs/documents/ddwem/DDWdistrictofficesmap.pdf

Tracy Material Recovery & Solid Waste WS Analytical Results By FGL - 2019

LEAD AND COPPER RULE											
		Units	MCLG	CA-MCL	PHG	Sampled	Result	90th Percentile	# Samples		
Copper		mg/L		1,3	,3			0,135	5		
Office Breakroom	STK1954164-3	mg/L				2019-09-08	0.12				
Office Conference Room	STK1954164-4	mg/L				2019-09-08	0,15				
Office Mens Downstairs	STK1954164-2	mg/L				2019-09-08	0.08				
Office Mens Upstairs	STK1954164-5	mg/L				2019-09-08	0.11				
Office Womens Downstairs	STK1954164-1	mg/L				2019-09-08	0.09				

	PRIMARY DRINKING WATER STANDARDS (PDWS)											
		Units	MCLG	CA-MCL	PHG	Sampled	Result	Avg. Result(a)	Range (b)			
Arsenic		ug/L		10	0.004			2	2 - 2			
Well	STK1753418-1	ug/L				2017-10-19	2					
Nitrate as N		mg/L		10	10			2,3	2.3 - 2.3			
Well	STK1955013-1	mg/L				2019-10-07	2.3					
Selenium		ug/L	50	50	30]		8	8 - 8			
Well	STK1753418-1	ug/L				2017-10-19	8					
Gross Alpha		pCi/L		15	(0)			5.05	5.05 - 5.05			
Well	STK1854449-1	pCi/L				2018-10-04	5.05					
Uranium		pCi/L		20	0.43			3.12	3.12 - 3.12			
Well	STK1854449-1	pCi/L				2018-10-04	3.12					

UNREGULATED CONTAMINANTS									
Units MCLG CA-MCL PHG Sampled Result Avg. Range (b)									
Vanadium		mg/L		NS	n/a			0.006	0.006 - 0.006
Well STK1753418-1 mg/L 2017-10-19 0.006									

	DETECTION OF DISINFECTANT/DISINFECTANT BYPRODUCT RULE										
		Units	MCLG	CA-MCL	PHG	Sampled	Result	Avg. Result(a)	Range (b)		
Total Tribalomethanes (TTHM	(s)	ug/L		80	n/a			12	12 - 12		
Conference Room Sink	STK1852058-1	ug/L				2018-08-21	12				
Average Conference Room Sink								12			
Chlorine		mg/L		4.0	4.0		1	0.00	ND -		
Well	STK1957574-2	mg/L				2019-12-02	ND				
Well	STK1956584-2	mg/L				2019-11-07	ND				
Well	STK1955012-2	mg/L				2019-10-07	ND				
Well	STK1953234-2	mg/L				2019-09-06	ND				
Well	STK1951652-2	mg/L				2019-08-09	ND				
Well	STK1939858-2	mg/L				2019-07-08	ND				
Well	STK1937824-2	mg/L				2019-06-03	ND				
Well	STK1936595-2	mg/L				2019-05-10	ND		_		
Well	STK1934803-2	mg/L				2019-04-09	ND				
Well	STK1933170-2	mg/L				2019-03-06	ND				
Well	STK1931916-2	mg/L				2019-02-07	ND				
Well	STK1930455-2	mg/L				2019-01-09	ND				
Average Well								0			
Haloacetic Acids (five)		ug/L		60	n/a			2	2 - 2		
Conference Room Sink	STK1852058-1	ug/L				2018-08-21	2		· · · · · · · · · · · · · · · · · · ·		
Average Conference Room Sink								2	- -		

Tracy Material Recovery & Solid Waste WS CCR Login Linkage - 2019

FGL Code	Lab ID	Date_Sampled	Method	Description	Property
Conf. RM Sink	STK1852058-1	2018-08-21	EPA 551,1	Conference Room Sink	Water Monitoring
	STK1852058-1	2018-08-21	EPA 552,2	Conference Room Sink	Water Monitoring
ROUT' 1	STK1930455-1	2019-01-09	Coliform	Main, Office Upstairs Conf. RS	Water Monitoring - Odd
	STK1933170-1	2019-03-06	Coliform	Main, Office Upstairs Conf. RS	Water Monitoring - Odd
	STK1936595-1	2019-05-10	Coliform	Main, Office Upstairs Conf. RS	Water Monitoring - Odd
	STK1939858-1	2019-07-08	Coliform	Main, Office Upstairs Conf. RS	Water Monitoring - Odd
	STK1953234-1	2019-09-06	Coliform	Main, Office Upstairs Conf. RS	Water Monitoring - Odd
	STK1956584-1	2019-11-07	Coliform	Main. Office Upstairs Conf. RS	Water Monitoring - Odd
ROUT 2	STK1931916-1	2019-02-07	Coliform	Material Recovery Facility BS	Water Monitoring - Even
	STK1934803-1	2019-04-09	Coliform	Material Recovery Facility BS	Water Monitoring - Even
	STK1937824-1	2019-06-03	Coliform	Material Recovery Facility BS	Water Monitoring - Even
	STK1951652-1	2019-08-09	Coliform	Material Recovery Facility BS	Water Monitoring - Even
	STK1955012-1	2019-10-07	Coliform	Material Recovery Facility BS	Water Monitoring - Even
	STK1957574-1	2019-12-02	Coliform	Material Recovery Facility BS	Water Monitoring - Even
Off.Breakrm	STK1954164-3	2019-09-08	Metals, Total	Office Breakroom	Lead & Copper Monitoring
OfficeConferenc	STK1954164-4	2019-09-08	Metals, Total	Office Conference Room	Lead & Copper Monitoring
Off.MensDownsta	STK1954164-2	2019-09-08	Metals, Total	Office Mens Downstairs	Lead & Copper Monitoring
Off.MensUpstair	STK1954164-5	2019-09-08	Metals, Total	Office Mens Upstairs	Lead & Copper Monitoring
Off.WomensDowns	STK1954164-1	2019-09-08	Metals, Total	Office Womens Downstairs	Lead & Copper Monitoring
Wellhead	STK1753418-1	2017-10-19	Metals, Total	Well	Water Quality Monitoring
,	STK1854449-1	2018-10-04	Radio Chemistry	Well	Radio Monitoring
	STK1854449-1	2018-10-04	Metals, Total	Well	Radio Monitoring
	STK1930455-2	2019-01-09	Field Test	Well	Water Monitoring - Odd
	STK1931916-2	2019-02-07	Field Test	Well	Water Monitoring - Even
	STK1933170-2	2019-03-06	Field Test	Well	Water Monitoring - Odd
	STK1934803-2	2019-04-09	Field Test	Well	Water Monitoring - Even
	STK1936595-2	2019-05-10	Field Test	Well	Water Monitoring - Odd
	STK1937824-2	2019-06-03	Field Test	Well	Water Monitoring - Even
	STK1939858-2	2019-07-08	Field Test	Well	Water Monitoring - Odd
	STK1951652-2	2019-08-09	Field Test	Well	Water Monitoring - Even
	STK1953234-2	2019-09-06	Field Test	Well	Water Monitoring - Odd
	STK1955013-1	2019-10-07	Wet Chemistry	Well	Water Quality Monitoring
	STK1955012-2	2019-10-07	Field Test	Well	Water Monitoring - Even
	STK1956584-2	2019-11-07	Field Test	Well	Water Monitoring - Odd
-	STK1957574-2	2019-12-02	Field Test	Well	Water Monitoring - Even