Consumer Confidence Report Certification Form

(to be submitted with a copy of the CCR)

(to certify electronic delivery of the CCR, use the certification form on the State Water Board's website at $\underline{ http://www.waterboards.ca.gov/drinking_water/certlic/drinkingwater/CCR.shtml) }$

3.67	Name: DIEDE TRUCKING WATER SYSTEM Number: 3901473
certifies that th	em above hereby certifies that its Consumer Confidence Report was distributed on(date) to customers (and appropriate notices of availability have been given). Further, the system e information contained in the report is correct and consistent with the compliance monitoring data nitted to the State Water Resources Control Board, Division of Drinking Water.
Certified By:	Name Mike MASON/ Signature Mike MASON/ Title Observations Phone Number (209) 369-8255 Date 6/23/2020
CCR was	report delivery used and good-faith efforts taken, please complete the form below by checking all items fill-in where appropriate: s distributed by mail or other direct delivery methods. Specify other direct delivery methods used: Sted Int company Break Coom
methods	ith" efforts were used to reach non-bill paying customers. Those efforts included the following: osted the CCR on the internet at http://
M	Tailed the CCR to postal patrons within the service area (attach zip codes used)
A	dvertised the availability of the CCR in news media (attach a copy of press release)
	ublication of the CCR in a local newspaper of general circulation (attach a copy of the ublished notice, including name of the newspaper and date published)
Po	osted the CCR in public places (attach a list of locations)
	elivery of multiple copies of CCR to single bill addresses serving several persons, uch as apartments, businesses, and schools
D	elivery to community organizations (attach a list of organizations)
0	ther (attach a list of other methods used)
	oms serving at least 100,000 persons: Posted CCR on a publicly-accessible internet site lowing address: http://
	tely-owned utilities: Delivered the CCR to the California Public Utilities Commission

2019 Consumer Confidence Report

Water System Name: DIEDE TRUCKING WATER SYSTEM

Report Date:

June 2020

We test the drinking water quality for many constituents as required by state and federal regulations. This report shows the results of our monitoring for the period of January 1 - December 31, 2019.

Este informe contiene información muy importante sobre su agua potable. Tradúzcalo ó hable con alquien que lo entienda bien.

Type of water source(s) in use: This info is not available, as this water system does not have a completed assessment on file. Please see the Drinking Water Source Assessment Information section located at the end of this report for more details.

Your water comes from 1 source(s): Well

Opportunities for public participation in decisions that affect drinking water quality: Regularly-scheduled water board or city/county council meetings currently are not held.

For more information about this report, or any questions relating to your drinking water, please call (209)369-8255 and ask for Mike Mason or email mikemason@diedesonstruction.com or visit our website at www.diedeconstruction.com.

TERMS USED IN THIS REPORT

Maximum Contaminant Level (MCL): The highest level of contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs (or MCLGs) as is economically feasible. Secondary MCLs are set to protect the odor, taste, and appearance of drinking water.

Maximum Contaminant Level Goal (MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the U.S. Environmental Protection Agency (USEPA).

Public Health Goal (PHG): The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California Environmental Protection Agency.

Maximum Residual Disinfectant Level (MRDL): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Maximum Residual Disinfectant Level Goal (MRDLG): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

Primary Drinking Water Standards (PDWS): MCLs and MRDLs for the contaminants that affect health along with their monitoring and reporting requirements, and water treatment requirements.

Treatment Technique (TT): A required process intended to reduce the level of a contaminant in drinking water.

Regulatory Action Level (AL): The concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow.

Level 1 Assessment: A Level 1 assessment is a study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system.

Level 2 Assessment: A Level 2 assessment is a very detailed study of the water system to identify potential problems and determine (if possible) why an E. coli MCL violation has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions.

ND: not detectable at testing limit

mg/L: milligrams per liter or parts per million (ppm)

ug/L: micrograms per liter or parts per billion (ppb)

ppt: parts per trillion or nanograms per liter (ng/L)

pCi/L: picocuries per liter (a measure of radiation)

The sources of drinking water: (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include:

- Microbial contaminants, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- Inorganic contaminants, such as salts and metals, that can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- Pesticides and herbicides, that may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses.
- Organic chemical contaminants, including synthetic and volatile organic chemicals, that are by-products if industrial
 processes and petroleum production, and can also come from gas stations, urban stormwater runoff, agricultural
 application, and septic systems.
- Radioactive contaminants, that can be naturally-occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, the USEPA and the State Water Resource Control Board (State Water Board) prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. State Water Board regulations also establish limits for contaminants in bottled water that provide the same protection for public health.

Tables 1, 2 and 3 list all of the drinking water contaminants that were detected during the most recent sampling for the constituent. The presence of these contaminants in the water does not necessarily indicate that the water poses a health risk. The State Water Board allows us to monitor for certain contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of the data, though representative of the water quality, are more than one year old.

Any violation of MCL, AL or MRDL is highlighted. Additional information regarding the violation is provided later in this report.

Tabl	le 1 - SAMPL	ING RESU	LTS SHOWING T	THE DETECTION	NC	OF L	EAD AND COPPER
Lead and Copper	Sample Date	No of	90th percentile level detected	No Sites			Typical Sources of Contaminant
Copper (mg/L)	(2019)	5	0.12	0	1.3	.3	Internal corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives

Table 2 - DETEC	TION OF CO	NTAMINA	NTS WITH A	PRIMAI	RY DRINKI	NG WATER STANDARD
Chemical or Constituent (and reporting units)	Sample Date	Average Level Detected	Range of Detections	MCL [MRDL]	PHG (MCLG) [MRDLG]	Typical Sources of Contaminant
Arsenic (ug/L)	(2017)	3	n/a	10	0.004	Erosion of natural deposits; runoff from orchards, glass and electronics production wastes
Hexavalent Chromium (ug/L)	(2018)	6.4	n/a		0.02	Discharge from electroplating factories, leather tanneries, wood preservation, chemical synthesis, refractory production, and textile manufacturing facilities; erosion of natural deposits.
Nitrate as N (mg/L)	(2019)	2.8	n/a	10	10	Runoff and leaching from fertilizer use; leaching from septic tanks and sewage; erosion of natural deposits
Gross Alpha (pCi/L)	(2018)	1.3	n/a	15	(0)	Erosion of natural deposits.
Dibromochloropropane (DBCP) (ppt)	(2019)	98	ND - 170	200	1.7	Banned nematocide that may still be present in soils due to runoff/leaching from former use on soybeans, cotton, vineyards, tomatoes, and tree fruit

	Table 3	3 - DETECTION	OF UNREGULA	TED CONTAMI	NANTS
Chemical or Constituent (and reporting units)	Sample Date	Average Level Detected	Range of Detections	Notification Level	Typical Sources of Contaminant
Vanadium (mg/L)	(2017)	0.026	n/a	0.05	Vanadium exposures resulted in developmental and reproductive effects in rats.

Additional General Information on Drinking Water

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts if some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk, More information about contaminants and potential health effects can be obtained by calling the USEPA's Safe Drinking Water Hotline (1-800-426-4791).

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. USEPA/ Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* and other microbial contaminants are available from the Safe Drinking Water Hotline (1-800-426-4791).

Lead Specific Language for Community Water Systems: If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with the service lines and home plumbing. *Diede Trucking Water System* is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/lead.

2019 Consumer Confidence Report

Drinking Water Assessment Information

Assessment Information

A Drinking Water Source Assessment has not been completed for the WELL-WEST PROPORTY of the DIEDE TRUCKING WATER SYSTEM water system.

Well - does not have a completed Source Water Assessment on file.

Discussion of Vulnerability

Assessment summaries are not available for some sources. This is because:

- The Assessment has not been completed. Contact the local Department of Health Services (DHS) Drinking Water field office or the water system to find out when the Assessment is scheduled to be done.
- The source is not active. It may be out of service, or new and not yet in service.
- [] The Assessment was not submitted electronically. The site used to obtain Assessments only provides access to Assessment summaries submitted electronically.

Acquiring Information

For more info you may visit http://swap.ice.ucdavis.edu/TSinfo/TSintro.asp or contact Diede Trucking Water System's local health department at:

San Joaquin County Environmental Health Department

600 E. Mian St.

Stockton CA 95202

Phn: (209) 468-3420

Fax: (209) 464-0138

Office Hours: Monday through Friday, 8:00 a.m. to 5:00 p.m.

Diede Trucking Water System Analytical Results By FGL - 2019

LEAD AND COPPER RULE												
10.00	- 112	Units	MCLG	CA-MCL	PHG	Sampled	Result	90th Percentile	# Samples			
Copper		mg/L		1.3	.3			0.115	5			
Drinking Fountain	STK1938148-4	mg/L				2019-06-06	0.10					
Kitchen Faucet	STK1938148-1	mg/L				2019-06-06	0.07					
N/W Bath Faucet	STK1938148-3	mg/L				2019-06-06	0.06					
S/E Bath Faucet	STK1938148-5	mg/L			<i>3</i> 2 2 2	2019-06-06	0.13					
S/W Bath Faucet	STK1938148-2	mg/L				2019-06-06	0.08					

	PRIM	ARY DRI	NKING W	ATER STAN	DARDS	(PDWS)			
		Units	MCLG	CA-MCI.	PHG	Sampled	Result	Avg. Result(a)	Range (b)
Arsenic		ug/L		10	0.004			3	3 - 3
Well	STK1734109-1	ug/L				2017-04-11	3		
Hexavalent Chrom	lum	ug/L			0.02			6.4	6.4 - 6.4
Well	STK1853841-1	ug/L				2018-09-24	6.4		
Nitrate as N		mg/L		10	10			2.8	2.8 - 2,8
Well	STK1934997-1	mg/L				2019-04-11	2.8		
Gross Alpha		pCi/L		15	(0)			1.30	1.30 - 1.30
Well	STK1835199-1	pCi/L				2018-04-20	1.30		· · · · · · · · · · · · · · · · · · ·
Dibromochloropro	pane (DBCP)	ppt		200	1.7			98	ND - 170
Well	STK1955058-1	ppt				2019-10-08	100		
Well	STK1939913-1	ppt				2019-07-09	120	******	
Well	STK1934997-1	ppt				2019-04-11	170		
Well	STK1930546-1	ppt				2019-01-10	ND		

	-	UNRE	GULATED	CONTAMI	NANTS				
		Units	MCLG	CA-MCL	PHG	Sampled	Result	Avg. Result(a)	Range (b)
Vanadium		mg/L		NS	n/a			0.026	0.026 - 0.026
Well	STK1734109-1	mg/L				2017-04-11	0.026		

Diede Trucking Water System CCR Login Linkage - 2019

FGL Code	Lab ID	Date_Sampled	Method	Description	Property
CuPb-ss04	STK1938148-4	2019-06-06	Metals, Total	Drinking Fountain	Copper & Lead Monitoring
Bacti-Rout-ss01	STK1930545-1	2019-01-10	Coliform	HB-E.Side@ MainBldg. FrontDoor	Routine Bacteriological Monitoring
	STK1932001-1	2019-02-08	Coliform		Routine Bacteriological Monitoring
	STK1933018-1	2019-03-05	Coliform	HB-E.Side@ MainBldg. FrontDoor	Routine Bacteriological Monitoring
	STK1934996-1	2019-04-11	Coliform	HB-E.Side@ MainBldg. FrontDoor	Routine Bacteriological Monitoring
	STK1936302-1	2019-05-07	Coliform		Routine Bacteriological Monitoring
	STK1938391-1	2019-06-11	Coliform	HB-E.Side@ MainBldg, FrontDoor	Routine Bacteriological Monitoring
	STK1939912-1	2019-07-09	Coliform	HB-E.Side@ MainBldg. FrontDoor	Routine Bacteriological Monitoring
	STK1951189-1	2019-08-01	Coliform	HB-E.Side@ MainBldg. FrontDoor	Routine Bacteriological Monitoring
	STK1953514-1	2019-09-10	Coliform	HB-E.Side@ MainBldg. FrontDoor	Routine Bacteriological Monitoring
	STK1955057-1	2019-10-08	Coliform	HB-E.Side@ MainBldg. FrontDoor	Routine Bacteriological Monitoring
	STK1956765-1	2019-11-12	Coliform	HB-E.Side@ MainBldg, FrontDoor	Routine Bacteriological Monitoring
	STK1957718-1	2019-12-03	Coliform	HB-E.Side@ MainBldg, FrontDoor	Routine Bacteriological Monitoring
CuPb-ss01	STK1938148-1	2019-06-06	Metals, Total	Kitchen Faucet	Copper & Lead Monitoring
CuPb-ss03	STK1938148-3	2019-06-06	Metals, Total	N/W Bath Faucet	Copper & Lead Monitoring
CuPb-ss05	STK1938148-5	2019-06-06	Metals, Total	S/E Bath Faucet	Copper & Lead Monitoring
CuPb-ss02	STK1938148-2	2019-06-06	Metals, Total	S/W Bath Faucet	Copper & Lead Monitoring
WELL 01-West	STK1734109-1	2017-04-11	Metals, Total	Well	Water Quality Monitoring-West
	STK1835199-1	2018-04-20	Radio Chemistry	Well	Radiological Monitoring-West
	STK1853841-1	2018-09-24	Wet Chemistry	Well	Chrome 6 Monitoring-West
	STK1930546-1	2019-01-10	EPA 504.1	Well	Water Quality Monitoring-West
	STK1934997-1	2019-04-11	EPA 504.1	Well	Water Quality Monitoring-West
	STK1934997-1	2019-04-11	Wet Chemistry	Well	Water Quality Monitoring-West
	STK1939913-1		EPA 504.1	Well	Water Quality Monitoring-West
	STK1955058-1	2019-10-08	EPA 504.1	Well	Water Quality Monitoring-West